
1

Recognizing Multitasked Activities Recognizing Multitasked Activities
from Video using Stochastic from Video using Stochastic

ContextContext--Free GrammarFree Grammar

(Darnell Moore and Irfan Essa)(Darnell Moore and Irfan Essa)
[[AAAI 2002AAAI 2002, , CVPR 2001CVPR 2001 (Workshop on Models vs. Exemplars)(Workshop on Models vs. Exemplars)]]

Presented byPresented by::
Asaad HakeemAsaad Hakeem

ObjectivesObjectives

Recognizing multitasked activities from videosRecognizing multitasked activities from videos
Stochastic Context Free Grammar (SCFG) for defining rules of Stochastic Context Free Grammar (SCFG) for defining rules of
event occurrencesevent occurrences
EarleyEarley--Stolcke parsing for detection of event sequenceStolcke parsing for detection of event sequence
Detection & recovery of insertion, deletion and substitution Detection & recovery of insertion, deletion and substitution
errorserrors
HighHigh--level behavior assessment from event sequence level behavior assessment from event sequence

2

Related WorkRelated Work

Earley, J. C. 1968. An Efficient Context-Free Parsing Algorithm.
Ph.D. Dissertation, Carnegie-Mellon University.

Stolcke, A. 1994. Bayesian Learning of Probabilistic Language Models.
Ph.D., University of California at Berkeley.

Ivanov, Y., and Bobick, A. 2000. Recognition of visual activities
and interactions by stochastic parsing. PAMI 22(8):852–872.

Stochastic Context Free GrammarStochastic Context Free Grammar

A context free grammar has a nonA context free grammar has a non--terminal producing a string terminal producing a string
including both terminals and/or nonincluding both terminals and/or non--terminals. E.g.terminals. E.g.

S S A B c A B c (non(non--terminals are capitalized, terminals are smallterminals are capitalized, terminals are small--cased)cased)

SCFG is a grammar having probability associated with each ruleSCFG is a grammar having probability associated with each rule
This has added advantages:This has added advantages:

Finding maximum probability sequence of eventsFinding maximum probability sequence of events
Pruning parses that have low accumulated probabilityPruning parses that have low accumulated probability

Probabilities are calculated from training dataProbabilities are calculated from training data

3

Probability RepresentationProbability Representation

Probability of each rule is given by:Probability of each rule is given by:
c (c (XX λλ) = count of particular production) = count of particular production
c (c (XX µµ) = count of non) = count of non--terminals terminals

produced by Xproduced by X

Total probability of an event sequence is given by:Total probability of an event sequence is given by:
PPDD((xxii) = probability of an event) = probability of an event

Probability is normalized for longer strings by:Probability is normalized for longer strings by:
l = length of the stringl = length of the string

∑ →
→

=→

µ

µ
λλ

)(
)()(

Xc
XcXP

∏
=

=
l

i
iDD xPxP

1

)()(

∑
=

=
l

i
iDD xP

l
xP

1
)(1)(~

EarleyEarley--Stolcke ParsingStolcke Parsing

Earley introduced a CFG parsing mechanism that:Earley introduced a CFG parsing mechanism that:
Does not repeat parsing of already parsed subDoes not repeat parsing of already parsed sub--treestrees
Has N+1 tables for N number of words (events)Has N+1 tables for N number of words (events)
State in a table has:State in a table has:

SubSub--tree for a single grammar ruletree for a single grammar rule
Progress made in completing subProgress made in completing sub--treetree
Position of subPosition of sub--tree with respect to inputtree with respect to input

E.g. E.g. S S .. A B [0,0]A B [0,0] PredictionPrediction
S S A A .. B [0,1]B [0,1] InIn--progressprogress
S S A B A B .. [0,2][0,2] CompletedCompleted

Parsing occurs in three stages:Parsing occurs in three stages:
PredictionPrediction
ScanningScanning
CompletionCompletion

4

Prediction StagePrediction Stage

Creates lists of all the states possible on prior inputCreates lists of all the states possible on prior input
These states provide candidate terminal symbols at the next These states provide candidate terminal symbols at the next
position in the stringposition in the string

Predict (A Predict (A αα .. B B ββ [i, j])[i, j])
for each (B for each (B γγ) in Grammar rules) in Grammar rules

Enqueue ((B Enqueue ((B .. γγ [j, j] in table [j])[j, j] in table [j])
endend

αα=previously parsed string,=previously parsed string, ββ=string to parse after B=string to parse after B
i=current position, i=current position, B = nonB = non--terminalterminal
j=current table,j=current table, B B γγ = all the productions of B= all the productions of B

Scanning StageScanning Stage

Next input symbol is matched with all statesNext input symbol is matched with all states
Ensures terminal symbols produced matches input stringEnsures terminal symbols produced matches input string
Promotes the states for the next iterationPromotes the states for the next iteration

Scan (A Scan (A αα .. B B ββ [i, j])[i, j])
if (B produces and matches the current event)if (B produces and matches the current event)

Enqueue ((B Enqueue ((B γγ .. [j, j+1] [b, a] in table [j+1])[j, j+1] [b, a] in table [j+1])
endend

αα=previously parsed string,=previously parsed string, ββ=string to parse after B=string to parse after B
i=current position, i=current position, B = nonB = non--terminalterminal
j=current table,j=current table, B B γγ = matching terminal production of B= matching terminal production of B
a=forward probabilitiesa=forward probabilities b=inner probabilitiesb=inner probabilities

5

Completion StageCompletion Stage
Completion stage updates the positions in all pending derivationCompletion stage updates the positions in all pending derivations s
in the confirmed scanned states in the confirmed scanned states
Completion corresponds to an end of a nonCompletion corresponds to an end of a non--terminal expansion terminal expansion
initiated by the prediction stageinitiated by the prediction stage
A state is complete if:A state is complete if:

SubSub--sting xsting xi i ……xxll has been fully expanded, andhas been fully expanded, and
It is syntactically correct B It is syntactically correct B γγ . . [j, k][j, k]

Complete (B Complete (B γγ .. [j, k])[j, k])
for each ((for each ((A A αα .. B B ββ [i, j]) in table [j])[i, j]) in table [j])

Enqueue ((Enqueue ((A A αα B B . . ββ [i, k] {append completer id }) in table [k])[i, k] {append completer id }) in table [k])
endend

αα=previously parsed string,=previously parsed string, ββ=string to parse after B=string to parse after B
i=arbitrary position in ji=arbitrary position in jthth table,table, B = nonB = non--terminalterminal
j=current position,j=current position, B B γγ = completed production of B= completed production of B
k=current table,k=current table, { id_1,{ id_1,…… }= list of ids reaching this production}= list of ids reaching this production

Parsing using ProbabilitiesParsing using Probabilities

Stolcke added probabilities to each stateStolcke added probabilities to each state
There are two types of probabilities associated with each state:There are two types of probabilities associated with each state:

Forward probability Forward probability αα
Inner probability Inner probability γγ

Forward probability is the likelihood of selecting next state xForward probability is the likelihood of selecting next state xii
along with all the previously selected states xalong with all the previously selected states x11……xxii--11

αα = P(x= P(x11) + P(x) + P(x22) +) + …… P(xP(xii))
Inner probability is the likelihood of generating a substring frInner probability is the likelihood of generating a substring from om
the given nonthe given non--terminal xterminal xkk……xxii--11

γγ = P(x= P(xkk) + P(x) + P(xk+1k+1) +) + …… P(xP(xii),),
given: B given: B λλ .. µµ [k, i][k, i]

6

Parsing using Probabilities Parsing using Probabilities (contd.)(contd.)

The probability of producing symbol xThe probability of producing symbol xi i was given by Pwas given by PDD(x(xii))
Forward and inner probabilities are updated during scanning by:Forward and inner probabilities are updated during scanning by:

αα`̀ = = αα((X X λλ .. a a µµ [1, i]) * [1, i]) * PPDD(a)(a)

γγ`̀ = = γγ((X X λλ .. a a µµ [k, i]) * [k, i]) * PPDD(a)(a)
where where ‘‘aa’’ is the terminal in the input in state set (table) iis the terminal in the input in state set (table) i

Updated Updated αα` and ` and γγ` reflect:` reflect:
Weight of the likelihood of competing derivationsWeight of the likelihood of competing derivations
Certainty associated with the scanned input symbolCertainty associated with the scanned input symbol

Selecting Maximum Likelihood ParseSelecting Maximum Likelihood Parse

Viterbi method for parsing a string Viterbi method for parsing a string xx, with most likely probability , with most likely probability
from all the derivations of from all the derivations of xx
Each state holds the maximal path probability leading to itEach state holds the maximal path probability leading to it
Viterbi probability Viterbi probability νν is propagated similar to is propagated similar to γγ, except at , except at
completion, where summation is replaced by maximumcompletion, where summation is replaced by maximum

ννii (X (X λλYY..µµ [k, i]) = max[k, i]) = maxλλ,,µµ{{ννii (Y (Y xx.. [j, i]) * [j, i]) * ννjj (X (X λλ..YYµµ [k, j]) }[k, j]) }

By backtracking along the maximal predecessor states, the By backtracking along the maximal predecessor states, the
maximal probability parse will be recoveredmaximal probability parse will be recovered

X X λλYY..µµ [k, i] = argmax[k, i] = argmaxλλ,,µµ{{ννii (Y (Y xx.. [j, i]) * [j, i]) * ννjj (X (X λλ..YYµµ [k, j]) }[k, j]) }

7

EarleyEarley--Stolcke AlgorithmStolcke Algorithm

function Earleyfunction Earley--Parse (events, grammar) returns tablesParse (events, grammar) returns tables
Enqueue (Enqueue (γγ . . S [0, 0] in table [0])S [0, 0] in table [0]) // dummy state for starting table// dummy state for starting table
for i=0 to length (events)for i=0 to length (events)

for each state in table [i]for each state in table [i]
if Incomplete (state) and Nextif Incomplete (state) and Next--Cat (state) != EventCat (state) != Event

Predict (state)Predict (state)
else if Incomplete (state) and Nextelse if Incomplete (state) and Next--Cat (state) = EventCat (state) = Event

Scan (state)Scan (state)
elseelse

Complete (state)Complete (state)
end // forend // for

end // forend // for
return (table)return (table)
end // functionend // function

EarleyEarley--Stolcke Algorithm Stolcke Algorithm (contd.)(contd.)

function Generatefunction Generate--ParseTree (table) returns list //of successful parse treesParseTree (table) returns list //of successful parse trees
for all entries in table [l] having starting productionsfor all entries in table [l] having starting productions

trace back through ids in the parse list {}trace back through ids in the parse list {}
add probability of each production included in parse listadd probability of each production included in parse list
divide the total probability with length of string l // likely pdivide the total probability with length of string l // likely probabilityrobability
EnqueueList (tree [i])EnqueueList (tree [i]) // enqueue tree in list of successful parses// enqueue tree in list of successful parses

end // forend // for
return (list)return (list)
end // functionend // function

Find the maximum likely probability parse tree from the list of Find the maximum likely probability parse tree from the list of successful parse treessuccessful parse trees
The events in the maximum likely parse tree are the most likely The events in the maximum likely parse tree are the most likely sequence of events sequence of events

8

Sample ParseSample Parse

Consider a simple parse of string Consider a simple parse of string ‘‘abcabc’’ given the following grammar:given the following grammar:
S S ABAB [1.0] [1.0] BB BCBC [0.5][0.5]
AA aAaA [0.5] [0.5] BB bb [0.5][0.5]
AA aa [0.5] [0.5] CC cc [1.0][1.0]

table[0]table[0] [k, i][k, i] [[γγ , , αα]]
S1: S1: γγ ..SS [0,0][0,0] [1.0,1.0][1.0,1.0] {}{} Dummy start stateDummy start state
S2: S S2: S ..ABAB [0,0][0,0] [1.0,1.0][1.0,1.0] {}{} PredictorPredictor
S3: AS3: A ..aAaA [0,0][0,0] [1.0,0.5][1.0,0.5] {}{} PredictorPredictor
S4: AS4: A ..aa [0,0][0,0] [0.5,0.5][0.5,0.5] {}{} PredictorPredictor
table[1]table[1]
S5: AS5: A aa.. [0,1][0,1] [0.5,0.5][0.5,0.5] {}{} ScannerScanner
S6: SS6: S AA..BB [0,1][0,1] [0.5,0.5][0.5,0.5] {S5}{S5} CompleterCompleter
S7: BS7: B ..BCBC [1,1][1,1] [0.0,0.5][0.0,0.5] {}{} PredictorPredictor
S8: BS8: B ..bb [1,1][1,1] [0.0,0.5][0.0,0.5] {}{} PredictorPredictor

Sample Parse Sample Parse (contd.)(contd.)

table[2]table[2]
S9: BS9: B bb.. [1,2][1,2] [0.5,0.5][0.5,0.5] {}{} ScannerScanner
S10: BS10: B BB..CC [1,2][1,2] [0.5,0.5][0.5,0.5] {S9}{S9} CompleterCompleter
S11: SS11: S ABAB.. [0,2][0,2] [0.75,0.75] {S9,S10}[0.75,0.75] {S9,S10} CompleterCompleter
S12: CS12: C ..cc [1,2][1,2] [0.0,0.5][0.0,0.5] {}{} PredictorPredictor
table[3]table[3]
S13: CS13: C cc.. [2,3][2,3] [0.5,0.67][0.5,0.67] {}{} ScannerScanner
S14: BS14: B BCBC.. [1,3][1,3] [0.75,0.67] {S9,S13}[0.75,0.67] {S9,S13} CompleterCompleter
S15: SS15: S ABAB.. [0,3][0,3] [0.67,0.67] {S5,S14} Completer[0.67,0.67] {S5,S14} Completer

9

Parsing Separable ActivitiesParsing Separable Activities

Activities with separable groups are independent interactive relActivities with separable groups are independent interactive relationships ationships
between two or more agentsbetween two or more agents
In case of Blackjack, each player dealer pair is a separable groIn case of Blackjack, each player dealer pair is a separable groupup
Development of SCFG that describe nonDevelopment of SCFG that describe non--separable interactionsseparable interactions

SCFG for BlackjackSCFG for Blackjack

10

Primitive EventsPrimitive Events

Terminal symbols are based on primitive eventsTerminal symbols are based on primitive events
A separate symbolic string is maintained for each person pA separate symbolic string is maintained for each person pmm

A relation between an event and person is based on:A relation between an event and person is based on:
Person in contact with an articlePerson in contact with an article
The owner of the articleThe owner of the article

First measure is determined by overlap between image regions of First measure is determined by overlap between image regions of
the hands and objectsthe hands and objects
Second measure is based on the proximity zone zSecond measure is based on the proximity zone zmm (manually)(manually)
Tags are attached during scanning when the next state is added:Tags are attached during scanning when the next state is added:

X X λλaa..µµ [[αα, , γγ, p, pjj, o(z, o(zmm)] [k,i+1],)] [k,i+1], where o(zwhere o(zmm) returns ID p) returns ID pj j based on zonebased on zone

Player Behavior Player Behavior (Skill)(Skill)

A subset of production rules can be used to assess behaviorA subset of production rules can be used to assess behavior
Production rule G suggests player strategy and skillProduction rule G suggests player strategy and skill

Let PLet Pςς be the subset denoting productions of Gbe the subset denoting productions of G
Let bLet bςς be production likelihood of Pbe production likelihood of Pςς

Initially bInitially bςς is set to be uniform i.e. bis set to be uniform i.e. bςς =b=bxx = (= (ββ11, , ββ11,,…… ββnn)/n)/n
Likelihood of selected rules by an individual is denoted by Likelihood of selected rules by an individual is denoted by
Mean Square Error (MSE) is given by:Mean Square Error (MSE) is given by:

The likelihood of behavior given the model is calculated by pairThe likelihood of behavior given the model is calculated by pair--wise wise
distance measure of MSE by:distance measure of MSE by:

ςb̂

2

1
)ˆ(1)ˆ(i

n

i
in

bberr ββςς −=− ∑
=

)ˆ(1)|ˆ(ςςςς bberrbbP −−=

11

Error Detection & RecoveryError Detection & Recovery

Errors in input can generate ungrammatical strings, causing parsErrors in input can generate ungrammatical strings, causing parsing algorithm ing algorithm
to failto fail
Three types of error detection and recovery are provided:Three types of error detection and recovery are provided:

Substitution errorSubstitution error occurs when wrong terminal string is generated, as actual eventoccurs when wrong terminal string is generated, as actual event is is
not detected to be most likelynot detected to be most likely
Insertion errorInsertion error occurs when spurious terminal string is generated, as an event occurs when spurious terminal string is generated, as an event is is
incorrectly detected (false positive)incorrectly detected (false positive)
Deletion errorDeletion error occurs when an event is not detectedoccurs when an event is not detected

Parsing errors occur in scanning stage when input symbol does noParsing errors occur in scanning stage when input symbol does not match t match
terminals from prediction stageterminals from prediction stage
Prediction stage is modified to expand all productions Y until nPrediction stage is modified to expand all productions Y until next terminal is ext terminal is
predicted (matched at scanning), i.e.predicted (matched at scanning), i.e.

XX λλ..µµ [[αα,,γγ] [k, i] =>] [k, i] => YY ..νν [[αα`, `, γγ`] [i, i]`] [i, i] => => YY ..aaξξ [[αα`, `, γγ`] [i, i] `] [i, i]

Insertion ErrorInsertion Error

Simply ignore the scanned terminalSimply ignore the scanned terminal
Return the state of the parser to previous point prior to scanniReturn the state of the parser to previous point prior to scanningng
Same pending expansions of prediction are maintainedSame pending expansions of prediction are maintained

12

Substitution ErrorSubstitution Error

Promote each pending prediction as if it was actually scannedPromote each pending prediction as if it was actually scanned
New hypothetical terminal is created resulting in multiple pathsNew hypothetical terminal is created resulting in multiple paths
Hypothetical path is terminated if failure occurs at next stepHypothetical path is terminated if failure occurs at next step
Actual likelihood of the event (terminal Actual likelihood of the event (terminal PPDD(a)(a)) is recovered by,) is recovered by,

αα` = ` = αα(Y(Y ..aaξξ [[αα`, `, γγ`] [i, i])*P`] [i, i])*PDD(a)(a)
γγ`̀ = = γγ(Y(Y ..aaξξ [[αα`, `, γγ`] [i, i])*P`] [i, i])*PDD(a)(a)

Deletion ErrorDeletion Error

Promote each pending prediction as if it was actually scannedPromote each pending prediction as if it was actually scanned
New hypothetical terminal is created resulting in multiple pathsNew hypothetical terminal is created resulting in multiple paths
Proceed to the completion stage and modify probabilities at scanProceed to the completion stage and modify probabilities at scanning by,ning by,

αα` = ` = αα(Y(Y ..aaξξ [[αα`, `, γγ`] [i, i])*`] [i, i])*
γγ`̀ = = γγ(Y(Y ..aaξξ [[αα`, `, γγ`] [i, i])*`] [i, i])*

At the next prediction stage there is no detection of likelihoodAt the next prediction stage there is no detection of likelihood for recoveryfor recovery
At second scanning stage, the probabilities are recovered from oAt second scanning stage, the probabilities are recovered from original scan riginal scan
likelihood by,likelihood by,

αα` = ` = αα(Y(Y ..aaξξ [[αα`, `, γγ`] [i+1, i+1])*P`] [i+1, i+1])*PDD(b)(b)
γγ`̀ = = γγ(Y(Y ..aaξξ [[αα`, `, γγ`] [i+1, i+1])*P`] [i+1, i+1])*PDD(b)(b)

This method guarantees syntactically legal but no warranty on seThis method guarantees syntactically legal but no warranty on semanticsmantics
The erroneous symbol is attached to the appropriate personThe erroneous symbol is attached to the appropriate person
This associates an illegal action to the person via bad syntax sThis associates an illegal action to the person via bad syntax substringsubstrings

)(~ aPD
)(~ aPD

13

Error Detection & Recovery exampleError Detection & Recovery example

Following table shows three types of error detection and recoverFollowing table shows three types of error detection and recovery for y for ‘‘aabcaabc’’::

Error Detection & Recovery exampleError Detection & Recovery example (contd.)(contd.)

Error detection and recovery occurs by:Error detection and recovery occurs by:
Maintaining every recovery path for multiple tracksMaintaining every recovery path for multiple tracks
Tolerating only two consecutive failuresTolerating only two consecutive failures

Optimizations can be applied to the above method:Optimizations can be applied to the above method:
More consecutive failures can be tolerated by applying penalty tMore consecutive failures can be tolerated by applying penalty to Po PDD(a)(a)

where, n=number of consecutive failures, where, n=number of consecutive failures, ρρ is empirically derived constantis empirically derived constant

Pruning recovered paths with low probabilityPruning recovered paths with low probability
Hybrid error scenarios by taking all three scenarios into accounHybrid error scenarios by taking all three scenarios into account at each bad inputt at each bad input

)(~)(ˆ aPeaP D

n

D
ρ
−

=

14

Experimental ResultsExperimental Results

Experiment I: Event Detection AccuracyExperiment I: Event Detection Accuracy
Overall detection rate of events is 96.2% with 0.4% insertion, 0Overall detection rate of events is 96.2% with 0.4% insertion, 0.1% substitution, .1% substitution,
3.4% deletion errors3.4% deletion errors
Player cheating can be detected by looking at Player cheating can be detected by looking at ‘‘cc’’ and and ‘‘gg’’ eventsevents

Experimental Results Experimental Results (contd.)(contd.)

Experiment II: Error Detection & RecoveryExperiment II: Error Detection & Recovery
100% accuracy with no insertion, substitution and deletion error100% accuracy with no insertion, substitution and deletion errorss
Error recovery disabled:Error recovery disabled:

Corpus A had 42.9% entire parses with 70.1% events detectedCorpus A had 42.9% entire parses with 70.1% events detected
Error rates were insertion 5.8%, substitution 14.5% and deletionError rates were insertion 5.8%, substitution 14.5% and deletion 9.6%9.6%

Error recovery enabled:Error recovery enabled:
Corpus A had 85.7% entire parses with 93.8% events detectedCorpus A had 85.7% entire parses with 93.8% events detected
Error rates reduced by insertion 70.5%, substitution 87.3% and dError rates reduced by insertion 70.5%, substitution 87.3% and deletion 71.9%eletion 71.9%

15

Experimental Results Experimental Results (contd.)(contd.)

Experiment III: HighExperiment III: High--level Behavior Assessmentlevel Behavior Assessment
4 categories of behavior with 10 trials per individual to assess4 categories of behavior with 10 trials per individual to assess behaviorbehavior

ContributionsContributions

Introduced SCFG for multitasked activities in separable groupsIntroduced SCFG for multitasked activities in separable groups

Extended and improved error detection and recovery method in Extended and improved error detection and recovery method in
SCFG from Ivanov and BobickSCFG from Ivanov and Bobick’’s method (2000 PAMI)s method (2000 PAMI)

HighHigh--level behavior assessment from event sequence and level behavior assessment from event sequence and
frequencyfrequency

