Recognizing Multitasked Activities from Video using Stochastic Context-Free Grammar

(Darnell Moore and Irfan Essa) [AAAI 2002, CVPR 2001 (Workshop on Models vs. Exemplars)]

Presented by:

Asaad Hakeem

Objectives

- Recognizing multitasked activities from videos
- Stochastic Context Free Grammar (SCFG) for defining rules of event occurrences
- Earley-Stolcke parsing for detection of event sequence
- Detection & recovery of insertion, deletion and substitution errors
- High-level behavior assessment from event sequence

Related Work

- Earley, J. C. 1968. An Efficient Context-Free Parsing Algorithm. Ph.D. Dissertation, Carnegie-Mellon University.
- Stolcke, A. 1994. *Bayesian Learning of Probabilistic Language Models*. Ph.D., University of California at Berkeley.
- Ivanov, Y., and Bobick, A. 2000. Recognition of visual activities and interactions by stochastic parsing. *PAMI* 22(8):852–872.

Stochastic Context Free Grammar

- A context free grammar has a non-terminal producing a string including both terminals and/or non-terminals. E.g.
 - S \rightarrow A B c (non-terminals are capitalized, terminals are small-cased)
- SCFG is a grammar having probability associated with each rule
- This has added advantages:
 - · Finding maximum probability sequence of events
 - Pruning parses that have low accumulated probability
- Probabilities are calculated from training data

Probability Representation

Probability of each rule is given by:

$$P(X \to \lambda) = \frac{c(X \to \lambda)}{\sum_{\mu} c(X \to \mu)} \quad \begin{array}{c} c(X \to \lambda) = \text{count of particular production} \\ c(X \to \mu) = \text{count of non-terminals} \\ \text{produced by X} \end{array}$$

• Total probability of an event sequence is given by:

$$P_D(\mathbf{x}) = \prod_{i=1}^{l} P_D(\mathbf{x}_i)$$
 $P_D(\mathbf{x}_i) = \text{probability of an even}$

• Probability is normalized for longer strings by:

$$\widetilde{P}_D(x) = \frac{1}{l} \sum_{i=1}^{l} P_D(x_i) \quad l = \text{length of the string}$$

Earley-Stolcke Parsing

- Earley introduced a CFG parsing mechanism that:
 - Does not repeat parsing of already parsed sub-trees
 - Has N+1 tables for N number of words (events)
 - State in a table has:
 - Sub-tree for a single grammar rule
 - Progress made in completing sub-tree
 - Position of sub-tree with respect to input
 - E.g. $S \rightarrow A B [0,0]$ Prediction
 - $S \rightarrow A \cdot B [0,1]$ In-progress
 - $S \rightarrow A B . [0,2]$ Completed
- Parsing occurs in three stages:
 - Prediction
 - Scanning
 - Completion

Prediction Stage

- Creates lists of all the states possible on prior input
- These states provide candidate terminal symbols at the next position in the string

Predict (A $\rightarrow \alpha$. B β [i, j]) for each (B $\rightarrow \gamma$) in Grammar rules Enqueue ((B $\rightarrow . \gamma$ [j, j] in table [j]) end

α=previously parsed string, i=current position, j=current table, β =string to parse after B B = non-terminal B $\Rightarrow \gamma$ = all the productions of B

Scanning Stage

- Next input symbol is matched with all states
- Ensures terminal symbols produced matches input string
- Promotes the states for the next iteration

Scan (A $\rightarrow \alpha$. B β [i, j])

if (B produces and matches the current event) Enqueue ((B $\rightarrow \gamma$. [j, j+1] [b, a] in table [j+1]) end

α=previously parsed string,i=current position,j=current table,a=forward probabilities

$$\begin{split} \beta &= & \text{string to parse after B} \\ B &= & \text{non-terminal} \\ B & \rightarrow \gamma &= & \text{matching terminal production of B} \\ b &= & \text{inner probabilities} \end{split}$$

Parsing using Probabilities (contd.)

- The probability of producing symbol x_i was given by $P_D(x_i)$
- Forward and inner probabilities are updated during scanning by:

 $\boldsymbol{\alpha}^{\text{`}} = \boldsymbol{\alpha}(\mathbf{X} \rightarrow \lambda \, . \, a \mid \mu \mid [1, i]) * \mathbf{P}_{D}(a)$

 $\gamma = \gamma(X \rightarrow \lambda . a \mid \mu[k, i]) * P_{D}(a)$

where 'a' is the terminal in the input in state set (table) i

- Updated α ` and γ ` reflect:
 - Weight of the likelihood of competing derivations
 - Certainty associated with the scanned input symbol

Selecting Maximum Likelihood Parse

- Viterbi method for parsing a string *x*, with most likely probability from all the derivations of *x*
- Each state holds the maximal path probability leading to it
- Viterbi probability *ν* is propagated similar to *γ*, except at completion, where summation is replaced by maximum

 $\boldsymbol{v}_{i} (X \rightarrow \lambda Y.\boldsymbol{\mu} [k, i]) = \max_{\lambda, \boldsymbol{\mu}} \{ \boldsymbol{v}_{i} (Y \rightarrow x. [j, i]) * \boldsymbol{v}_{j} (X \rightarrow \lambda.Y \boldsymbol{\mu} [k, j]) \}$

 By backtracking along the maximal predecessor states, the maximal probability parse will be recovered

 $X \rightarrow \lambda Y.\mu [k, i] = \operatorname{argmax}_{\lambda,\mu} \{ V_i (Y \rightarrow x. [j, i]) * V_j (X \rightarrow \lambda. Y\mu [k, j]) \}$

Earley-Stolcke Algorithm

function Earley-Parse (events, grammar) returns tables Enqueue ($\gamma \rightarrow .$ S [0, 0] in table [0]) // dummy state for starting table

for i=0 to length (events)

for each state in table [i] if Incomplete (state) and Next-Cat (state) != Event

Predict (state)

Scan (state)

else if Incomplete (state) and Next-Cat (state) = Event

Complete (state)

end // for

end // for return (table) end // function

Earley-Stolcke Algorithm (contd.)

function Generate-ParseTree (table) returns list //of successful parse trees

for all entries in table [1] having starting productions

trace back through ids in the parse list $\{\}$

add probability of each production included in parse list

divide the total probability with length of string 1 // likely probability

EnqueueList (tree [i]) // enqueue tree in list of successful parses

end // for return (list) end // function

Find the maximum likely probability parse tree from the list of successful parse trees

The events in the maximum likely parse tree are the most likely sequence of events

Sample Parse										
	Consider a sir	nple pars	e of string	gʻabc'giv	en the following grammar:					
	S →AB	[1.0]		в→вс	[0.5]					
	А→аА	[0.5]		B→b	[0.5]					
	A→a	[0.5]		C→c	[1.0]					
	table[0] S1: $\gamma \rightarrow .S$ S2: $S \rightarrow .AB$ S3: $A \rightarrow .aA$ S4: $A \rightarrow .a$	[k, i] [0,0] [0,0] [0,0] [0,0]	[γ , α] [1.0,1.0] [1.0,1.0] [1.0,0.5] [0.5,0.5]	8 8 8 8	Dummy start state Predictor Predictor Predictor					
	table[1] S5: A→a. S6: S→A.B S7: B→.BC S8: B→.b	[0,1] [0,1] [1,1] [1,1]	[0.5,0.5] [0.5,0.5] [0.0,0.5] [0.0,0.5]	{} {\$5} {} {}	Scanner Completer Predictor Predictor					

Sample Parse (contd.)							
table[2]							
S9: B → b.	[1,2]	[0.5,0.5]	8	Scanner			
S10: B → B . C	[1,2]	[0.5,0.5]	{S9}	Completer			
S11: S → AB .	[0,2]	[0.75,0.75]	{S9,S10}	Completer			
S12: C →. c table[3]	[1,2]	[0.0,0.5]	8	Predictor			
S13: C → c.	[2,3]	[0.5,0.67]	8	Scanner			
S14: B → BC.	[1,3]	[0.75,0.67]	{S9,S13}	Completer			
S15: S → AB .	[0,3]	[0.67,0.67]	{S5,S14}	Completer			

Parsing Separable Activities

- Activities with separable groups are independent interactive relationships between two or more agents
- In case of Blackjack, each player dealer pair is a separable group
- Development of SCFG that describe non-separable interactions

SCFG for Blackjack										
		Production R	iles	Description						
	S A B C D E F G H I J K L M	$\begin{array}{c} \textbf{Production R} \\ \rightarrow & \textit{AB} \\ \rightarrow & \textit{CD} \\ \rightarrow & \textit{EF} \\ \rightarrow & \textit{HI} \\ \rightarrow & \textit{GK} \\ \rightarrow & \textit{HI} \\ \rightarrow & \textit{HI} \\ \rightarrow & \textit{LM} \\ \rightarrow & \textit{ON} \\ \rightarrow & \textit{HI} \\ \rightarrow & \textit{FI} \\ \rightarrow & \textit{FI} \\ \rightarrow & \textit{eE} \\ \rightarrow & \textit{FI} \\ \rightarrow & \textit{eK} \\ \rightarrow & \textit{eK} \\ \rightarrow & \textit{od} \\ \rightarrow & \textit{od} \\ \end{pmatrix}$	[1.0] [1.0] [1.0] [1.0] [1.0] [0.5] [0.6] [0.6] [0.6] [0.6] [1.0]	Description Blackjack → "play play game → "setu determine winner- setup game → "pla implement strategy eval. strategy → " clearup → "sette dearup → "sette dearup → "sette place bets deal card pairs Basic strategy house hits Dealer downcard Player downcard	<pre>/ game" "deta p game" "im > "eval. strate ice bets" "deu (-> "player st dealer down-ce dealer down-ce bet" "recover over card" "9 "Hasic Strateg > "Doublin Symbol ab c d e f g k i i</pre>	rmine winner" plement strategy" egy" "cleanup" il card pairs" rategy" ard "dealer hits" "player down-card" ard" "player down-card" card" etile bet" y" g Down" Domsin-Specific Events (Termin 1s) dealer removed card from house dealer removed card from player player removed card from player player removed card from player dealer removed card from player player added card to house dealer dealt card to player player added card to player player added card to player player added card to player dealer removed chip				
	л О	$ \begin{array}{c} \rightarrow k \\ \rightarrow j \\ \rightarrow i \\ i \\ \gamma \\ \rightarrow i \\ i \\ \gamma \\ \gamma \\ a \\ a \\ a \\ b \\ a \\ b \\ b \\ a \\ b \\ b$	[0.16] [0.16] [0.16] [0.18] [0.18] [0.25] [0.25] [0.25] [0.25]	settle bet recover card	j k l	player removed chip dealer pays player chip player bets chip				

Primitive Events

- Terminal symbols are based on primitive events
- A separate symbolic string is maintained for each person p_m
- A relation between an event and person is based on:
 - Person in contact with an article
 - The owner of the article
- First measure is determined by overlap between image regions of the hands and objects
- Second measure is based on the proximity zone z_m (manually)
- Tags are attached during scanning when the next state is added: $X \rightarrow \lambda a.\mu [\alpha, \gamma, p_i, o(z_m)] [k,i+1]$, where $o(z_m)$ returns ID p_i based on zone

Player Behavior (Skill)

- A subset of production rules can be used to assess behavior
- Production rule G suggests player strategy and skill
 - Let P_c be the subset denoting productions of G
 - Let b_{ς} be production likelihood of P_{ς}
 - Initially b_c is set to be uniform i.e. $b_c = b_x = (\beta_1, \beta_1, \dots, \beta_n)/n$
 - Likelihood of selected rules by an individual is denoted by \hat{b}_{c}
 - Mean Square Error (MSE) is given by:

$$err(b_{\varsigma} - \hat{b}_{\varsigma}) = \frac{1}{n} \sum_{i=1}^{n} (\beta_i - \hat{\beta}_i)^2$$

• The likelihood of behavior given the model is calculated by pair-wise distance measure of MSE by:

$$P(\hat{b}_{\varsigma} \mid b_{\varsigma}) = 1 - \sqrt{err(b_{\varsigma} - \hat{b}_{\varsigma})}$$

Error Detection & Recovery

- Errors in input can generate ungrammatical strings, causing parsing algorithm to fail
- Three types of error detection and recovery are provided:
 - *Substitution error* occurs when wrong terminal string is generated, as actual event is not detected to be most likely
 - *Insertion error* occurs when spurious terminal string is generated, as an event is incorrectly detected (false positive)
 - Deletion error occurs when an event is not detected
- Parsing errors occur in scanning stage when input symbol does not match terminals from prediction stage
- Prediction stage is modified to expand all productions Y until next terminal is predicted (matched at scanning), i.e.

 $X \rightarrow \lambda.\mu \ [\alpha,\gamma] \ [k,i] => Y \rightarrow.\nu \ [\alpha',\gamma'] \ [i,i] => Y \rightarrow.a\xi \ [\alpha',\gamma'] \ [i,i]$

Insertion Error

- Simply ignore the scanned terminal
- Return the state of the parser to previous point prior to scanning
- Same pending expansions of prediction are maintained

Substitution Error

- Promote each pending prediction as if it was actually scanned
- New hypothetical terminal is created resulting in multiple paths
- Hypothetical path is terminated if failure occurs at next step
- Actual likelihood of the event (terminal $P_D(a)$) is recovered by,
 - $\boldsymbol{\alpha}^{\scriptscriptstyle `} = \boldsymbol{\alpha}(\boldsymbol{\mathrm{Y}} \boldsymbol{\rightarrow}.\boldsymbol{\mathrm{a}}\boldsymbol{\xi} \; [\boldsymbol{\alpha}^{\scriptscriptstyle `}, \, \boldsymbol{\gamma}^{\scriptscriptstyle `}] \; [\mathrm{i}, \, \mathrm{i}])^* \mathrm{P}_{\mathrm{D}}(\mathrm{a})$
 - $\boldsymbol{\gamma}^{\scriptscriptstyle \wedge} = \boldsymbol{\gamma}(\boldsymbol{\mathrm{Y}} \boldsymbol{\rightarrow}.\boldsymbol{\mathrm{a}}\boldsymbol{\xi} \; [\boldsymbol{\alpha}^{\scriptscriptstyle \wedge}, \, \boldsymbol{\gamma}^{\scriptscriptstyle \wedge}] \; [\mathrm{i}, \, \mathrm{i}])^* \boldsymbol{\mathrm{P}}_{\mathrm{D}}(\mathrm{a})$

Deletion Error

- Promote each pending prediction as if it was actually scanned
- New hypothetical terminal is created resulting in multiple paths
- Proceed to the completion stage and modify probabilities at scanning by,
 - $\boldsymbol{\alpha}^{\,\,} = \boldsymbol{\alpha}(\mathbf{Y} \rightarrow .a \boldsymbol{\xi} [\boldsymbol{\alpha}^{\,\,}, \boldsymbol{\gamma}^{\,\,}] [\mathbf{i}, \mathbf{i}])^{*} \widetilde{P}_{D}(a)$
 - $\mathbf{\gamma}^{`} = \mathbf{\gamma}(\mathbf{Y} \rightarrow .a \boldsymbol{\xi} [\boldsymbol{\alpha}^{`}, \boldsymbol{\gamma}^{`}] [\mathbf{i}, \mathbf{i}])^{*} \widetilde{P}_{D}(a)$
- · At the next prediction stage there is no detection of likelihood for recovery
- At second scanning stage, the probabilities are recovered from original scan likelihood by,

 $\boldsymbol{\alpha}^{`} = \boldsymbol{\alpha}(\mathbf{Y} \boldsymbol{\rightarrow} .a\boldsymbol{\xi} [\boldsymbol{\alpha}^{`}, \boldsymbol{\gamma}^{`}] [i+1, i+1])^{*} \mathbf{P}_{\mathrm{D}}(\mathbf{b})$

$$\boldsymbol{\gamma} = \boldsymbol{\gamma}(\mathbf{Y} \rightarrow .a \boldsymbol{\xi} [\boldsymbol{\alpha}, \boldsymbol{\gamma}] [i+1, i+1]) * \mathbf{P}_{\mathrm{D}}(\mathbf{b})$$

- This method guarantees syntactically legal but no warranty on semantics
- The erroneous symbol is attached to the appropriate person
- This associates an illegal action to the person via bad syntax substrings

Error Detection & Recovery example (contd.)

- Error detection and recovery occurs by:
 - Maintaining every recovery path for multiple tracks
 - Tolerating only two consecutive failures
- Optimizations can be applied to the above method:
 - More consecutive failures can be tolerated by applying penalty to P_D(a)

$$\hat{P}_D(a) = e^{\frac{\alpha}{\rho}} \widetilde{P}_D(a)$$

where, n=number of consecutive failures, ρ is empirically derived constant

- Pruning recovered paths with low probability
- · Hybrid error scenarios by taking all three scenarios into account at each bad input

Experimental Results

- Experiment I: Event Detection Accuracy
 - Overall detection rate of events is 96.2% with 0.4% insertion, 0.1% substitution, 3.4% deletion errors
 - Player cheating can be detected by looking at 'c' and 'g' events

Vision system tracking the game.

	Domain-		Err	Error Rate (%)		
S	Specific Events	Rate	Ins	Sub	Del	
а	dlr removed house card	100.0	0.0	0.0	0.0	
b	dlr removed plyr card	100.0	0.0	0.0	0.0	
с	plyr removed house card [†]	100.0	0.0	0.0	0.0	
đ	plyr removed plyr card	100.0	0.0	0.0	0.0	
е	dlr add card to house	94.6	0.0	0.0	5.4	
f	dlr dealt card to plyr	92.2	0.0	0.0	7.8	
g	plyr add card to house [†]	100.0	0.0	0.0	0.0	
h	plyr add card to plyr	89.3	3.6	0.0	7.1	
- i -	dlr removed chip	93.7	0.0	0.0	6.3	
j	plyr removed chip	96.9	0.0	0.0	3.1	
k	dlr pays plyr chip	96.9	0.0	0.0	3.1	
-l	plyr bet chip	90.5	1.1	1.1	7.4	

Experimental Results (contd.)

- Experiment II: Error Detection & Recovery
 - 100% accuracy with no insertion, substitution and deletion errors
 - Error recovery disabled:
 - Corpus A had 42.9% entire parses with 70.1% events detected
 - Error rates were insertion 5.8%, substitution 14.5% and deletion 9.6%
 - Error recovery enabled:
 - Corpus A had 85.7% entire parses with 93.8% events detected
 - Error rates reduced by insertion 70.5%, substitution 87.3% and deletion 71.9%

	Detect %		Detect % Ins Err		Sub	Sub Err		Err	
S	on	off	on	off	on	off	on	off	
a	98.8	92.5	0.0	0.0	0.0	0.0	1.2	7.5	
ь	97.8	90.8	0.0	0.0	0.0	0.0	2.2	9.2	
с	100.0	80.0	0.0	0.0	0.0	20.0	0.0	0.0	
d	100.0	91.7	0.0	0.0	0.0	0.0	0.0	8.3	
е	94.0	74.9	1.2	5.0	1.2	7.5	3.6	12.5	
f	95.6	70.3	0.0	2.3	0.0	9.2	4.4	18.3	
g	100.0	50.0	0.0	0.0	0.0	50.0	0.0	0.0	
h	80.0	41.7	4.0	8.3	8.0	33.3	8.0	16.7	
i	92.9	88.9	0.0	0.0	0.0	0.0	7.1	11.1	
i	96.5	92.7	0.0	0.0	0.0	0.0	3.5	7.3	
k	79.0	12.5	10.5	36.5	10.5	43.8	0.0	7.3	
1	90.6	55.8	4.7	17.2	2.4	9.8	2.4	17.2	

