

Presented by Yunjun Zhang

How to write a paper for SIGGRAPH

- The applications are plentiful and the result is amazing.
- Idea could be simple but it really works and it is robust.
- The method is explained in good detail without too much fancy formulas.

Notations used in paper and this presentation

f: frames in a video sequence

C: observed color image

L: lit image $L = \max_{f} C_f$

S: shadow image $S = \min_{f} C_{f}$

L', S', C': lit image, shadow image, and calculated color image for the target.

 β : it is the visability of the light source

Matting and Compositing

Contribution of this paper

- Composite the shadow without knowing the geometry and camera calibration.
- No blue screen is required for shadow matting.

Implementation

- Assumption
 - Single light source
 - Shadow should be cast on a flat ground in source video.
- Input and Output
 - Source Video (must be video to generate S and L)
 - Target Image

Implementation

- Estimating the shadow matte.
- Generate the deformed shadow matte from target image.
- Shadow compositing.

Estimating shadow matting

 Calculate shadow and lit images

L: lit image
$$L = \max_{f} C_f$$

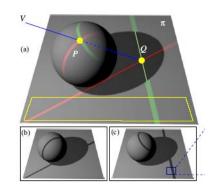
S: shadow image $S = \min_{f} C_f$

 Calculate shadow matte for the selected image

$$\beta = \frac{(C-S)\cdot(L-S)}{\left\|L-S\right\|^2}$$

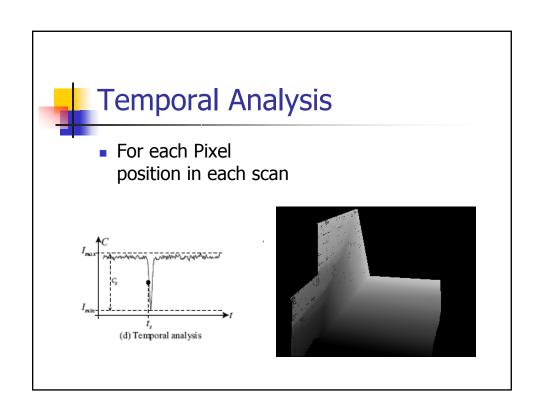
 No pixel position can be covered by shadow all the time.

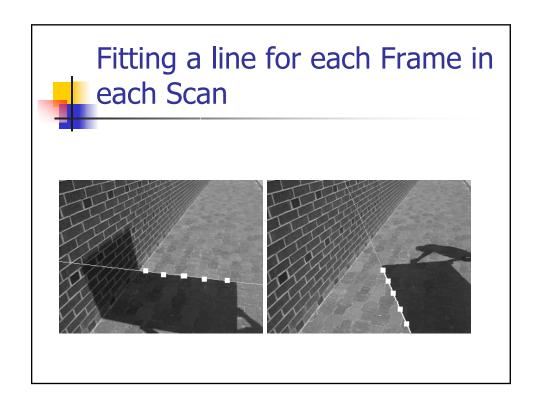
Estimating shadow matting

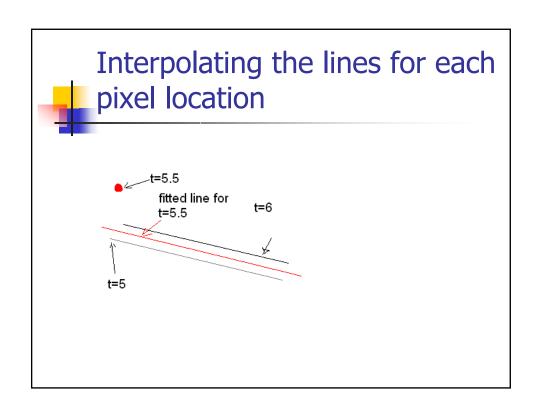


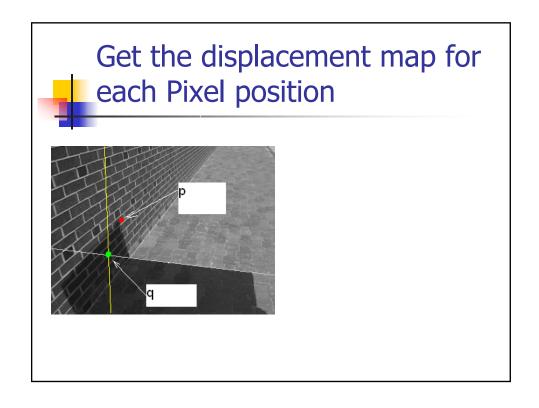
- Basic idea:
 - Generate displacement for each pixel for the potential shadow area.

Target background Shadow Scan Video




- Algorithm
 - For each directional scan s:
 - Find the first crossing time for each pixel by temporal analysis.
 - In each frame f, fit a shadow line
 - For each pixel location p:
 - For each scan s, using the two nearest line equation's parameters to generate the line equation for p
 - Compute the intersection point q of lines of all scans s
 - q-p is the displacement on point p.


Estimating shadow deformations



 Target background must has some region with planar surface matched to source background. This region is called reference plane.

Discussion

- How to eliminate the planar background requirement?
- In video compositing, more interpolating methods are required.