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Abstract
1 We address the problem of vector-valued image regu-

larization with variational methods and PDE’s. From the
study of existing formalisms, we propose a unifying frame-
work based on a very local interpretation of the regulariza-
tion processes. The resulting equations are then specialized
into new regularization PDE’s and corresponding numeri-
cal schemes that respect the local geometry of vector-valued
images. They are finally applied on a wide variety of image
processing problems, including color image restoration, in-
painting, magnification and flow visualization.

1. Introduction & Motivation
Anisotropic regularization PDE’s raise a strong interest in
the field of image processing. The ability to smooth data
while preserving large global features such as contours and
corners (discontinuities), has opened new ways to handle
classical image-related issues (restoration, segmentation).
Thus, many regularization schemes have been presented so
far in the literature, particularly for the case of 2D scalar
images I : Ω ⊂ R

2 → R ( [1, 17, 18, 28] and references
therein). Extensions of these algorithms to vector-valued
images I : Ω → R

n have been recently proposed, leading
to more elaborated diffusion PDE’s : a coupling between
image channels appears in the equations, through the con-
sideration of a local vector geometry, given pointwise by the
spectral elements λ+, λ− (positive eigenvalues) and θ+, θ−
(orthogonal eigenvectors) of the 2 × 2 symmetric and semi
positive-definite matrix G =

∑n
j=1 ∇Ij∇I

T
j (also called

structure tensor [25, 26, 28, 29]). The λ± respectively de-
fine the local min/max vector-valued variations of I in cor-
responding spatial directions θ±, i.e. the local configura-
tion of the image discontinuities. (note that λ+=‖∇I‖ and
θ+ =∇I/‖∇I‖ for scalar images, n = 1). Regulariza-
tion schemes generally lie on one of these three following
approaches, related to different interpretation levels :

(1) Functional minimization : Regularizing an image I

may be seen as the minimization of a functionalE(I) mea-
suring a global image variation. The idea is that minimizing
this variation will flatten the image, then remove the noise :

minI:Ω→Rn E(I) =
∫

Ω φ(N (I)) dΩ (1)
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where φ : R→R is an increasing function and N (I)
is a norm related to local image variations, for instance

N (I) =
√

λ+ + λ− = trace (G)
1
2 . The minimization of

(1) is performed with a gradient descent (PDE) given by the
Euler-Lagrange equations of E(I). Useful references for
vector image regularization are [5, 12, 16, 18, 20, 22, 26].

(2) Divergence expressions : A regularization process may
be also designed more locally, as the diffusion of pixel val-
ues - viewed as chemical concentrations [11, 28] - driven by
a 2×2 diffusion tensor D (symmetric and positive matrix) :

∂Ii

∂t
= div (D∇Ii) (i = 1..n) (2)

It is generally assumed that the spectral elements of D give
the two weights and directions of the local smoothing per-
formed by (2). D is then usually designed from the spectral
elements of G in order to smooth I anisotropically, while
respecting its intrinsic local geometry by preserving its dis-
continuities. Anyway, this interpretation of (2) should not
be systematic, as pointed out in further paragraphs.

(3) Oriented Laplacians : 2D image regularization may
be finally seen as the juxtaposition of two oriented 1D heat
flows, i.e two monodimensional gaussian smoothing along
orthonormal directions u⊥v, with corresponding weights
c1 and c2 [14, 19, 25, 26] :

∂I
∂t

= c1
∂2

I

∂u2 + c2
∂2

I

∂v2 = c1 Iuu + c2 Ivv (3)

Like divergence expressions, c1, c2 and u,v are usually de-
signed from the spectral elements λ± and θ± of G, in order
to perform edge-preserving smoothing, mainly along the di-
rection θ− orthogonal to the vector image discontinuities.

The link between these three formulations (1),(2),(3) is
generally not trivial, especially for vector-valued images.
Actually, it is well known for the classical case of φ-
functional regularization of scalar images (n = 1). In this
case, the three following formulations are equivalent :

(1) minI:Ω→R

∫

Ω
φ(‖∇I‖) dΩ (4)

⇒ (2) ∂I
∂t

= div

(

φ
′

(‖∇I‖)
‖∇I‖ ∇I

)

⇒ (3) ∂I
∂t

= φ
′

(‖∇I‖)
‖∇I‖ Iξξ + φ

′′

(‖∇I‖) Iηη
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where η=∇I/‖∇I‖ and ξ⊥η. Note that this regularization
leads to anisotropic smoothing (in the sense that it is per-
formed in privileged spatial directions ξ and η with different
weights), despite the isotropic shape of the corresponding
divergence-based tensor D = φ

′

(‖∇I‖)/‖∇I‖ Id.
In this paper, we propose a way to find such equivalences

for the more general case of vector-valued regularization.
We tackle each of the three interpretation levels (1),(2),(3)
in its more general form, and derive the corresponding equa-
tions. We particularly show that the oriented-Laplacian for-
malism has an interesting interpretation in terms of local
filtering, and represents the right smoothing geometry per-
formed by the PDE’s. Then, we design a new vector-valued
regularization approach respecting desired local smoothing
properties as well as adapted numerical schemes (section 4
and 5). Finally, we apply it for color image restoration, in-
painting, magnification, and flow visualization (section 6).

2. From Variational to Divergence Forms
We first consider vector-valued image regularization as a
variational problem. We want to find the corresponding
divergence-based expression, i.e. the link (1)⇒(2).

• A generic functional : Instead of considering a functional
such as (1) depending on a variation norm N (I), we rather
propose to minimize this more general ψ-functional :

minI:Ω→Rn E(I) =
∫

Ω ψ(λ+, λ−) dΩ (5)

where the λ± are the eigenvalues of the structure tensor
G =

∑n
j=1 ∇Ij∇I

T
j , and ψ : R

2 → R is an increas-
ing function. This is a natural and generic extension of the
scalar φ-function formulation (4) for vector-valued images.

• Gradient descent : The Euler-Lagrange equations of (5)
can be derived, and reduce to a simple form of divergence-
based expression ∂Ii

∂t
= div (D∇Ii) , (i = 1..n) (see [27]

for a full demonstration), where the 2 × 2 tensor D is :

D = ∂ψ
∂λ+

(λ+, λ−) θ+θ
T
+ + ∂ψ

∂λ−

(λ+, λ−) θ−θT−

D is simply defined from the partial derivatives of ψ, and
has the same eigenvectors θ+, θ− as G.

• Link with existing approaches : Particular choices
of functions ψ leads to previous vector-valued regular-
ization approaches defined as variational methods, such
as the whole range of Vector φ-functionals [16, 22] :
ψ(λ+, λ−)=φ(

√

λ+ + λ−), or the Beltrami flow frame-
work [12] : ψ(λ+, λ−) =

√

(1 + λ+)(1 + λ−). More gen-
erally, our approach shows that eigenvalues of a divergence
tensor D define the gradient of a potential function ψ (if
such a ψ exists), linked to the functional (5). Anyway, the
shape of D is still giving a wrong estimation of the local
smoothing performed by the process : For instance, the φ-
functional case leads to isotropic tensors D, while the ef-
fective local smoothing is anisotropic.

3. From Divergences to Oriented Laplacians

We rather want to develop divergence forms as (2) into their
corresponding oriented Laplacian formulations, i.e. find
the link (2)⇒(3). Indeed, it is particularly understandable
in terms of local geometric smoothing :

• Geometric meaning of oriented Laplacians : Let us
consider the oriented Laplacian-based equation (3). As
u⊥v, this PDE can be equivalently written as :

∂Ii

∂t
= trace (THi) (i = 1..n) (6)

where Hi is the Hessian matrix of the vector component Ii
and T is the 2×2 tensor defined as : T = c1uuT + c2vvT ,
characterized by its two eigenvalues c1, c2 and its corre-
sponding eigenvectors u⊥v. Suppose that T is a constant
tensor over the definition domain Ω. Then, it can be shown
[24, 27] that the formal solution of the PDE (6) is :

Ii(t) = Ii(t=0)
∗ G(T,t) (i = 1..n) (7)

where ∗ stands for the convolution operator and G(T,t) is
an oriented gaussian kernel, defined by :

G(T,t)(x) = 1
4πt exp

(

−x
T
T

−1
x

4t

)

with x = (x y)T

It is a generalization of the Koenderink’s idea [13], who
proved this property for the isotropic diffusion tensor
T = Id, resulting in the well-known heat flow equation :
∂Ii

∂t
= ∆Ii. The top row of Fig.1 illustrates a gaussian ker-

nel G(T,t)(x, y) obtained with an anisotropic tensor T (top
left) and the corresponding evolution of the PDE (6) on a
color image (top right). It is worth to notice that the rep-
resentation of G(T,t) gives exactly the classical ellipsoid
drawing of T. Conversely, it is clear that T represents the
effective smoothing performed by the PDE (6).
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Figure 1: Behavior of trace-based PDE’s (6) (right) with constant
or spatially varying tensors T (respectively top and bottom left).



When T is not constant (which is generally the case), i.e.
represents a field Ω → P(2) of varying diffusion tensors,
the PDE (6) becomes nonlinear and can be viewed as the
application of temporally and spatially varying local masks
GT,t(x) over the image I ( Fig.1, bottom row). It partic-
ularly shows that the shapes of each tensor T give the ex-
act smoothing geometry performed pointwise by the trace-
based PDE (6). This local filtering concept makes the link
between a generic form of vector-valued diffusion PDE’s
(6) and Bilateral filtering techniques, as described in [2, 23].
A similar approach with non-Gaussian kernels has been also
recently proposed for the Beltrami Flow framework [21].

• Trace-based and Divergence-based tensors : Differ-
ences between divergence tensors D in (2) and trace tensors
T in (6) can be understood as follows. We develop (2) as :

div (D∇Ii) = trace (DHi) + ∇ITi
~div (D)

where ~div () is defined as a divergence operator acting on
matrices and returning vectors :

if D = (dij), ~div (D) =

(

div
(

(d11 d12)
T
)

div
(

(d21 d22)
T
)

)

Thus, we see that an additional term ∇ITi
~div (D) appears,

connected to the spatial variation of the tensor field D. It
can perturb the smoothing behavior given by the first part
trace (DHi), which actually corresponds to a local smooth-
ing directed by the spectral elements of D. As a result, the
divergence-based equation (2) may smooth the image I with
weights and directions that are different from those given
by D. This is actually the case for the φ-function formula-
tion (4), where the smoothing process doesn’t behave finally
(and fortunately) as an isotropic one, despite the isotropic
form of the divergence tensor D = φ

′

(‖∇I‖)/‖∇I‖ Id.

• Developing the divergence form : If we restrict to the
case where the divergence tensor D depends only on the
spectral elements of the structure tensor G, such as :

D = f1(λ+, λ−)θ+θ
T
+ + f2(λ+, λ−)θ−θT− (8)

with f1, f2 : R
2 → R, (which is the case for existing equa-

tions in the literature), then we can develop the correspond-
ing divergence equation div (D∇Ii) into a sum of oriented
Laplacians, i.e. trace-based PDE’s (details in [24, 27]) :

div (D∇Ii) =
∑n

j=1 trace
(

(δijD + Qij)Hj

)

(9)

where the Qij designate a family of n2 matrices (i, j =
1..n), defined as the symmetric parts of the following ma-
trices Pij (then, Qij = (Pij + PijT

)/2 ) :

Pij =α ∇ITi ∇IjId + 2
(

∂α
∂λ+

θ+θ
T
+ + ∂α

∂λ−

θ−θT−

)

∇Ij∇ITi G

+2
(

(α+ ∂β
∂λ+

)θ+θ
T
+ + (α+ ∂β

∂λ−

)θ−θT−

)

∇Ij∇I
T
i

with α = f1(λ+,λ−)−f2(λ+,λ−)
λ+−λ−

, β = λ+f2(λ+,λ−)−λ−f1(λ+,λ−)
λ+−λ−

This development (9) expresses a whole range of previously
proposed vector-valued regularization algorithms (varia-
tional and divergence based PDE’s) into an extended trace-
based equation, composed of several diffusion contributions
that have each simple geometric interpretations in terms of
local filtering. The interesting point to notice is that addi-
tional diffusion tensors Qij are appearing and contribute to
modify the smoothing behavior which is finally not given
by the initial divergence tensor D.

4. A Unified Expression

From these previous developments, we can now define a
generic vector-valued regularization PDE :

∂Ii

∂t
=

∑n
j=1 trace

(

AijHi

)

(i = 1..n) (10)

where the Aij is a family of 2×2 symmetric matrices, and
Hi designate the Hessian matrix of Ii. It can be equivalently
written with a super-matrix notation :

∂I
∂t

= ~trace (AH) (11)

where A is a matrix of diffusion tensors Aij (and is itself
considered as symmetric), and H is a vector of Hessian ma-
trices Hj . The matrix product AH in (11) is then seen sub-
matrix per sub-matrix, and the operator ~trace () returns the
vector in R

n, composed of each sub-matrix trace.

• Link with existing expressions : The PDE (10) is a uni-
fying equation that can be used to describe a wide range of
vector-valued regularization :
* First, it develops into a very local formulation both varia-
tional and divergence-based approaches, that can be written
∂Ii

∂t
= div (D∇Ii) as explained in section 2. This particu-

larly includes the papers [5, 11, 12, 16, 18, 20, 22, 26, 28]
among others. As described above, the 2×2 tensors Aij

are then defined to be Aij = δijD + Qij . Note that the
Qij (i 6= j) corresponds here to diffusion contributions of
other channels Ij in the current one Ii. This diffusion energy
transfer can be considered as a particular kind of channel
coupling in the corresponding vector-valued diffusion PDE.
* Second, the PDE (10) also gathers the oriented-Laplacian
formulations ∂Ii

∂t
= trace (THi), by choosingAij = δijT.

In this case, the matrix A is diagonal and no diffusion en-
ergy transfer occurs between image channels Ii. The vector
coupling is only present through the spectral elements λ±
and θ± of the structure tensor G. This unifies the formula-
tions proposed for instance in [14, 19, 25, 26].

• A new regularization PDE : The generic regularization
equation (10) can be specialized, in order to design a new
vector-valued regularization PDE that follows desired these
local geometric properties :



* We don’t want to mix diffusion contributions between
image channels. The desired coupling between vector com-
ponents Ii should only appear in the diffusion PDE through
the computation of the structure tensor G. This means that
we have to define only one diffusion tensor A, then choose
Aij = δijA. Undesired coupling terms are then avoided.

* On homogeneous regions (corresponding to low vec-
tor variations), we want to smooth isotropically, in order to
remove the noise efficiently with no-preferred directions :
∂Ii

∂t
' ∆Ii = trace (Hi). It means that the tensor A must

be isotropic in these regions : lim(λ++λ−)→0 A = αId.
* On vector edges (corresponding to high vector varia-

tions), we want to perform an anisotropic smoothing along
the vector edges θ−, in order to preserve them while remov-

ing the noise : ∂Ii

∂t
= trace

(

βθ−θ−
THi

)

, where β is a

decreasing function, avoiding corners over-smoothing any-
way. This corresponds to an anisotropic tensor A in these
regions : lim(λ++λ−)→0 A = βθ−θT−.

The following multivalued regularization PDE respects all
these local geometric properties :

∂Ii

∂t
= trace (THi) (i = 1..n) (12)

where T is the tensor field defined pointwise as :

T = f+
(√

λ∗+ + λ∗−
)

θ∗−θ
∗
−
T + f−

(√

λ∗+ + λ∗−
)

θ∗+θ
∗
+
T

λ∗± and θ∗± are the spectral elements of Gσ = G ∗Gσ , a
gaussian smoothed version of the structure tensor G, giving
a more coherent approximation of the vector variation direc-
tions and magnitudes (see [28]). For our experiments in sec-
tion 6, we chose f+(s) = 1

1+s2 and f−(s) = 1√
1+s2

. This
is of course one possible choice (inspired from the hyper-
surface formulation of the scalar case [1]) that verifies the
above geometric properties, relying on practical experience.
The point is that we can freely choose the weighting func-
tions f± to obtain specific regularization behaviors, since
we are sure of the local smoothing performed by (12).

5. Numerical schemes

The PDE (12) can be implemented with classical numeri-
cal schemes, based on centered spatial discretizations of the
gradients and the Hessians [15]. Here we propose an al-
ternative approach based on the local filtering interpretation
of trace-based equations (6), (section 3) : the PDE veloc-
ity can be locally estimated by applying a spatially varying
gaussian smoothing mask G(T,t) over the image I :

trace (THi) =
∑1
k,l=−1 G(T,dt)(k, l) Ii(x − k, y − l)

Main advantages of this numerical scheme are :
- It preserves the maximum principle, since the local filter-
ing is done only with normalized gaussian kernels.

- It is more precise, since the computed kernels G(T,t) do
not depend on a discretization in privileged axis x and y.
In particular, no (imprecise) second derivatives (in the Hes-
sians Hi) have to be computed (Fig.2).
As for shortcomings of this scheme, we have to mention
that it is specially time-consuming, since it needs the com-
putation of several exponentials for each (x, y) and each
iteration. For our experiments, we chose 5 × 5 kernels.

(a) Noisy image
(b) Scheme using Hes-
sian discretizations

(c) Scheme using local
filtering techniques

Figure 2: Comparisons of numerical schemes.

6. Applications
We applied our particular regularization PDE (12) to handle
these important image-processing issues :
•Color image restoration : Fig.3a represents a digital pho-
tograph with real noise, due to the bad lightning conditions
during the snapshot. Our vector-valued regularization PDE
(12) can successfully remove the noise, while preserving
the important global features of the image.
• Improvement of lossy compressed images : Lossy com-
pression algorithms often introduce visible image artefacts :
for instance, bloc effects are classical JPEG drawbacks. Us-
ing our flow (12) significantly improves the quality of such
degraded images (Fig.3b).
• Color image inpainting : Image inpainting, recently pro-
posed in [4, 7, 8, 9] consists in filling undesired holes (de-
fined by the user) in images by interpolating the data lo-
cated at the hole’s neighborhood. It is possible to do that
by applying our regularization PDE (12) only in the holes
to fill : boundaries pixels will be diffused until they com-
pletely fill the missing regions, in a structure-preserving
way. We used it to suppress text on images (Fig.3c), re-
move real objects in photographs (Fig.3d) and reconstruct
partially coded images for compression purposes (Fig.3e).
• Color image magnification : In the same way, we per-
formed nonlinear image magnification : An image can be
magnified by applying our PDE (12) on a linear interpola-
tion of the corresponding small image, excepted on the orig-
inal known pixels. It suppresses the usual jagging or bloc
effects, inherent to classical interpolation methods (Fig.3g).
• Flow visualization : Considering a 2D vector field
F : Ω → R

2, we have several ways to visualize it. We can
first use vectorial graphics, but we have to subsample the
field since this kind of representation is not adapted to rep-
resent big flows. A better solution is as follows. We smooth
a completely noisy image I, with a regularizing flow equiv-
alent to (12) but where T is directed by the F , instead of



the spectral elements of the structure tensor G :

∂Ii

∂t
= trace

([

1
‖F‖FFT

]

Hi

)

(i = 1..n) (13)

Whereas the PDE evolution time t goes by, more global
structures of the flow F appear, i.e. a visualization scale-
space of F is constructed. Here, our used regularization
equation (13) ensures that the smoothing of the pixels is
done exactly in the direction of the flow F (Fig.3f). This is
not the case in [3, 6, 10], where the authors based their equa-
tions on divergence expressions. Using similar divergence-
based techniques would raise a risk of smoothing the image
in false directions, as this has been pointed out in section 3.

Conclusion & Perspectives

We proposed a unifying formalism expressing a large set
of existing vector-valued regularization approaches within a
common framework, adapted to understand the local behav-
ior of regularization PDE’s, by explaining the link between
diffusion tensors in divergence or trace-based equations and
corresponding local gaussian filtering processes. From this
study, we defined a specific regularization equation, based
on the respect of a coherent anisotropic smoothing preserv-
ing the global features of vector images, as well as specific
numerical schemes adapted for accurate implementations.
The successful application to several image processing is-
sues demonstrated the efficiency of our regularization ap-
proach More results can be found in the author’s web page :
http://www-sop.inria.fr/odyssee/team/David.Tschumperle
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[27] D. Tschumperlé and R. Deriche. Vector-valued image regularization
with PDE’s : A common framework for different applications. RR
4657, INRIA Sophia-Antipolis, December 2002.

[28] J. Weickert. Anisotropic Diffusion in Image Processing. Teubner-
Verlag, Stuttgart, 1998.

[29] S. Di Zenzo. A note on the gradient of a multi-image. Computer
Vision, Graphics, and Image Processing, 33:116–125, 1986.



(a) Noisy color image restoration (b) Amelioration of a lossy compressed JPEG image

(c) Text inpainting in a color image (d) Inpainting PDE used for real object removal

(e) Reconstruction of a partially coded color image (f) 2D flow visualization using PDE

(g) Magnification (×4) of a 64 × 64 color image, with (from left to right) : bloc magnification, linear interpolation, PDE-based method

Figure 3: Using our vector-valued regularization PDE’s for color image restoration, inpainting, flow visualization and
magnification.


