Recognizing Multitasked Activities
from Video using Stochastic
Context-Free Grammar

(Datnell Moore and Irfan Essa)
[AAAT 2002, CVPR 2001 (Workshop on Models vs. Exemplars)]

Presented by:
Asaad Hakeem

Objectives

Recognizing multitasked activities from videos

Stochastic Context Free Grammar (SCFG) for defining rules of
event occurrences

Earley-Stolcke parsing for detection of event sequence

Detection & recovery of insertion, deletion and substitution
errors

High-level behavior assessment from event sequence

Related Work

Earley, J. C. 1968. An Efficient Context-Free Parsing Algorithm.
Ph.D. Dissertation, Carnegie-Mellon University.

Stolcke, A. 1994. Bayesian L earning of Probabilistic I.anguage Models.
Ph.D., University of California at Berkeley.

Ivanov, Y., and Bobick, A. 2000. Recognition of visual activities
and interactions by stochastic parsing. PAMI 22(8):852—872.

Stochastic Context Free Grammar

A context free grammar has a non-terminal producing a string
including both terminals and/or non-terminals. E.g.

S > A B ¢ (non-terminals are capitalized, terminals ate small-cased)
SCFG is a grammar having probability associated with each rule
This has added advantages:

= Finding maximum probability sequence of events
= Pruning parses that have low accumulated probability

Probabilities are calculated from training data

Probability Representation

» Probability of each rule is given by:
aX—A) ¢ (X)) = count of particular production

m ¢ (X) = count of non-terminals
u produced by X

PX—>A)=

= Total probability of an event sequence is given by:

/
PD (x) = H PD (Xi) Pp(X;) = probability of an event
i=1

» Probability is normalized for longer strings by:

~ 1 e
PD(X):7ZPD(xi)

1 = length of the string

Earley-Stolcke Parsing

» FBarley introduced a CFG parsing mechanism that:
= Does not repeat parsing of already parsed sub-trees
= Has N+1 tables for N number of wotds (events)
= State in a table has:

= Sub-tree for a single grammar rule
= Progress made in completing sub-ttee
= Position of sub-tree with respect to input
= Eg S=>.AB[0,0] Prediction
S>A.B[0,1] In-progress
S>AB.[0,2] Completed

» Parsing occurs in three stages:
= Prediction
= Scanning

= Completion

Prediction Stage

» Creates lists of all the states possible on prior input

» These states provide candidate terminal symbols at the next
position in the string

Predict (A 2> . BB [i, i)
for each (B 2 Y) in Grammar rules
Enqueue (B = .V [j, j] in table [j])

end

O=previously parsed string, B=string to patse after B
i=current position, B = non-terminal

j=cutrent table, B = y = all the productions of B

Scanning Stage

Next input symbol is matched with all states

Ensures terminal symbols produced matches input string

Promotes the states for the next iteration

Scan (A > a.BB [, j])
if (B produces and matches the current event)
Enqueue (B 2 Y . [, j*1] [b, 2] in table [j+1])

end

O=pteviously parsed string, B=string to patse after B
i=current position, B = non-terminal
j=current table, B = Y = matching terminal production of B

a=forward probabilities b=inner probabilities

Completion Stage

Completion stage updates the positions in all pending derivations
< C
in the confirmed scanned states

Completion corresponds to an end of a non-terminal expansion
initiated by the prediction stage

A state is complete if:
= Sub-sting x; ...x has been fully expanded, and

= It is syntactically cortect B > . [, k]

Complete (B > Y . [j, k)
for each (A 2> a. B B [i, j]) in table [j])
Enqueue (A > a B. B [i, k] {append completer id }) in table [k])
end
O=previously parsed string, B:string to parse after B
i=arbitraty position in j table, B = non-terminal
j=current position, B>y= completed production of B

k=cutrrent table, {id_1,... } = list of ids reaching this production

Parsing using Probabilities

Stolcke added probabilities to each state
There are two types of probabilities associated with each state:
= Forward probability d
= Inner probability y
Forward probability is the likelihood of selecting next state x;
along with all the previously selected states x;...x;
a=Pkx) + Pk, +... Px)
Inner probability is the likelihood of generating a substring from
the given non-terminal x,...x;
Y =Pkx) +Pkx_)+ .. Px),
given: B > L.y [k, 1]

Parsing using Probabilities (onw,

» The probability of producing symbol x; was given by P (x;)
» Forward and inner probabilities are updated during scanning by:
O =aAXDh.ap [l i) * Pya)
V' =VX > h.ap [k i) * Pp)
where @’ is the terminal in the input in state set (table) i
» Updated 0" and Y~ reflect:
- Weight of the likelihood of competing detivations

= Certainty associated with the scanned input symbol

Selecting Maximum Likelihood Parse

Viterbi method for parsing a string x, with most likely probability
from all the derivations of x
Each state holds the maximal path probability leading to it

Viterbi probability V is propagated similar to Y, except at
completion, where summation is replaced by maximum

V. X 2> LY. [k, i]) = max,

Vi Y D x) F v (XD MY [k])

By backtracking along the maximal predecessor states, the
maximal probability parse will be recovered

X DAY [k, i] = argmas; , {V; (Y > . [j,) * v, (X > LY [k,) }

Earley-Stolcke Algorithm

function Earley-Parse (events, grammar) returns tables
Enqueue (Y = . S [0, 0] in table [0]) // dummy state for starting table
for i=0 to length (events)
for each state in table [i]
if Incomplete (state) and Next-Cat (state) |= Event
Predict (state)
clse if Incomplete (state) and Next-Cat (state) = Event
Scan (state)
clse
Complete (state)
end // for
end // for
return (table)

end // function

Earley-Stolcke Algorithm (con,

function Generate-ParseTree (table) returns list //of successful patse trees
for all entries in table [1] having starting productions
trace back through ids in the parse list {}
add probability of each production included in parse list
divide the total probability with length of string 1 // likely probability
EnqueuelList (tree [i]) // enqueue tree in list of successful parses
end // for
return (list)

end // function

= Find the maximum likely probability parse tree from the list of successful parse trees

= The events in the maximum likely patse tree are the most likely sequence of events

Sample Parse

Consider a simple parse of string ‘abc’ given the following grammar:
S >AB [1.0] B>BC

A>aA). B>b

A>a). C>c

Dummy start state
Predictor
S3: A%.az‘—\ 0,(.0,0. 4 Predictor
S4: A>.a 0,(0.5,0. 4 Predictor
table[1]
: ADa. [0.5,0. 4 Scannet
:S2>A.B [0.5,0. 4 Completer
S7: B>.BC 1,1 0.0,0. {} Predictor
3: B>.b 4 Predictor

table[2]
S9: B>b. 0

$10: B>B.C | [0.5,0. 4 Completer
S11: S>AB. [0 [0.7 4 0} Completer
S12: C>.c [0.0,0. 3] {} Predictor
table[3]

S13: C>c. 2 7] 4 Scanner
S14: B>BC. 7] {89,513} Completer
S15: S2>AB. [0 0.67,0.67] { 4} Completer

Scanner

Parsing Separable Activities

Activities with separable groups are independent interactive relationships
between two ot mote agents

In case of Blackjack, each player dealer pair is a separable group

Development of SCEFG that describe non-sepatable interactions

Grammar{Role A} = Grammar({Role A’}
F A - =

Seperable, Independent roles

SCFG for Blackjack

Production Rules Description

“play gams"
pla}r ga.me —» “setup garne” “mplemmt strategy™
deterrnine wirmer — “'eval. strategy” “cleanup”
setup pame — “place bets” “deal card pairs™
implerment strategy — “player stratepgy™
eval stratepy — “dealer down-card™ “dealer hits"™ “player down-card”
eval. strategy — “dealer down-card™ “player dewn-card”™
clearmp —+ “settle bet™ “r B cand™
—» “recover card” “settle bet”
player strategy — “Hasic Strategy™
— "Bplitting Pair"
"Doublmg Dowrn”
place betz - i
dealer ramnved ca.rd from house
dealer removed card from player
player remeved card from house
player removed card from player
dealer added card to house
dealer dealt card to player
player added card to house
player added eard to player
dealer removed chip
player remeved chip
dealer paye player chip
player bets chip

deal card pairs
Basic strategy
house hits
Drealer down eard

Player downeard
=ettle bet

e, L NI e ELm ER

Primitive Events

Terminal symbols are based on primitive events
A separate symbolic string is maintained for each person p,,
A relation between an event and person is based on:
= Person in contact with an article
= The owner of the article
First measure is determined by overlap between image regions of
the hands and objects
Second measure is based on the proximity zone z_, (manually)
Tags are attached during scanning when the next state is added:
X 2 a.u [0, Y, Pj> o(z,)] [k,i+1], whete o(z

) teturns ID p, based on zone

Player Behavior (Skill)

= A subset of production rules can be used to assess behavior
» Production rule G suggests player strategy and skill
Let P_ be the subset denoting productions of G
Let b, be production likelihood of P,
Initially b is set to be uniform i.e. b.=b, = (B, B,--- B,)/n
Likelihood of selected rules by an individual is denoted by b,

Mean Square Error (MSE) is given by:
n 1 & R
err(b.—b.)==>(B,- B’
- 1o

The likelihood of behavior given the model is calculated by pair-wise
distance measure of MSE by:

P(b,|b)=1-

Error Detection & Recovery

Errors in input can generate ungrammatical strings, causing parsing algorithm
to fail
Three types of error detection and recovery are provided:
= Substitution error occurs when wrong terminal string is generated, as actual event is
not detected to be most likely
Insertion error occurs when spurious terminal string is generated, as an event is
incortectly detected (false positive)
= Deletion error occurs when an event is not detected
Parsing errors occur in scanning stage when input symbol does not match
terminals from prediction stage
Prediction stage is modified to expand all productions Y until next terminal is
predicted (matched at scanning), i.c.

XY [V ki => YD v, V][] => YD.a€[o,y] i

Insertion Error

= Simply ignore the scanned terminal
» Return the state of the parser to previous point prior to scanning

= Same pending expansions of prediction are maintained

Substitution Error

Promote each pending prediction as if it was actually scanned
New hypothetical terminal is created resulting in multiple paths
Hypothetical path is terminated if failure occurs at next step

Actual likelihood of the event (terminal P, ()) is recovered by,
a’ = aY>.ag [, Y] [i, i]) Py (a)
Y =vy(Y>.ag o, V] [i, 1])*Pp(a)

Deletion Error

Promote each pending prediction as if it was actually scanned
New hypothetical terminal is created resulting in multiple paths
Proceed to the completion stage and modify probabilities at scanning by,
a = a(Y>.ag (@, v i,)*F, (a)
V=V ag 0 v i) Fy(a)
At the next prediction stage there is no detection of likelihood for recovery
At second scanning stage, the probabilities are recovered from original scan
likelihood by,
o = a(YD.a€ [, Y] [i+1, i+1])*Py(b)
V' =Yg [0, V] [i+1, i+1])*Pp(b)
This method guarantees syntactically legal but no watranty on semantics
The erroneous symbol is attached to the appropriate person

This associates an illegal action to the person via bad syntax substrings

Error Detection & Recovery example

Following table shows three types of error detection and recovery for ‘aabc’:

A
Gramm
F F] ’
A B failed, expecting "a" failed, expecting“a™
B ignore “b" *goanmed e
B L predicied 114 -+ 44,
—+ [] 14 —+ ad,4
a@,ad completed
g 3 —+ g,
¥ @ i M —+ AR
e completed predict
predicted 3
14 — [1 4 A
HEP] — a,a4 .l 0B
Y.
canned "'c" *scarmed “5” (reiry)
expecting Y] he
HES.] heB
HoRe compleied

he
bR

c
he

bl

Error Detection & Recovery example

Error detection and recovery occurs |

= Maintaining every recovery path for multiple tracks

= Tolerating only two consecutive failures
Optimizations can be applied to the above method:

= More consecutive failures can be tolerated by applying penalty to P(a)
—-n

13[, IE e?ﬁD (a)

where, n=number of consecutive failures, P is empirically derived constant

Pruning recovered paths with low probability

Hybrid error scenatios by taking all three scenatios into account at each bad input

Experimental Results

Experiment I: Event Detection Accuracy

= Opverall detection rate of events is 96.2% with 0.4% insertion, 0.1% substitution,
3.4% deletion errors

Player cheating can be detected by looking at ‘c’ and ‘g’ events

Dom:
Specific Events

dlr removed house card
dir removed plyr card
plyr removed house card?
plyr removed plyr card
dir add card to house
dir dealt card to plyr
plyradd card to house
plyr add card to plyr
dlr removed chip
. . plyr removed chip

Vision system tracking the game. : dlr pays plyr chip

plyr bet chip

Experimental Results onw,)

= Experiment II: Error Detection & Recovery
= 100% accuracy with no insertion, substitution and deletion etrors
= Error recovery disabled:
= Corpus A had 42.99
= Error rates were insertion 5.8
= Error recovery enabled:
events detected
= Error rates reduce nsertion 7(ic o and deletion 71.9%

Detect % Ins E
on

TR -0 Lo goR

.

Experimental Results onw,)

xperiment III: High-level Behavior Assessment

4 categorties of behavior with 10 trials per individual to assess behavior

Behavior Profile: Player Strategy

2
0
[
=]
[=]
|
o

Contributions

» Introduced SCFG for multitasked activities in separable groups

» Extended and improved error detection and recovery method in

SCFG from Ivanov and Bobick’s method (2000 PAMI)

» High-level behavior assessment from event sequence and
frequency

