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ABSTRACT 
 
In this paper, we propose an efficient wavelet-based approach to achieve flexible and robust motion trajectory matching of 
video objects. By using the wavelet transform, our algorithm decomposes the raw object trajectory into components at 
different scales. We use the coarsest scale components to approximate the global motion information and the finer scale 
components to partition the global motion into subtrajectories. Each subtrajectory is then modeled by a set of spatial and 
temporal translation invariant attributes. Motion retrieval based on subtrajectory modeling has been tested and compared 
against other global trajectory matching schemes to show the advantages of our approach in achieving spatio-temporal 
invariance properties. 
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1.  INTRODUCTION 
 
Video databases require indexing and search mechanisms that can capture its dynamic content. We have demonstrated in 
VideoQ [1] that motion characterization is an effective attribute in searching video databases. In VideoQ, video objects are 
segmented and tracked over the duration of a video shot. During the tracking process, global motion compensation 
algorithms are applied so that the final object trajectory is independent of camera motion. We store the raw object trajectory 
as a sequence of points in the database. 
 
Prior techniques in motion trajectory modeling used simple chain-codes or B-splines. These do not completely capture the 
motion trajectory characteristics. Instead, we have identified two major modes of an object trajectory: spatio-temporal and 
spatial. The spatio-temporal mode can be mathematically represented as a parametric curve (x(t),y(t)) in the two-dimensional 
image plane or equivalently as a curve (x,y,t) in three-dimensions. As shown in Figure 1(a), the spatio-temporal mode 
captures the movement and speed of the object as it twists and turns in time. The spatial mode can be mathematically 
represented as a one-dimensional function y = f(x). As shown in Figure 1(b), the spatial mode is a projection of the spatio-
temporal trajectory onto the image plane. It describes the shape of the object trajectory. In this paper, we model the spatio-
temporal mode of the object trajectory. We note that both modes represent the object’s affine motion which differs from the 
object’s true motion in three-dimensional space (x,y,z).1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Two major modes of an object trajectory: (a) Spatio-temporal and  (b) Spatial. 
1 If global camera motion estimation is accurate, the x and y coordinates can be approximated, and only the depth (z 
coordinate) information is lost. 
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In VideoQ, the user formulates a query based on a visual sketch. The user composes a visual sketch by adding video regions 
to a canvas and assigning features to each region, such as color, texture, shape, and motion. The user assigns motion by  
adding an arbitrary polygonal trajectory to the video region. As shown in Figure 2, most users assign simple trajectories, such 
as straight lines and parabolic curves with constant speed, but the trajectories stored in the database are often complex. The 
complexity arises from two sources: 
1) Object trajectories are extracted from an automatic tracking algorithm. The algorithm tracks motion from frame to frame 

based on low-level optical flow. Given the optical flow information, a linear regression algorithm estimates the affine 
motion of the centroid of each video object. In addition to this, the algorithm also compensates for camera motion by 
adjusting each point in the trajectory by the motion of the background.  

2) The video objects in the real world undergo complex movements. While the user might describe the action of a high-
jumper as parabolic, the system records all the actions leading up to the jump, such as the accelerated running action 
followed by the parabolic jumping action. 

 
 
 
 
 
 
 
 
 

Figure 2. Object trajectory of a high jumper as sketched in a query and stored in the database. 
 
We attempt to bridge the differences between the user’s motion representation with those stored in the database. We have 
developed an efficient wavelet-based approach to achieve flexible and robust motion trajectory matching of video objects. 
We summarize our approach as follows: 
• Smoothing Since the tracking and motion compensation are performed automatically, object trajectories are often 

imperfect and noisy. We use a wavelet-based approach to smooth the trajectories, using the coefficients from the coarse 
bands to reconstruct the global motion. 

• Segmentation Video objects can undergo complex movements. We segment the object trajectory into subtrajectories 
with constant acceleration. We use the detailed wavelet coefficients to estimate the object acceleration at various 
resolutions. 

• Modeling We model each subtrajectory as a feature vector of acceleration, velocity (including both magnitude and 
direction), arclength, order, and multiscale edge points, and support similarity matching based on this feature vector. 

 
2. RELATED WORK 

 
A number of researchers have proposed using motion to characterize video databases. We summarize some of their key 
contributions to object trajectory modeling. 
 
In Dimitrova [2], motion trajectories are obtained by tracing the position of a macroblock. Several trajectory representation 
schemes are considered: 
• Raw trajectory representation: The raw trajectory is a set of points tracing the relative or absolute position of the object 

in the image plane. 
• Curve representation: The curve representation fits the trajectory with a B-spline curve and uses the parameters of the B-

spline curve to represent the trajectory. 
• Chain code representation: Chain code approximates the trajectory with piecewise linear segments and represents each 

segment with a directional primitive. The directional primitives quantize the space into eight basic directions and encode 
the eight basic directions from 0-7. 

• Differential chain code representation: Differential chain code approximates the trajectory with piecewise linear 
segments and represents each segment with a directional primitive that is relative to the previous segment. The 
directional primitives include right and left and segment length. 

  
In Dagtas et al [3], an explicit formalism is developed to describe many of the spatial and temporal properties of the object 
trajectory. The spatial and temporal properties include: 

database query 



• Spatial scale invariance: The spatial scale refers to the arc length of an object trajectory in the image plane. Spatial scale 
invariance is achieved by normalizing the object trajectory by its arc length 

• Spatial translation invariance: The spatial translation refers to the starting position of an object trajectory in the image 
plane. Spatial translation invariance is achieved by shifting the starting position of the trajectory to the origin.  

• Spatial rotation invariance: The spatial rotation refers to the orientation of an object trajectory in the image plane. Spatial 
rotation invariance is achieved by aligning the major axis of a trajectory to the x-axis.  

• Temporal scale invariance: The temporal scale refers to the temporal duration of an object trajectory. Temporal scale 
invariance is achieved by interpolating each motion trajectory to the same number of points.  

• Temporal translation invariance: The temporal translation refers to the starting time of an object trajectory (as an object 
can enter a scene at different times in a video). Temporal translation invariance is achieved by segmenting a trajectory 
into subtrajectories and matching subtrajectories. 

 
In Jasinschi et al [4], motion descriptors for camera motion and object trajectories have been recommended to the MPEG-7 
standardization effort. Motion is described as an essential feature in characterizing animated data. In particular, the authors 
propose to model an object trajectory from a physics-based point of view. Descriptors include initial position, initial velocity, 
and acceleration.  
 

3. OBJECT TRAJECTORY MODEL 
 
As shown in Figure 3, we propose an algorithm that will segment the complex object trajectories into simple subtrajectories 
and then extract features from each subtrajectory to support similarity matching. We achieve all three goals with a single 
wavelet-based approach. In the next sections, we describe the algorithm in detail: 

Figure 3.  Overview of the object trajectory model. 
 
 
 
 
 
 
 
 
 
 
 

3.1 Object Trajectory Smoothing 
The first stage in the algorithm is to construct a multiresolution representation of the object trajectory. We separate the 
motion trajectory into two one-dimensional signals (x(t),y(t)) and apply a wavelet transform to each one. The wavelet 
transform of a signal decomposes it into a hierarchy of coefficients taken at different resolutions. We use the coarsest 
coefficients to approximate a smoothed trajectory as shown in Figure 4.  
 

Figure 4. Wavelet transform of a motion trajectory. The original motion trajectory (a), the wavelet transform (b), and the 
smoothed trajectory that approximates the original (c). 

Original motion trajectory. 

Smoothing performed by wavelet transform. 

Segmentation based on subtrajectory of 
constant acceleration. 

Features include acceleration, velocity,  
arclength, order, and multiscale edgepoints. 
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3.2 Object Trajectory Segmentation 
We implement the discrete wavelet transform as introduced by Mallat[6]. Since the mother wavelet is defined as the second 
order derivative of a smoothing function, the detailed coefficients estimate the acceleration of the trajectory at various 
resolutions. We combine acceleration measurements from the x and y trajectories to calculate the magnitude of the 
acceleration and segment the trajectory at points of maximum acceleration. As shown in Figure 5, a threshold and merge 
algorithm detects the peaks in acceleration, which are separated by a minimum interval. 

Figure 5. Peaks in the magnitude of acceleration are detected (a) and used to segment the smoothed motion trajectory (b). 

3.3 Object Trajectory Modeling 
The smoothing and segmentation process divides each object trajectory into subtrajectories where the acceleration does not 
vary greatly. We fit each subtrajectory with a second order polynomial: 
 

r(t) = (x(t),y(t)) = 0.5at2 + vot  
a  = (ax,ay) acceleration, vo = (vx,vy) velocity 

 
We model each subtrajectory as a feature vector that includes the acceleration, initial velocity, arclength, order, and 
multiscale edgepoints. The acceleration and initial velocity describe the curvature of the subtrajectory while the arclength 
measures the spatial distance between endpoints (in 2D-image plane). The order term indexes the spatial and temporal 
position of the segment within the entire trajectory (first, second, etc). This allows us greater flexibility in similarity 
matching. Finally, the multiscale edgepoints measure the number of segments at higher resolutions that fall within the 
endpoints of the segment at the lowest resolution. It is a good measure of the fine variation that exists in the subtrajectory. 
 
Our object trajectory model supports both spatial and temporal translation invariance. We achieve spatial translation 
invariance by shifting the starting point of a subtrajectory to the origin and extracting features that are independent of 
absolute spatial position. A user, for instance, might search for the motion of a skier from any starting point in the image 
plane. We achieve temporal translation invariance by supporting subpattern matching according to the rules described in the 
next section. Subpattern matching allows the user to query for dominant motions, which are often embedded in more 
complex trajectories in the database. 
 

 
 

Figure 6. Spatial scale (a) and temporal scale (b) properties of a motion trajectory. 
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Our object trajectory model does not support spatial and temporal scale invariance. Figure 6 compares the spatial and 
temporal scale properties between motion trajectories. Figure 6(a) shows one large and one small parabolic curve in the 2D-
image plane. We use spatial distance to distinguish between the large parabolic motion of a high jumper jumping over a bar 
from the small parabolic motions of a person simply walking or jogging. Also, Figure 6(b) shows one parabolic curve and its 
stretched version over time. We use acceleration and velocity to distinguish between the fast, curving motion of a slalom 
skier from the slow, winding motion of a recreational one. 
 

4. OBJECT TRAJECTORY SEARCH 
 
Object-based search has been described previously in [7]. Following this approach, we develop a subtrajectory-based search 
that matches local objects first and then combines these matches according to a global criterion. As shown in Figure 7, once 
the user inputs a motion trajectory, the algorithm segments it into subtrajectories. The features of each subtrajectory are 
matched against those in the database. We use a Mahalanobis metric to calculate distance between feature vectors. Then lists 
of candidate subtrajectories are generated for each one specified in the query. The candidate lists are merged and a global 
distance is calculated for the matching result. The global distance is used to sort and display the final return results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Subtrajectory-based similarity search. 
 

Subtrajectory-based search allows for greater flexibility in matching motion trajectories. A number of global matching 
criteria can be applied in the final stage to match the user’s preferences. Similar to the flexibility described for video indexing 
[8], we support three distinct types of global matching: dominant segment matching, partial trajectory matching, and full 
trajectory matching. 
1) Dominant segment matching: Only the dominant subtrajectory is used to match those in the database. Dominant 

subtrajectories can be identified as segments with the largest spatial distance or the largest acceleration term. 
2) Partial trajectory matching: A subset of subtrajectories is selected to match those in the database. Partial trajectory 

matching can be further specified in terms of order as shown in Figure 8. 
3) Full trajectory matching: All subtrajectories in the original one must match those in the database as described above in 

Figure 7. 
 

Figure 8. Partial trajectory matching: (a) strict (b) relative and (c) loose. 
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Furthermore, we can allow three distinct types of partial trajectory matching: strict, relative, and loose.  
1) Strict partial matching: The exact order of the selected objects between the query and database must be the same. 
2) Relative partial matching: The relative order of the selected objects between the query and database must be the same. 
3) Loose partial matching: No constraints on the order of selected objects. Just match a subset of objects between the query 

and database trajectories. 
 

5. EXPERIMENTAL RESULTS 

5.1 Smoothing, Segmentation, and Modeling 
We tested our algorithm on a collection of 1108 object trajectories extracted from the VideoQ object database. Our trajectory 
database consists of 40 trajectories of high jumpers, 68 trajectories of slalom skiers, and 1000 trajectories of random objects. 
Figure 9 shows three trajectories after smoothing and segmentation and compares it against the noisy, original ones. 
 
We mark the boundaries of each subtrajectory with a small circle. Each subtrajectory is modeled with the following feature 
vector: 
 

[order, acceleration in x, acceleration in y, velocity in x, velocity in y, arclength, multiscale edgepoints] 
 

The order component is an index to the temporal and spatial position of the subtrajectory. The partial matching schemes 
described above use the order component to determine if the subtrajectory satisfies strict, relative, or loose criteria. The 
acceleration, velocity, and arclength model the spatio-temporal mode of the subtrajectory. Figure 10 compares a 
reconstruction based on these feature components against the smoothed version. The distance between subtrajectories is 
calculated by using a Mahalanobis metric on the last six components of the feature model. 

5.2 Retrieval Examples 
We implemented a content-based retrieval system that queries for motion trajectories by example. The user selects a motion 
trajectory and the system returns the best six matches. The top left trajectory is the query, and the remaining return results are 
ranked and displayed from left to right in scan-line order. We plot all trajectories in its three-dimensional spatial-temporal 
mode. Figure 11 shows some retrieval examples. 
 
In Figure 11(a), we show an example of partial trajectory matching. The two segments in the query are matched to similar 
ones in the return results. In the third and fifth trajectories, we note that partial matching has been achieved. In Figure 11 (b), 
we show an example of full trajectory matching. All three segments in the query are matched to exactly three segments in the 
return trajectories. 

5.3 Performance Results 
We measure the performance of our systems in two ways. First, we measure the traditional precision/recall curves. Second, 
we compare the advantages and disadvantages of subtrajectory matching to other global ones, such as simple pointwise and 
cubic B-spline matching. 

5.3.1 Precision vs. Recall 
We calculate the precision/recall curves for our trajectory matching schemes. Using our database, we separated 40 object 
trajectories belonging to the class of high jumpers. These trajectories have distinctive parabolic motions. We query for these 
motion trajectories and calculate the precision/recall values for subtrajectory matching, pointwise matching, and cubic B-
spline matching. Precision/recall values are calculated by varying the return size from 9 to 20. Maximum recall value is 0.5. 
Figure 12 shows that subtrajectory matching (shown with a solid line) outperforms both pointwise (shown with a dashed line) 
and cubic matching (shown with a dashdot line). 

5.3.2 Pointwise Matching 
We compare full-trajectory matching to pointwise matching. The pointwise method normalizes each trajectory.  The entire 
trajectory is shifted to the origin and resampled to 64 points. The raw samples between two trajectories are compared on a 
point-to-point basis using a Euclidean metric. No smoothing or segmentation is applied. As shown in Figure 13, pointwise 
matching does not capture the spatial shape of the curve. A steep parabolic trajectory is matched to flat lines. Also, pointwise 
matching does not capture the temporal features either. The return results vary in temporal duration from the query. 



5.3.3 Cubic B-spline Matching 
We compare full-trajectory matching to cubic B-spline matching. We implement the cubic B-spline wavelet as described in 
[9]. Similar to our algorithm, a cubic B-spline wavelet decomposes a trajectory into coefficients at different resolutions. We 
perform matching directly on the coarse coefficients, using a Mahalanobis metric. Figure 14 compares return results. 
 
The cubic B-spline method performs similarly to the pointwise method. For return results ranked 3-6, neither the extent of the 
curvature in the image plane or the number of twists and turns in time is matched. Global descriptors such as these cannot 
capture the local variations both in the image plane and in time. In Figure 15, the full-trajectory matching scheme matches 
each subtrajectory separately. This ensures that local variations are captured in the return results. 
 

6. CONCLUSIONS 
 
We have presented a robust and flexible algorithm for motion trajectory matching. We propose a smoothing, segmentation, 
and feature extraction method that can be computed with a single wavelet transform. Such features satisfy several matching 
criteria for spatial-temporal invariance. We show that subtrajectory matching offers greater flexibility. We also note that if a 
user is interested in finding just fast trajectories, subtrajectory matching can focus its search on the acceleration and velocity 
terms. If the user is interested in only the jumping motion of a high jumper, subtrajectory matching can achieve this through a 
number of partial matching schemes. This eventually allows for intermediate-level queries.  
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Figure 9. Smoothing and segmentation of three object trajectories. The smoothed trajectories are plotted with a solid line. 
The original noisy trajectories are plotted with a dashed line. The segmentation points are marked with a small circle. 

 
 
 
 
 
 
 

 
 

Figure 10. Reconstruction of three subtrajectories from the feature model [ax,ay,vx,vy,arclength]. The reconstructed segments 
are plotted with a solid line. The smoothed segments are plotted with a dashed line. These segments belong to the first 

motion trail of Figure 9.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. An example of (a) partial trajectory matching and (b) full trajectory matching. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Precision/recall values comparing subtrajectory matching to pointwise and cubic B-spline matching. 
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Figure 13  Pointwise matching results. Both spatial and spatio-temporal modes shown. 
 
 

 
 

Figure 14. Cubic B-Spline matching results. Both spatial and spatio-temporal mode shown. 
 
 

 

 
 

Figure 15. (b) Subtrajectory matching results. Both spatial and spatio-temporal modes shown. 
 
 
 
 


