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Figure 1: From left to right: the input image, and inverse matte that defines the removal of an element, the result of our completion, and the
content of the completed region.

Abstract

We present a new method for completing missing parts caused by
the removal of foreground or background elements from an image.
Our goal is to synthesize a complete, visually plausible and coher-
ent image. The visible parts of the image serve as a training set to
infer the unknown parts. Our method iteratively approximates the
unknown regions and composites adaptive image fragments into the
image. Values of an inverse matte are used to compute a confidence
map and a level set that direct an incremental traversal within the
unknown area from high to low confidence. In each step, guided by
a fast smooth approximation, an image fragment is selected from
the most similar and frequent examples. As the selected fragments
are composited, their likelihood increases along with the mean con-
fidence of the image, until reaching a complete image. We demon-
strate our method by completion of photographs and paintings.
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1 Introduction

The removal of portions of an image is an important tool in photo-
editing and film post-production. The unknown regions can be
filled in by various interactive procedures such as clone brush
strokes, and compositing processes. Such interactive tools require
meticulous work driven by a professional skilled artist to complete
the image seamlessly. Inpainting techniques restore and fix small-
scale flaws in an image, like scratches or stains [Hirani and Totsuka
1996; Bertalmio et al. 2000]. Texture synthesis techniques can be
used to fill in regions with stationary or structured textures [Efros
and Leung 1999; Wei and Levoy 2000; Efros and Freeman 2001].
Reconstruction methods can be used to fill in large-scale missing re-
gions by interpolation. Traditionally, in the absence of prior knowl-
edge, reconstruction techniques rely on certain smoothness assump-
tions to estimate a function from samples. Completing large-scale
regions with intermediate scale image fragments remains a chal-
lenge.

Visual perceptual completion is the ability of the visual system
to “fill in” missing areas [Noe et al. 1998] (partially occluded, coin-
ciding with the blind spot, or disrupted by retinal damage). While
the exact mechanisms behind this phenomenon are still unknown, it
is commonly accepted that they follow some Visual Gestalt [Koffka
1935, 1967] principles, namely, completion by frequently encoun-
tered shapes that result in the simplest perceived figure [Palmer
1999]. Motivated by these general guidelines, we iteratively ap-
proximate the missing regions using a simple smooth interpolation,
and then add details according to the most frequent and similar ex-
amples.

Problem statement: Given an image and an inverse matte, our
goal is to complete the unknown regions based on the known re-
gions, as shown in the figure above.

In this paper, we present an iterative process that interleaves
smooth reconstruction with the synthesis of image fragments by
example. The process iteratively generates smooth reconstructions
to guide the completion process which is based on a training set
derived from the given image context.

The completion process consists of compositing image frag-
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ments and can be regarded as a “push-background” process, in con-
trast to the “pull-foreground” processes associated with image mat-
ting. Our completion approach requires a relevant training set and
a degree of self-similarity within the input image. It is an image-
based 2D method that does not incorporate high-level information
and can therefore produce unnatural looking completions.

This paper is organized as follows. After a survey of related
work, we present an overview of the entire completion process
(Section 2), and then describe each component of the method in
detail. We introduce a fast approximation method (Section 3), and
present a confidence map and traversal order (Section 4). Next, we
describe the search for similar fragments and their adaptive neigh-
borhood size (Section 5). In Section 6 we present the compositing
of image fragments. Completion is performed from coarse-to-fine,
as described in Section 7. Finally we show the results of our method
on various photographs and paintings (Section 8), and discuss its
limitations (Section 9).

1.1 Related work

Many operations ranging from low-level vision tasks to high-end
graphics applications have been efficiently performed based on ex-
amples:

Hertzmann et al. [2001] study a mapping of spatially local fil-
ters from image pairs in correspondence, one a filtered version of
the other. A new target image is filtered by example. Pixels are
assigned values by comparing their neighborhood, and those of a
coarser level in a multi-resolution pyramid, to neighborhoods of a
training image pair. Considering the original image as output and
taking its segmentation map as input allows texture to be painted
by numbers [Haeberli 1990]. A new image that is composed of the
various textures is then synthesized by painting a new segmentation
map. Swapping the output segmentation map with the original in-
put image results in example-based segmentation [Borenstein and
Ullman 2002].

Freeman et al. [2000; 2002] derive a model used for performing
super-resolution by example. The technique is based on examining
many pairs of high-resolution and low-resolution versions of image
patches from several training images. Baker and Kanade [2000]
apply this technique restrictively to the class of face images. Given
a new low-resolution face image, its corresponding high-resolution
image is inferred by re-using the existing mapping between indi-
vidual low-resolution and high-resolution face patches.

The example-based image synthesis methods described above
use a supervised training set of corresponding pairs. In our work,
the examples provide the likelihood of a given context appearing in
the given image.

There is considerable work on texture synthesis, of which the
most notable are based on Markov Random Fields [Efros and Le-
ung 1999]. A new texture is incrementally synthesized by consid-
ering similar neighborhoods in the example texture. These tech-
niques synthesize texture which is both stationary and local [Wei
and Levoy 2000]. Igehy and Periera [1997] replace image regions
with synthesized texture [Heeger and Bergen 1995] according to a
given mask. Texture transfer [Ashikhmin 2001] adds the constraint
that the synthesized texture match an example image. This yields
the effect of rendering a given image with the texture appearance
of a training texture. This technique is extended to color transfer
[Welsh et al. 2002], a special case of image analogies, by match-
ing local image statistics. Efros and Freeman [2001] introduce a
simple and effective texture synthesis technique that synthesizes a
new texture by stitching together blocks of existing example tex-
ture. The results depend on the size of a block which is a parameter
tuned by the user that varies according to the texture properties.
In this work, we synthesize both local and global structures. To
capture structures of various sizes, similarly to hierarchical pattern

matching [Soler et al. 2002], we take an adaptive approach, where
fragments have different sizes based on the underlying structure.

Image inpainting [Bertalmio et al. 2000; Chan and Shen 2001]
fills in missing regions of an image by smoothly propagating infor-
mation from the boundaries inwards, simulating techniques used
by professional restorators. However, the goals of image inpainting
techniques and image completion are different. Image inpainting is
suitable for relatively small, smooth, and non-textured regions. In
our case the missing regions are large, and consist of textures, large-
scale structures, and smooth areas. Recently, Bertalmio et al. [2003]
combine image inpainting with texture synthesis by decomposing
an image into the sum of two components. Inpainting [Bertalmio
et al. 2000] is applied to the component representing the underlying
image structure, whereas texture synthesis [Efros and Leung 1999]
is separately applied to the component representing image detail,
and the two components are then added back together.

There are a number of approaches related to image completion
in the Computer Vision literature, but most of them focus on the
edge and contour completion aspect of the problem. Edge com-
pletion methods find the most likely smooth curves that connect
edge elements, usually by minimizing a function based on curvature
[Guy and Medioni 1996]. Given a grid of points and orientations
as elements, completion methods consider the space of all curves
between pairs of elements, and the pairwise interaction between el-
ements. The likelihood that any two elements are connected defines
a field for each element, and completion is performed by a summa-
tion over all fields [Williams and Jacobs 1997]. Sharon et al. [2000]
take into account edge elements at various scales, and use a multi-
grid method to accelerate computations.

Our work is also related to photo-editing techniques. Oh
et al.[2001] incorporate some depth information into photo-editing,
whereas our method is a 2D image-based technique, which has no
notion of the underlying scene. Brooks and Dodgson [2002] present
an image editing technique that is based on texture self-similarity,
editing similar neighborhoods in different positions. Our method
finds self-similarities in the image under a combination of transfor-
mations: translation, scale, rotation and reflection.

2 Image completion

We assume that foreground elements or background regions are
roughly marked with an image editing tool, or a more accurate α
channel is extracted using a matting tool. This defines an inverse
matte ᾱ that partitions the image into three regions: the known re-
gion, where ᾱi = 1; unknown region, where ᾱi = 0; and, optionally,
a gray region, where 0 < ᾱi < 1 for each pixel i, and “inverts” the
common definition of trimaps that are generated in the process of
pulling a matte and foreground elements from an image [Chuang
et al. 2002]. We require a conservative inverse matte that, at least,
contains the entire extracted region. As in digital image matting,
the regions of the inverse matte are not necessarily connected. The
inverse matte defines a confidence value for each pixel. Initially, the
confidence in the unknown area is low. However, the confidence of
the pixels in the vicinity of the known region is higher. The confi-
dence values increase as the completion process progresses.

Our approach to image completion follows the principles of fig-
ural simplicity and figural familiarity. Thus, an approximation is
generated by applying a simple smoothing process in the low con-
fidence areas. The approximation is a rough classification of the
pixels to some underlying structure that agrees with the parts of the
image for which we have high confidence. Then the approximated
region is augmented with familiar details taken by example from a
region with higher confidence.

All of these processes are realized at the image fragment level. A
fragment is defined in a circular neighborhood around a pixel. The
size of the neighborhood is defined adaptively, reflecting the scale

304



Figure 2: Completion process: confidence and color of coarse level (top row) and fine level (bottom row) at different time steps. The output
of the coarse level serves as an estimate in the approximation of the fine level.

of the underlying structure. Image completion proceeds in a multi-
scale fashion from coarse to fine, where first, a low resolution image
is generated and then the results serve as a coarse approximation to
the finer level. For every scale we consider neighborhoods in level
sets from high to low confidence. Figure 2 shows the confidence
and color values at different time steps in each scale.

At each step, a target fragment is completed by adding more de-
tail to it from a source fragment with higher confidence. Typically,
the target fragment consists of pixels with both low and high con-
fidence. The pixel values which are based on the approximation
generally have low confidence, while the rest of the fragment has
higher confidence. For each target fragment we search for a suit-
able matching source fragment, as described in Section 5, to form
a coherent region with parts of the image which already have high
confidence. The search is performed under combinations of spatial
transformations to extend the training set and make use of the sym-
metries inherent in images. The source and target fragments are
composited into the image as described in Section 6. The algorithm
updates the approximation after each fragment composition. As
fragments are added, the mean confidence of the image converges
to one, completing the image.

A high-level description of our approach appears in Figure 3. In
the pseudocode, the following terms are emphasized: (i) approxi-
mation, (ii) confidence map, (iii) level set, (iv) adaptive neighbor-
hood, (v) search, and (vi) composite. These are the building blocks
of our technique. In the following sections we elaborate on each in
detail.

3 Fast approximation

A fast estimate of the colors of the hidden region is generated by
a simple iterative filtering process based on the known values. The
estimated colors guide the search for similar neighborhoods, as de-
scribed in Section 5. Our completion approach adds detail by exam-
ple to the smooth result of the fast approximation. The process of
approximating a given domain with values that “agree” with some
known values is known as scattered data interpolation. Typically,

Input: image C, inverse matte ᾱ (∃ pixel with ᾱ < 1)

Output: completed image, ᾱ = 1

Algorithm:

for each scale from coarse to fine
approximate image from color and coarser scale
compute confidence map from ᾱ and coarser scale
compute level set from confidence map
while mean confidence < 1− ε

for next target position p
compute adaptive neighborhood N(p)
search for most similar and frequent source match N(q)
composite N(p) and N(q) at p, updating color and ᾱ
compute approximation, confidence map and update level set

Figure 3: Image completion pseudocode.

the assumption is that the unknown data is smooth, and various
methods aim at generating a smooth function that passes through
or close to the sample points. In image space methods, the ap-
proximation can be based on simple discrete kernel methods that
estimate a function f over a domain by fitting a simple model at
each point such that the resulting estimated function f̂ is smooth
in the domain. Localization is achieved either by applying a kernel
K that affects a neighborhood ε , or by a more elaborate weighting
function. A simple iterative filtering method known as push-pull
[Gortler et al. 1996] is to down-sample and up-sample the image
hierarchically using a local kernel at multiple resolutions. In the
coarser levels, the kernel filter affects larger regions and the values
of the samples percolate, yielding smoother data. When applied to
finer resolutions, the effect is localized and higher frequencies are
approximated.

The above simple process is accelerated and refined by employ-
ing a multi-grid method. The image C is pre-multiplied by the in-
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verse matte C̄ = Cᾱ , and the approximation begins with C̄ +α . Let
l = L, . . . ,1 denote the number of levels in a pyramid constructed
from the image. Starting from an image Y l=L

t=0 of ones, the following
operations are performed iteratively for t = 1, . . . ,T (l):

Y l
t+1 = (Y l

t α +C̄)(∗Kε ↓)l(↑ ∗Kε )l . (1)

Equation (1) consists of re-introducing the known values C̄, then
l times down-sampling ↓ with a kernel Kε , and l times up-sampling
↑ with a kernel Kε . It is applied repeatedly (subscript t is incre-
mented) until convergence Y l

t+1 = Y l
t .

Applying this process for l = L scales results in a first approxi-
mation Y L

t=T (L). Then (superscript l is decremented) the known val-
ues are re-introduced, and the process is repeated for l −1 scales,

Y l−1
t=0 = Y l

t=T (l)α +C̄. (2)

For l = 1, the approximation is Y l=1
t=0 =Y l=2

t=T (2), and the following
iterations are performed:

Y 1
t+1 = (Y 1

t α +C̄)∗Kε . (3)

The final output is C = Y 1
T (1).

As shown in Figure 4 the iterations applied to many levels (b-c),
for large l, approximate the lower frequencies, while the iterations
applied to few levels (d) or a single scale (e) handle higher fre-
quencies. Table 1 summarizes the number of iterations, error, and
computation time for each set of levels. The running times are for
a 512 by 512 image, shown in Figure 4. Note that in the comple-
tion process, the bounding box of the unknown regions is typically
much smaller, and decreases with each completion step.

Figure 5(a) shows an input image where part of the image is hid-
den by text, while the rest of the image is only visible through the
text. The result of the approximation is shown in (b). The global
root mean square error of luminance values in [0,1] is 0.049. Our
completion method is based on image fragments, and therefore we
are interested in the local error in a neighborhood around each pixel.
This is illustrated in (c), which shows the inverse of the RMSE of
luminance neighborhoods of radius 4 around each pixel (37 sam-
ples). The source image is shown in (d).

(a) (b) (c)

(d) (e) (f)

Figure 4: (a) Input, C̄ +α : 100 lines are randomly sampled from a
512 by 512 image and superimposed on a white background. (b-e)
Y l

T (l) for l = 4, . . . ,1. (e) the result of our approximation. (f) source
image.

# of levels # of iterations RMSE Time (sec.)

4 197 0.0690 4.2

3 260 0.0582 5.3

2 739 0.0497 13.7

1 1269 0.0470 22.9

Table 1: Statistics and running times for the approximation in Fig-
ure 4. The levels correspond to Figure 4 (b-e), and the RMSE is of
luminance in values [0,1]. Total computation time is 46.1 seconds
for a 512 by 512 image.

(a)

(b)

(c) (d)

Figure 5: The input image in (a) is partly covered by a white text,
while the rest of the image is only visible through the text. The
result of our approximation is in (b). The RMSE of local neighbor-
hoods in radius 4 is in (c) and the ground truth is in (d).

4 Confidence map and traversal order

In our setting we assume an inverse alpha matte that determines the
areas to be completed. The matte assigns each pixel a value in [0,1].
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We define a confidence map β by assigning a value to each pixel i:

βi =

{
1 if ᾱi = 1

∑ j∈N(i) g jᾱ2
j otherwise,

(4)

where N is a neighborhood around a pixel, g is a Gaussian falloff,
and ᾱ is the inverse matte. The map determines how much confi-
dence to place in image information in each pixel as new informa-
tion is generated during the course of the algorithm’s progress, and
is used for comparing and selecting fragments (Section 5).

In each scale, the image is traversed in an order that proceeds
from high to low confidence, while maintaining coherence with
previously synthesized regions. To compute the next target posi-
tion from the confidence map, we set pixels that are greater than
the mean confidence µ(β ) to zero and add random uniform noise
between 0 and the standard deviation σ(β ):

vi =

{
0 if βi > µ(β )
βi +ρ[0,σ(β )] otherwise.

(5)

This defines a level set of candidate positions. At each iteration we
retrieve the image coordinates of the pixel with maximal value in
Eq. 5. This determines the position of the next search and compos-
ite. After compositing (Section 6), the set of candidate positions is
updated by discarding positions in the set that are within the frag-
ment. Once the set of candidate positions is empty it is recomputed
from the confidence map. As the algorithm proceeds, the image is
completed, µ(β ) → 1 and σ(β ) → 0. The width of the zone from
which the candidates for the next target position are selected, and
the tolerance, decrease as the image is completed.

Figure 6 shows, from left to right, the inverse matte, confidence
map, and level set, at two different time steps. The confidence map
β is visualized on a logarithmic scale h(β ) = lg(β +1), with h = 1
shown in green, h ≤ 0.01 in purple, and 0.01 < h < 1 in shades of
blue.

Figure 6: From left to right: inverse matte, visualization of confi-
dence values on a logarithmic scale, and level set, at two different
time steps.

5 Search

This section describes a 2D pattern matching method that consid-
ers the confidence of each pixel, in addition to the similarity of
features used in traditional template matching. For each target frag-
ment T , we search for the best source match S over all positions
x,y, five scales l, and eight orientations θ : denoted as the param-
eter r = (l,x,y,θ). The algorithm adds detail to the approximated
pixels (βi < 1) by example without modifying the known pixels
(βi = 1). The confidence map is used for comparing pairs of frag-
ments by considering corresponding pixels s = S(i) and t = T (i) in

both target and source fragment neighborhoods N. For each pair of
corresponding pixels, let βs, βt denote their confidence, and d(s, t)
denote the similarity between their features. The measure is L1
and the features are color and luminance for all pixels, and gradi-
ents (1st order derivative in the horizontal, vertical, and diagonal
directions) in the known pixels. We find the position, scale and
orientation of the source fragment that minimizes the function:

r∗ = argmin
r ∑

s=Sr(i),t=T (i),i∈N

(d(s, t)βsβt +(βt −βs)βt). (6)

The first term of this function, d(s, t)βsβt , penalizes different val-
ues in corresponding pixels with high confidence in both the target
and source fragments. The second term, (βt −βs)βt , rewards pix-
els with a higher confidence in the source than in the target, while
penalizing pixels with lower confidence in the source than in the
target, normalized by the target confidence. The goal of these two
terms is to select an image fragment that is both coherent with the
regions of high confidence and contributes to the low confidence
regions.

Source fragments are first trivially rejected based on luminance
mean and variance. We consider a small set of k = 5 nearest neigh-
bors according to Eq. 6 and take the most frequent, based on the
luminance statistics.

(a) (b)

(c) (d)

Figure 7: (a-b) Input color and inverse matte. (c-d) The result of
our completion, several matching neighborhoods outlined with cir-
cles of the same color, the target center marked by a cross. Our
approach completes the smooth areas with large fragments, the tex-
tured regions with smaller fragments, and the shoreline by search-
ing in different scales.

Figures 7, 8 and 9 show pairs of matching neighborhoods out-
lined by the same color. The center of each target neighborhood
is marked with a cross. A smaller or larger source neighborhood
than target means a match across different scales. Note that in the
completed region in Figure 7 (d) there are artifacts in the lower left
portion, along the coast-line, where the dark and bright colors of
opposite sides of the large missing region meet.

5.1 Adaptive neighborhood

An adaptive scheme to determine the size of the neighborhood is
important for capturing features of various scales. Our algorithm
uses existing image regions whose size is inversely proportional to
the spatial frequency. We therefore tested several criteria to deter-
mine the adaptive size of a neighborhood [Gonzalez and Woods
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Figure 8: Our approach completes structured texture in perspective
by searching in different scales.

Figure 9: Our approach completes symmetric shapes by searching
under rotations and reflections. Completion consists of a total of 21
fragments, marked on the output image, with mean radius of 14.

2002]. The first is the set of statistical moments of the lumi-
nance histogram of an element. If x is a random variable denot-
ing luminance values and p(xi) the corresponding histogram for
k distinct values, then the n-th moment of x about the mean m is
µn(x) = ∑k

i=0(xi −m)n p(xi). The second is the measure of unifor-
mity of an element u = ∑k

i=0 p2(xi). The third is the average entropy
e = −∑k

i=0 p(xi) lg p(xi). Considering only a small number of radii
2 j for j = 1, . . . , l = 5 is a quantization of the neighborhood size
map. We have found that a simple contrast criterion, the absolute
of difference between extreme values across channels, yields results
which are nearly as good as the other, more elaborate measures that
we have tried.

Allowing nearby matches of large smooth neighborhoods, while
discarding nearby matches of smaller textured neighborhoods
avoids smearing artifacts. Searching in scale factors above 1 only
for large neighborhoods allows interpolation of smooth areas while
avoiding blurring of detailed regions.

(a) (b)

Figure 10: An image (a) and its corresponding neighborhood size
map (b), where brighter regions mark larger neighborhoods.

Figure 10 shows an image and its corresponding neighborhood
size map. These values are updated every completion iteration.
Each pixel in (b) reflects an estimate of the frequencies in a neigh-
borhood around the corresponding pixel in (a). Regions with high
frequencies are completed with small fragments whereas those with
low frequencies are completed with larger fragments.

6 Compositing fragments

We would like to superimpose the selected source fragment S over
the target fragment T such that the regions with high confidence
seamlessly merge with the target regions with low confidence.
Since we give priority to the target, we need to compose the source
fragment “under” the target fragment. Taking the alpha values into
consideration, we apply the compositing operator: T OVER S. To
create a seamless transition between T and S we apply this operator
in frequency bands.

The Laplacian pyramid [Burt and Adelson 1985] can be used to
smoothly merge images according to binary masks. The color com-
ponents C of each image A and B are decomposed into Laplacian
pyramids L, and the binary masks M into Gaussian pyramids G.
The Gaussian and Laplacian pyramids are separately multiplied for
each image at corresponding scales k, and then added, to form a
Laplacian pyramid of the merged image L(Cmerge), which is then
reconstructed,

Lk(Cmerge) = Lk(CA)Gk(MA)+Lk(CB)Gk(MB). (7)

An alpha value in [0,1] is traditionally considered as either having
partial coverage or as semi-transparent. The alpha channel, com-
monly represented by 8 bits, is used for capturing fractional oc-
clusion to combine anti-aliased images. The classical associative
operator for compositing a foreground element over a background
element, F OVER B, is:

Cout = CF αF +CBαB(1−αF ) (8)

αout = αF +αB(1−αF ).

Porter and Duff [1984] pre-multiplied color by alpha, and the vol-
ume rendering ray casting integral is often discretely approximated
by a sequence of OVER operations.

We represent color and alpha values as matrices and plug Eq. 8
into Eq. 7 to get the Laplacian OVER operator:

Lk(Cout) = Lk(CF )Gk(αF )+Lk(CB)Gk(αB)Gk(1−αF ). (9)

The alpha values αout are obtained by setting CF =CB = 1 in Eq. 9.
The Laplacian OVER operator uses a wide overlapping region

for the low frequencies and a narrow overlap for the high frequen-
cies. The OVER operator is traditionally used for compositing a
figure over a background, while maintaining sharp transitions ac-
cording to alpha values. We use the Laplacian OVER operator for
compositing two similar fragments, one over the other, to create a
smooth composite.

The output is a fragment R that is premultiplied, and is masked
by a circular neighborhood. To insert this result into the image,
we multiply the previous approximated image by its inverse matte
C̄ = Cᾱ , and then put the fragment values R(C̄) into C̄ and R(ᾱ)
into ᾱ . In the following iteration the approximation begins with
these premultiplied values.

Fragment compositing is illustrated in Figure 12. The top row
shows the matching neighborhoods (left) and the inverse matte
(right). The alpha values, Gk(αF ) and Gk(αB), are shown in the
center row. The reconstructed color values of each intermediate
term in Eq. 9 are shown on the bottom left. The premultiplied
color and alpha output are shown on the bottom right. The output
is finally masked by a circular neighborhood.

7 Implementation

Our implementation completes the image from coarse to fine. Aside
from computational efficiency, coarse-to-fine completion is im-
portant for capturing features at several scales. Starting with a
coarse scale corresponds to using a range of relatively large target
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(a) (b) (c) (d)

Figure 11: (a) The Universal Studios globe. (b) Inverse matte. (c) Completed image. (d) Content of the completed region.

αF αB

(t1) (t2) Cout αout

Figure 12: Fragment compositing: matching fragments (top left),
inverse matte (top right), and Gaussian pyramids of the fragments
alpha (center row). (t1) First term of Eq. 9. (t2) Second term of Eq.
9. The output color and alpha of compositing (bottom right).

fragments, and then using target fragments that become gradually
smaller at every scale, finer and finer details are added to the com-
pleted image. The result of the coarse level Cl is up-sampled by
bicubic interpolation and serves as an estimate for the approxima-
tion of the next level:

f̂ l+1 = λ f̂ l+1 +(1−λ )(Cl ↑ ∗),
where λ = 0.5. The confidence values of the next level are also
updated:

β l+1 = λβ l+1 +(1−λ )(β l ↑),
where the confidence values of the coarse level are β l = 1 upon
completion.

The following are implementation details. We perform comple-
tion using two scales, with 192 by 128 and 384 by 256 resolution.
To create a conservative inverse matte for the fine level, the inverse
matte of the coarse level is up-sampled by nearest neighbors and
dilated. The approximation described in Section 3 is a local pro-
cess, and therefore performed in the bounding box of the unknown
regions. We use three scales L = 3 in Eq. 2, a Gaussian kernel
with standard deviation 1 in Eq. 1, and 0.85 for the final pass in
Eq. 3. It is wasteful to run the approximation until convergence

since the error diminishes non-linearly. First, we choose a repre-
sentative subset of

√
N random positions in the unknown regions,

where N is the number of pixels. At each set of levels in Eq. 1

the approximation stops when the
√

N
L−l+1 representative values con-

verge. The search based on Eq. 6 is performed at five scales with
factors spaced equally between 0.75 and 1.25, at each x,y position,
and eight orientations (four rotations in increments of 90 degrees,
and their four reflections). Compositing in Eq. 10 is performed us-
ing at most three levels k in the Gaussian and Laplacian pyramids
for the largest fragments. The completion process terminates when
µ(β ) ≥ 1− ε , as described in the pseudocode in Figure 3, and we
set ε = 0.05.

8 Results

We have experimented with the completion of various photographs
and paintings with an initial mean confidence µ(β ) > 0.7. The
computation times range between 120 and 419 seconds for 192 by
128 images, and between 83 and 158 minutes for 384 by 256 im-
ages, on a 2.4 GHz PC processor. Slightly over 90 percent of the
total computation time is spent on the search for matching frag-
ments. Note that computation time is quadratic in the number of
pixels.

Figure 1 shows a 384 by 256 image with µ(β ) = 0.876. The
image consists of various layers of smooth and textured regions.
Our method synthesizes textures of different scale and completes
the shorelines. Completion consists of 137 synthesized fragments
(of them 26 for the coarse level), and total computation time is 83
minutes (220 seconds for the coarse level).

Figure 11 shows a 384 by 256 image of the Universal Studios
globe with µ(β ) = 0.727. In the center of the globe there are pixels
which are used for completion. However, the color is contaminated
by the neighboring pixels of the globe. Marking these pixels as
completely known in the matte creates artifacts in the completed
regions. An alternative is to assign values that are less than 1 to
the corresponding matte positions, as shown in (b). This way, these
pixels are not totally discarded, and are taken as strong hints to the
location of the smooth area and the textured regions. Completion
consists of 240 synthesized fragments (of them 57 for the coarse
level), and total computation time is 158 minutes (408 seconds for
the coarse level).

Figure 13 shows more results for 192 by 128 images with
µ(β ) > 0.87. Our approach completes shapes, smooth and textured
regions, and various layers of both, as well as transparency. Com-
pletion requires between 20 and 53 synthesized fragments, with
average neighborhood radii between 6 and 14. Statistics for each
image appear in Table 2.
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Image # of fragments µ(β ) σ(β ) Time (sec.)

Golfer 50 0.931 0.221 414

Pyramids 20 0.951 0.204 129

Whale 26 0.934 0.227 184

Hollywood 34 0.968 0.146 120

The Raw Nerve by Magritte 26 0.950 0.181 149

Still Life by Cezanne 53 0.874 0.321 419

Table 2: Statistics and running times for completion of the images
in Figure 13.

9 Limitations

Our approach to image completion is example-based. As such, its
performance is directly dependent on the richness of the available
fragments. In all the examples presented in this paper, the train-
ing set is the known regions in a single image, which is rather
limited. The building blocks for synthesizing the unknown region
are image fragments of the known region. To utilize the training
set, new fragments are synthesized by combining irregular parts of
fragments, applying combinations of transformations to fragments
(scale, translation, rotation, and reflection), and compositing frag-
ments together.

To evaluate the performance of our method, we can use examples
where the unknown region is available, and quantify and measure
the completion with respect to the ground truth. Specifically, we
can use the ground truth data for the search and reconstruct it in the
composite, calculating the best alpha for the blend that reconstructs
the ground truth.

Our technique is an image-based 2D method. It has no knowl-
edge of the underlying 3D structure in the image. For example,
in Figure 14, the front end of the train is removed. Our method
completes the image as shown in (c). The matching fragments of
completion are shown in (d).

(a) (b)

(c) (d)

Figure 14: Our approach is an image-based 2D technique and has
no knowledge of the underlying 3D structures. (a) Input image. (b)
The front of the train is removed. (c) The image as completed by
our approach. (d) Matching fragments marked on output.

Note that even two fragments of the same part of an object may
differ greatly under slight illumination changes and transforma-
tions. While this is obviously a notable limitation, it is also an
advantage as it is based on a simple mechanism, that does not re-
quire building models from a single image. An alternative to an
automatic image completion is to let the user manually build an

image-based model and apply photo-editing operations with some
3D knowledge as in [Oh et al. 2001].

Our image completion approach does not distinguish between
figure and ground. This presents a limitation for completion when
the inverse matte is on the boundary of a figure, since both the fig-
ure and background can be synthesized by example. For example,
in Figure 15(a), the unknown region meets the boundary of the fig-
ure of the apple. Our approach does not handle these cases. How-
ever, note that the known regions of this painting contain similar
patterns, and the search finds matches under combinations of scale
and orientation in (b), and the completion results in (c). Note the
ghost artifact on the right portion of the completed figure.

(a) (b)

(c)

Figure 15: Our approach does not handle cases in which the un-
known region is on the boundary of a figure as in (a). However,
the known regions of this painting contain similar patterns, and the
search finds matches under combinations of scale and orientation in
(b), and the completion results in (c).

Our approach does not handle ambiguities in which the missing
area covers the intersection of two perpendicular regions as shown
in Figure 16.

(a) (b) (c)

Figure 16: Our approach does not handle ambiguities such as
shown in (a), in which the missing area covers the intersection of
two perpendicular regions as shown above. (b) The same ambiguity
in a natural image. (c) The result of our completion.

Visual grouping and background-foreground separation are an
open problem, usually addressed by a subset of the Gestalt prin-
ciples (proximity, similarity, good continuation, closure, smallness,
common fate, symmetry and pragnanz) [Koffka 1935, 1967]. These
principles can be incorporated into a photo-editing tool, in which it
is practical to give the user some degree of control over the comple-
tion process, provided it be done in a simple and intuitive fashion.
By specifying a point of interest in the image or a direction, the
user can optionally favor symmetry, proximity, or the horizontal or
vertical axis. This requires adding bias to the search in Eq. 6 by a
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(a) (b)

(c) (d)

Figure 17: A point of interest is specified with a white circle near
the center of the image in (a). Our result using the point of interest
to complete the circularly symmetric shape is shown in (c).

function of the horizontal or vertical distances between target and
source fragments, or by their distance to the point of interest. Guid-
ing the traversal order requires adding a wide Gaussian centered
at a point or a soft directional gradient to Eq. 5. Figure 17 shows
completion using a point of interest located near the center of the
image.

10 Summary and future work

We have introduced a new method for image completion that inter-
leaves a smooth approximation with detail completion by example
fragments. Our method iteratively approximates the unknown re-
gion and fills in the image by adaptive fragments. Our approach
completes the image by a composition of fragments under combi-
nations of spatial transformations.

To improve completion, future work will focus on the follow-
ing: (i) Performing an anisotropic filtering pass in the smooth ap-
proximation, by computing an elliptical kernel, oriented and non-
uniformly scaled at each point, based on a local neighborhood; (ii)
Locally completing edges in the image based on elasticity, and then
using the completed edge map in the search; and (iii) Direct com-
pletion of image gradients, reconstructing the divergence by the full
multi-grid method.

In addition, we would like to extend our input from a single im-
age to classes of images. Finally, increasing dimensionality opens
exciting extensions to video and surface completion.
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Figure 13: Completion results for some photographs and well-known paintings.
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