
Computer Vision and Image Understanding 84, 5–24 (2001)
doi:10.1006/cviu.2001.0938, available online at http://www.idealibrary.com on

Experimental Evaluation of FLIR ATR
Approaches—A Comparative Study

B. Li1

Sharp Laboratories of America, 5750 NW Pacific Rim Boulevard, Camas, Washington 98607
E-mail: bli@sharplabs.com

R. Chellappa and Q. Zheng

Center for Automation Research, University of Maryland, College Park, Maryland 20742

and

S. Der, N. Nasrabadi, L. Chan, and L. Wang

Army Research Laboratory, Adelphi, Maryland 20783

Received June 13, 1999; accepted August 25, 2001

This paper presents an empirical evaluation of a number of recently developed
Automatic Target Recognition algorithms for Forward-Looking Infrared (FLIR) im-
agery using a large database of real FLIR images. The algorithms evaluated are based
on convolutional neural networks (CNN), principal component analysis (PCA), lin-
ear discriminant analysis (LDA), learning vector quantization (LVQ), modular neural
networks (MNN), and two model-based algorithms, using Hausdorff metric-based
matching and geometric hashing. The evaluation results show that among the neu-
ral approaches, the LVQ- and MNN-based algorithms perform the best; the classical
LDA and the PCA methods and our implementation of the geometric hashing method
ended up in the bottom three, with the CNN- and Hausdorff metric-based methods in
the middle. Analyses show that the less-than-desirable performance of the approaches
is mainly due to the lack of a good training set. c© 2001 Elsevier Science (USA)

Key Words: automatic target recognition; Performance Evaluation.

1. INTRODUCTION

Many Automatic Target Recognition (ATR) algorithms have been proposed for FLIR im-
agery. Over the years, several classes of algorithms using neural, statistical, and model-based

1 To whom correspondence should be addressed. Fax: (360)817-8436.
5

1077-3142/01 $35.00
c© 2001 Elsevier Science (USA)

All rights reserved.

6 LI ET AL.

approaches have been developed, and others continue to appear. The first two approaches
use “learning” in the sense that they extract useful information from a given database (usu-
ally called the training set) for recognition/classification on a test data set not seen before.
Information for recognition is implicitly extracted by the algorithm from the training data.
On the other hand, model-based approaches build the target templates from models of the
targets and then match them with target features from real images to fulfill the recognition
task.

Although many approaches have been reported in the literature, in most cases they have
been evaluated using only a small number of images. A direct comparison with a com-
mon database would therefore provide more insights for characterizing performance and
measuring progress. Generally speaking, there are two approaches for ATR algorithm per-
formance evaluation: theoretical and experimental methods. For FLIR ATR algorithms,
theoretical evaluation would be difficult because underlying models used for characterizing
target/clutter interactions are unrealistic, and good models for target/clutter signature pre-
diction assumes the availability of too much information. Therefore theoretical evaluation
results usually do not scale well to real image data, and commonly used techniques for es-
timating Bayesian error only provide loose bounds. Experimental evaluation, on the other
hand, needs a reasonably large data set in order to be meaningful. In this paper we present
an experimental evaluation of several prominent FLIR ATR algorithms.

The first algorithm we evaluated is the convolutional neural network (CNN). LeCun and
Bengio have shown that a highly structured multilayer perceptron can be used to solve opti-
cal character recognition problems [1]. This highly structured multilayer perceptron, widely
known as CNN, has also found application in face recognition and FLIR ATR. For exam-
ple, researchers have been using CNN for ATR using FLIR images. Principal component
analysis has been effectively used for face recognition [2]. PCA is potentially applicable
to FLIR ATR provided a region of interest has been detected in the input image. Linear
discriminant analysis is also a common tool for classification problems [3]. Two classifiers,
based on learning vector quantization (LVQ) and modular neural networks (MNN), have
been developed for FLIR ATR [4, 5]. The Hausdorff metric, developed for comparing two
point sets, has been used by Doria and Huttenlocher in a distance-based matching tech-
nique for FLIR ATR problems [6]. As a parallelizable model-based recognition technique,
geometric hashing, first introduced by Lamdan and Wolfson [7], has been applied to FLIR
target identification by Akerman et al. [8]. CNN, LVQ, and MNN are obviously learning al-
gorithms. PCA and LDA are also learning approaches since both the eigenspace structure in
PCA and the discriminant functions (or discriminant hypersurfaces) in LDA are completely
decided by the training data. Hausdorff metric and geometric hashing-based approaches are
typically model-based in that they operate by first constructing a model database and then
compare local features extracted from an image with the prestored target models. However,
if the model database is constructed from a real training set rather than from a computer-
aided design (CAD) model, then these two approaches could also be treated as learning
algorithms in the sense that the models are learned from the training set.

In this paper, these approaches are evaluated using a database of more than 17,000 images
(including the training and the testing sets) and their performances are compared. These
approaches are chosen because some of them have been reported to be successful for FLIR
ATR at least for small databases (for example, Hausdorff metric-based matching, geometric
hashing, and MNN), and others such as PCA have been widely applied to appearance-based
recognition (although not necessarily FLIR ATR). In our study, evaluation and comparisons

EXPERIMENTAL EVALUATION OF FLIR ATR APPROACHES 7

are characterized by the recognition rate, which is the primary metric for the ATR problem.
Not much attention is paid to the space–time complexity of the algorithms. The experiments
are based on our implementation of the algorithms reported in the literature.

It is worth pointing out that most ATR designs consist of two stages: target detection and
target recognition. In this paper, our discussion is restricted only to the recognition stage
since all images in the database are already the result of a detection stage. Our primary
motivation in writing this paper is to encourage large-scale experimental evaluation of
FLIR ATR algorithms.

The organization of the remainder of the paper is as follows. In Section 2, we give an
overview of the approaches under discussion. The database used in this study is briefly
described at the beginning of Section 3. After that, some implementation issues are dis-
cussed, and the experimental results are presented and compared, followed by analyses and
discussion. Finally, Section 4 summarizes the paper.

2. OVERVIEW OF THE APPROACHES

We begin with a brief discussion of the approaches. Although most of the important and
fundamental issues are addressed here, the interested reader should consult the original
papers or books for further details on specific approaches evaluated in this paper.

2.1. Convolutional Neural Network

If we treat an image as a high-dimensional vector of gray level values formed by con-
catenating its rows together, then theoretically, we could train a large enough multilayer
perceptron to perform any required mapping from this vector space to any other space [9],
including the mapping that accurately classifies the targets in the FLIR ATR application.
However, this problem is ill-posed in that there are many solutions that ideally fit the training
data but do not generalize well to test images. In addition, a simple multilayer perceptron
has little invariance to translation or local deformation of the images. CNNs are so designed
that they allow some degree of translation and local deformation and generalize well by
using three basic ideas: local receptive fields, weight sharing, and spatial subsampling.

An illustrative CNN structure is shown in Fig. 1. The network consists of an input
layer, several hidden layers, and an output layer. Each hidden layer has one or more planes
called feature maps. The input layer is of the same size as the input image, and each node
corresponds directly to a pixel in the input image. For the hidden layers, each plane consists
of nodes that receive input from a small neighborhood in the planes of the previous layer.

FIG. 1. A typical configuration for convolutional neural networks.

8 LI ET AL.

Weight sharing is achieved by assigning an identical set of synaptic weights to all the nodes
within each plane. Each plane is called a feature map since it has a fixed feature detector
(convolutional kernel) that is convolved with a local window that is scanned over the planes in
the previous layer. Multiple planes are usually used in each layer so that multiple features can
be detected. There are two types of hidden layers. One is convolutional as described above.
The other is a subsampling layer that does a weighted local averaging and subsampling
operation. The network is trained with the classical back-propagation algorithm. By using
CNN, we avoid explicit feature extraction, and it is up to the neural network to figure out
what are the useful features for classification. This is appealing especially in situations
where we do not know what could be the right features.

2.2. Principal Component Analysis

A common statistical tool for analyzing the interrelations between variables is PCA,
also known as the Karhunen–Loeve expansion. PCA’s utility to image analysis is in part
due to the correlation between nearby pixels in a real-world image. The idea of PCA is to
compress most of the information about the data into a limited number of eigenvalues and
eigenvectors. High-dimensional data are projected onto a smaller number of dimensions
chosen so as to maximize the variances along the new axes which are mutually orthogonal.
Given data with a 2-D probability distribution in the shape of an ellipse, PCA returns the
two axes of the ellipse. The first principal component, corresponding to the longer axis, is
the linear descriptor, which gives the most information about the data.

In a recognition problem, eigenspace approaches, first construct, by using PCA, a small
set of basis images from the training set, and classification is actually done in the subspace
spanned by the set of basis images. To perform PCA on training images, for each n × m
image, an nm-D vector is formed by concatenating its rows together. By treating the vectors
so obtained as random variable samples, and performing PCA on the vector space, we can
get a set of orthogonal basis vectors, which are the eigenvectors of the sample covariance
matrix R defined as

R = 1

N

N∑
i=1

(Xi − M)(Xi − M)T, (1)

where Xi is an image vector, N is the number of images, and M = 1
N

∑N
i=1 Ni is the

sample mean. To achieve data reduction, we keep only the first k eigenvectors, where
k � nm, corresponding to the k largest eigenvalues obtained in PCA. These k vectors form
the eigenspace for encoding, reconstruction, or recognition.

To be more specific, a simple example of how recognition operates follows: each image
in the training set is approximated by its projection on the subspace obtained above. All the
projections of the training images are properly labeled, in the k-dimensional space, according
to their classes. A new image of unknown class is first projected onto the eigenspace, and
then its projection is compared with those of training images. The class of the closest training
image is assigned to the class of the the new image.

2.3. Linear Discriminant Analysis

PCA is effective in capturing the most information about a given data set, and hence is use-
ful for data reduction and reconstruction, but it is not necessarily suitable for discriminating

EXPERIMENTAL EVALUATION OF FLIR ATR APPROACHES 9

among classes. The reason is obvious: PCA describes the major variations of the data (all
classes are considered together), but these variations may well be irrelevant to how the
classes are separated from each other. On the other hand, LDA [3] projects the data onto
a new (sub-)space where the between-class scatter is maximized and the within-class scat-
ter is minimized. This ensures the optimality criteria is based on separability. Let Proj be
a projection matrix that projects a vector X (high-dimensional, like that formed from an
image) into a subspace: Y = ProjT X . X is a sample vector from the data set of Nc classes
with class labels Ci , i = 1, 2, . . . , Nc. The within-class scatter matrix is defined as

Sw =
Nc∑

i=1

Prob(Ci)E[(X − Mi)(X − Mi)
T | C = Ci], (2)

where Mi is the mean for class Ci , E[·|·] denotes conditional expectation, and Prob(Ci) is
the probability of i th class. Let M denote the grand mean vector of all samples from all
classes, then the between-class scatter matrix is defined as

Sb =
Nc∑

i=1

Prob(Ci)(Mi − M)(Mi − M)T. (3)

In LDA, the projection matrix Proj is chosen to maximize the ratio det(Sb)/det(Sw), i.e., to
maximize the between-class scatter while minimizing the within-class scatter. It has been
shown that the ratio is maximized when the columns of Proj are the eigenvectors of S−1

w Sb

associated with the largest eigenvalues. In practice, the mean, expectation, and probability
are estimated from the samples.

2.4. Learning Vector Quantization

LVQ is one of the popular methods for globally modifying decision boundaries. A basic
version of LVQ is as follows [10]. Assume that a number of codebook vectors mi are placed
into the input space to approximate various domains of the input vector x by their quantized
values. Let x(t) be a sample of the input and let mi (t) represent sequences of the mi . The
basic LVQ modifies the mi (t) according to the equation{

mc(t + 1) = mc(t) + η(t)[x(t) − mc(t)] if x and mc belong to the same class

mc(t + 1) = mc(t) − η(t)[x(t) − mc(t)] if x and mc belong to different classes,
(4)

where mc(t) denotes the codebook vector matched to the input vector x(t). No other code-
book vectors are updated. Also, 0 < η(t) < 1, and η(t) may be constant or decrease mono-
tonically with time. Many variants of LVQ have been proposed and applied for classification
purposes [10, 11]. After the learning process is completed, the codebook vectors are used
to define the class borders in the input space according to the nearest-neighbor rule.

2.5. Modular Neural Network

The modular neural network classifier employs a hierarchical neural network architecture,
which contains several groups of modular neural networks [12], with each group consisting
of a committee of neural networks [13]. Each group is trained for a particular subset of data
vectors, for example, a particular region of an input image. A gating network is trained to

10 LI ET AL.

select or combine the outputs of each group of networks in order to form the final output.
Partitioning (or decomposition) the data set into subsets depends on the application.

A committee of networks offers several advantages over a single neural net. First, it is
robust to partial target occlusion if the input image is decomposed into subregions. Each
neural network in the committee, receiving input information from only one of the local
receptive fields on a target image, is trained independently. The occlusion of some portion
of a target has no effect on the decisions of the other neural networks at the classification
stage. Secondly, by dividing the input vector into subvectors, we allow each neural network
classifier to have fewer inputs and hence less complexity. This allows better generalization
with a smaller training set, and also reduces training time. Finally, stacked generalization
[14] can be used to further improve the performance of the classifer by combining the
outputs of each neural network in a nonlinear manner.

2.6. Hausdorff Metric-Based Matching for Recognition

The Hausdorff distance is a mathematical tool used to compare two sets of points in terms
of their least similar members. The distance is defined as the maximum of the minimum
distances from all members of point set A to point set B. Formally, given two finite point
sets A = {a1, a2, . . . , ap} and B = {b1, b2, . . . , bq}, the Hausdorff distance is defined as

H (A, B) = max{h(A, B), h(B, A)}, (5)

where

h(A, B) = sup
a∈A

inf
b∈B

‖a − b‖ (6)

and ‖ · ‖ is an underlying norm between two points. The function h(A, B) is called the
directed Hausdorff distance from A to B. Sometimes h(A, B) is also referred to as Hausdorff
distance for short. In effect, h(A, B) ranks each point of A based on its distance to the nearest
point of B; the largest ranked such point (the most mismatched point of A) specifies the value
of the distance. Intuitively, if h(A, B) = d, then each point of A must be within distance d
from the nearest point of B (the most mismatched point). Hence Hausdorff distance provides
a measure of match between two point sets. Note that this distance measure differs from
binary correlation and correspondence-based techniques such as point matching methods,
in that there is no pairing of points in the two sets being compared.

A simple way to use the Hausdorff measure for recognition is as follows. First, a set of
target models is formed by extracting and storing the intensity edges of corresponding target
images. When an unknown target chip2 is presented, its edge map is first extracted, then
matched against the model set. The model with the highest matching score (i.e., smallest
Hausdorff distance) will decide the class of the target chip. However, some implementation
issues need to be taken into consideration, as discussed in detail in Section 3.

2.7. Geometric Hashing-Based Approach

First introduced by Lamdan and Wolfson [7, 15], the geometric hashing paradigm presents
a unified approach to the representation and the matching problems, with applications to

2 A target chip is a small image representing the region of interest. For the database used in this paper, a target
chip contains a centered target. The Hausdorff measure can also be used to locate a target region in a large image
as in [6].

EXPERIMENTAL EVALUATION OF FLIR ATR APPROACHES 11

object recognition under various geometric transformations. To illustrate the basic idea, let
us consider a 2-D rigid object, represented by a set of geometric feature points, under affine
transformation. Any triplet (e0, e1, e2) of noncollinear points forms an affine basis, and
under this affine basis, any point P in the plane can be represented by a pair of scalars
(α, β), such that

P = α(e1 − e0) + β(e2 − e0) + e0. (7)

We call the pair (α, β) the new coordinates of P under the given affine basis. The good
thing here is that the new coordinates are invariant under an affine transformation, which
is critical to recognition. In practice, to remove the dependence of the representation on a
specific affine basis, we can represent the object points by their coordinates in all possible
affine basis triplets, resulting in the following algorithm for building the model base [15].

For each model object:

(a) Extract the feature points.
(b) For each ordered noncollinear triplet, compute the coordinates of all other points

under this affine basis. Use each such coordinate as an index to a hash-table, and record the
pair (model, basis) at the corresponding location in the table.

The matching or recognition step is essentially a voting procedure: every recorded (model,
basis) pair will receive a vote if the object finds an entry into that location in the hash table,
and the pair winning the maximum number of votes is taken as a candidate; finally, additional
verification/rejection is done on the candidate. Details can be found in [15].

One thing common to the geometric hashing approach and the Hausdorff metric-based
approach is that they need to store a model database before recognition can proceed. The
model database can be constructed in two ways: from a CAD model or from a real image set.
One disadvantage of constructing the model base from a CAD model is that it is difficult to
include all the variations of the FLIR image. In this paper, we construct the model database
from the real image set, and then apply it to recognition. The shortcoming of this approach
is discussed in Section 3.

3. EXPERIMENTAL RESULTS AND DISCUSSION

We have examined the performance of the aforementioned approaches on a large real
database, with our implementation. Before discussing the implementation techniques and
experimental results, it is useful to describe the database used.

3.1. Database

The intensity image data consists of a training set and a test set. The training set has 13,862
image chips while there are 3,460 images in the test set. The training data were collected
under very favorable conditions at different ranges. Then the images were normalized to
a fixed range with the target put approximately in the center. The images are of size 40 ×
75 pixels. In the training set there are 10 classes (object types) (denoted as TG1, TG2, . . . ,
and TG10, respectively), each with approximately 1,300 images. The objects are shown
in Fig. 2. For each object type, there are 72 orientations, corresponding to aspect angles
of 0◦, 5◦, . . . , 355◦ in azimuth. The test set, which contains five different objects (TG1,
TG2, TG3, TG4, and TG7), is more challenging in that the images were taken under less

12 LI ET AL.

FIG. 2. Side view of all the 10 targets in the training set, denoted TG1, . . . , TG10, from left to right and top
to bottom, respectively. TG1, TG2, TG3, TG4, and TG7 are those contained in the test set.

favorable conditions. The test set was similarly normalized, but the orientation was given
very coarsely (every 45◦). No other information about the database is available, such as
operation history and environment temperature. The division of a benign training set and
a more challenging test set is an attempt to simulate real applications, where a new image
may have a signature pattern that is never seen in a training set. In addition to the intensity
data, for every orientation of each target type, there is a binary silhouette image that was
extracted from a CAD model, providing the contours of the objects at corresponding aspect
angles. Figure 3 shows a TG4 at aspect angles of 0◦, 45◦, 90◦, and 135◦, respectively, and
corresponding silhouettes.

3.2. Implementation Issues and Experiments

CNN approach. CNN has a highly structured configuration. Conventionally, the size of
the receptive field is fixed within the same layer. Considering the fact that each feature map
is in effect the result of a feature detector, we designed the CNN in such a way that the size
of the receptive field can be specified for individual planes (even if they are in the same
layer); thus we can choose, for example, 3 × 3, or 5 × 5 kernels. Furthermore, the kernels
do not have to be squares; for example, they can be 3 × 5. This technique was motivated
by the consideration that since the kernels act as feature detectors, kernels of different sizes
should be used to detect features at different scales and orientations. In addition, the number
of layers can be specified by the user, which adds flexibility to the network. Figure 4 shows
one of the simulation results for a six-layered CNN and a four-layered CNN. The result
using a six-layered CNN was provided by the U.S. Army Research Laboratory. The simpler
four-layered CNN, designed at the University of Maryland, uses different kernel sizes as
described above. Although the four-layered CNN has a slightly degraded performance on
the test set, it needs much less time to train.

FIG. 3. Sample images of TG4 in the database and its corresponding silhouettes at aspect angles of 0◦, 45◦,
90◦, and 135◦, respectively.

EXPERIMENTAL EVALUATION OF FLIR ATR APPROACHES 13

FIG. 4. Learning curves and recognition rates for a six-layered CNN (left) and a four-layered CNN (right),
respectively (plotted every three epochs).

PCA-based approach. In the implementation of PCA, we first form the union of the
silhouettes of all targets at different orientations, and then use this union to mask out
background that is not desired in the PCA approach. Still, some background will be included
especially for those pose at which the target appears smaller (e.g., the front view). The
eigenspace was constructed by using subsampled training images (hence, the dimensionality
of each image vector is around 600). To choose k, the dimensionality of the eigenspace,
the residual mean-square error, or equivalently the sum of the k largest eigenvalues is used.
In the experiments, different k values were tested. It was found that after k went beyond
40, there was no longer notable improvement on the recognition rate, and there was only a
small difference when k varied between 20 and 40, which suggests that k ≤ 20 would be
sufficient for this database. After the eigenspace has been constructed from the training data,
a codebook is formed by projecting all the training images onto the eigenspace. To classify
a test image chip, we first project it onto the eigenspace and then find its closest match from
the codebook (note that when testing with the training data, we need to discard the best
choice and examine only the second best choice; otherwise we will get a meaningless 100%
recognition rate). To improve the robustness of the recognition, instead of considering the
best choice only (or the second best choice when using the training data to do the test), we
find the top 3 (or 5, etc.) best choices and let them vote for the final recognition.

LDA-based approach. LDA operates in a similar fashion to PCA except that the projec-
tion matrix is formed differently. Of course, here we do not have the problem of choosing
k since k is equal to or less than the number of classes. Similar test techniques used in PCA
are adopted here.

LVQ-based approach. The LVQ-based scheme adopted in this paper is shown in Fig. 5,
which was proposed by Chan et al. [4]. The algorithm creates templates from the training
images and uses mean square error template matching to perform the recognition. The
algorithm is designed by separating the training images into target-aspect groups. Each
target-aspect group contains only one target type within a restricted range of viewing angles.
The training images are then decomposed into wavelet subbands, and each wavelet subband
of each target-aspect group is clustered using the well-known k-means algorithm [16] in
order to create a set of target templates (code vectors). The LVQ algorithm is then applied
to the templates to enhance discriminatory ability. Testing is performed by calculating the

14 LI ET AL.

FIG. 5. The Learning Vector Quantization-based scheme evaluated in this paper.

mean square error between an input image and every code vector. The classifier achieves
99.72% accuracy on the training set and 75.12% on the testing set. The high training set
performance is not surprising because VQ is a universal classifier in that it can classify
targets arbitrarily well given a sufficiently large number of code vectors and an adequate
training set, at the cost of high computational complexity. Figure 6 shows training and

FIG. 6. The performance curve of the LVQ-based classifier as shown in Fig. 5.

EXPERIMENTAL EVALUATION OF FLIR ATR APPROACHES 15

TABLE 1

Heuristic Comparison of LVQ and MNN-Based Classifiers

Approach LVQ-based MNN-based

Training Clustering Discriminant function
Classification Template matching Posteriori probability
Implementation VQ, LVQ Neural network (MLP)
Feature type Wavelet Directional variance
Feature decomposition Wavelet subbands Local receptive field
Parameterized Aspect window by target Silhouette category
CPU time to test testing set 1936.0 s 197.0 s
Training set 99.72% 95.49%
Testing set 75.12% 75.58%

testing set performance as a function of the number of code vectors in the codebooks. The
algorithm is described fully in [4]. The computational complexity is shown in Table 1 and is
measured by the CPU time for running 3,460 target images on the testing set using a SUN
Ultra 1.

MNN-based approach. Figure 7 shows the structure of an MNN-based scheme intro-
duced by Wang et al. [5], where the partitioning of the input is realized by splitting the
image into six disjoint regions (this is called feature decomposition by the authors). A
subsampled version of the input image is also added as the input signal to the network,
and it is also partitioned, as shown in the figure. With similar network structure, we also
used another partitioning scheme called data decomposition where the partitioning of the
data set into subsets is based on the similarity of the target silhouettes. The silhouettes
are binary images formed from CAD models of the targets, and clustering is performed
using the k-means algorithm on the binary silhouettes. Although data partitioning is im-
portant to the MNN-based approach, there is no optimal algorithm for that purpose. So
the choice of partitioning was guided by intuition and confirmed by experiment. No doubt

FIG. 7. The Modular Neural Network-based scheme evaluated in this paper.

16 LI ET AL.

further experimentation could lead to a superior partition. In the committee of networks,
each member network receives distinct inputs, which are features extracted from one lo-
cal region of the target image (in this study, the features are directional variance in 5 × 5
image blocks), and features are extracted at different resolutions. That is, the input of a
member network in the committee of networks is a subvector (the input data vector is
partitioned). This reduces the dimensionality of the data, allowing each neural net to have
fewer weights. The technique requires that the targets be reasonably close to the center
of the input image because the networks are not shift-invariant. It was determined exper-
imentally that the centering error of the detection algorithm used in the acquisition of the
database was small enough that it did not cause significant error in the recognition re-
sults. The classification decisions of the individual members of a committee of networks
are combined using stacked generalization [14], which uses an additional neural network
whose input is the output of the low-level neural nets. The classifier achieves good per-
formance with much lower computational complexity than the LVQ-based scheme. The
probabilities of correct classification for the training and testing sets are 95.49 and 75.58%,
respectively. A heuristic comparison of the approaches of LVQ and MNN is given in
Table 1.

Hausdorff metric-based approach. The following two methods were used to build mod-
els from the training set. Method 1: for each target type, we first compute one mean image
for each orientation by averaging all the images with the same aspect angle, then extract
edge features on the mean image (the averaging process makes sense since the target chips
are all prealigned). Subsequently, the edge data are first masked by the corresponding sil-
houettes and then stored as one model for this target type. Therefore we have 72 models for
each target type. Method 2: for every image in the training set, we extract the edge features,
mask them with corresponding silhouette, then store the edge data as one model. Hence
for each target type, we have more than 1000 models. Experiments have shown that the
second method is more reliable, although this requires that we keep a large model base,
hence slowing down the matching process.

Besides the basic Hausdorff metric, some generalized versions were also implemented.
We recall from Eq. (1) that the largest distance is chosen, which makes Hausdorff distance
very sensitive to noise: a single noise point could drag the distance too far from that desired.
One alternative method is to choose the kth largest distance as the Hausdorff distance.
Theoretically, doing so will improve robustness. Experiments on the database show that
when k varies from 1 to 6, there is little change in the recognition rate, but when k goes
beyond 7, the result degrades quickly. Another method is to use a weighted sum of the top k
largest distances as the Hausdorff distance, which actually improves the result by about 1%.
Also, in addition to edge positions, edge orientations were also used for matching, which
improved the result by 3%, but made the matching more complex.

Canny’s algorithm [17] was used for edge detection. Naturally this brings up the problem
of how to choose good parameters for the edge detector, raising the question that the
comparison might not be between the recognition algorithms themselves but instead between
the edge detectors, which are only preprocessors to the recognition task. As long as feature
detection algorithms are used, we eventually must choose some parameters. To alleviate
the problem, we choose a set of proper parameters and the best recognition result is picked
(like that in Fig. 8) for comparison with results from other approaches. The same argument
is true for geometric hashing.

EXPERIMENTAL EVALUATION OF FLIR ATR APPROACHES 17

FIG. 8. Typical results obtained using different techniques. The gray bars are for the training set, and the
black ones for the test set. CNN4 and CNN6 stand for four- and six-layered CNNs, respectively. H–M and G–H
stand for Hausdorff metric-based and geometric hashing-based approaches, respectively.

Geometric hashing-based approach. To implement the geometric hashing approach,
first we need to represent an object by a collection of feature points, which are then matched
to similarly constructed models. Therefore the hash point model is essential to geometric
hashing-based recognition. In the implementation, the image chip containing the detected
potential target is processed to extract key point attributes. First edges are detected, and
then lines are extracted. This line representation of the target is then processed to extract
line endpoints, points of large curvature and line intersections. These extracted features, the
hash points, are the basis for the geometric hashing algorithms. Note that this is different
from the Hausdorff metric-based approach where whole edge pieces are used for matching.
One appealing property of geometric hashing is that it can be efficiently implemented with
parallel processing so that an unknown target chip can be simultaneously tested against tens
or even thousands of targets, as well as specific orientations of each target. In the geometric
hashing technique, feature points are obtained after line and point extraction. Usually, a
line detector is constructed on the top of edge detection. Again we have a dilemma: we
do not have a perfect line and point extractor, especially for FLIR imagery. Sensor fusion
techniques may be helpful, as reported by Akerman et al. [8]. Since geometric hashing uses
point features only, it requires feature points with good discrimination. For the database
used, there are too many target types, each with abundant orientations, making geometric
hashing less applicable. For example, it is possible that, when expressed in terms of point
features, one target at a certain orientation can be quite similar to another target. However,
one can expect that for fixed orientations (or with fewer target types), geometric hashing
will perform better. If we can somehow first reduce the hypotheses to a small number of
candidates, and then use the geometric hashing technique, we may achieve better results.

18 LI ET AL.

3.3. Summary of the Results

Figure 8 summarizes the results of the different approaches. As pointed out above, the
recognition rate for each approach is the best one chosen from the output of a set of exper-
iments with different parameters. For example, in the Hausdorff metric-based technique,
different sets of thresholds and scales were tested for the edge detector. As shown in the
figure, for the training set, most techniques perform well, but for the test set, none of them is
satisfactory. The best recognition rate for the test set (75.58%) was given by the MNN-based
approach. More analyses and discussion of the results are presented in the next subsection.

3.4. Analyses and Discussion

As presented in the previous section, although we have a very large database to learn
from, the best results are still under 80%, which is not desirable for a real application.
We now attempt to analyze the reasons of the less-than-desirable performance, mostly from
experimental point of view. The discussion will be based on the experiments presented above
and additional experiments designed in the following. For clarity of presentation, and to
avoid loss of focus, we will mostly focus on the experiments based on the CNN-based
approach (with four-layered CNNs). However, similar results were observed irrespective
of the approaches; hence the conclusions are typical of the database, and not only for any
specific approach.

Generalization of learning algorithm. CNN, PCA, LDA, LVQ, and MNN are learning
algorithms. Although the Hausdorff metric-based approach and the geometric hashing tech-
nique are based on model matching, in the experiments reported in this paper, the models
were constructed from the training data set; therefore they are also, in a sense, learning
algorithms. For any learning algorithm, a critical issue is to obtain a representative training
set. If the training set is underrepresentative, bad generalization is unavoidable. Of course,
even with a good training set, problems could arise from the algorithms themselves. Fol-
lowing experiments will show, however, for this database, the training set and test set are
mutually underrepresentative with respect to each other. In the first experiment, we train
a four-layered CNN with the test set, and then test with the training set (with only those
targets available in the test set). Figure 9 shows the learning curves of the experiment. Note
that although the algorithm seems to be doing better (with 76.8% for testing compared with
59.25% in Fig. 8), the problem is now simplified—the algorithm is handling practically
only five classes. Thus one cannot say that the test set is good (representative) with respect
to the training set. When we only use five classes in the training set to train the network and
test on the test set, we get similar results for the test set.

In the second experiments, we trained a CNN with 10,000 images from the training set
and tested it with the remaining 3,862 images, which gave a recognition rate of more than
80%. This is indeed a big jump from 59.25%.

Similar experiments such as training and testing with disjoint subsets of the test set confirm
the above claim about the mutual representativeness of the data sets. This observation is not
surprising considering the different image acquisition conditions mentioned in Section 3.1.

It is unquestionable that a highly representative training set is essential for any learning
algorithm. However, for FLIR imagery, it is expensive to gather such a training set by
taking images of real targets in real scenes. For example, one must consider the variations
due to ambient temperature, vehicle operation history, background, range, etc. One solution

EXPERIMENTAL EVALUATION OF FLIR ATR APPROACHES 19

FIG. 9. The learning curves of a CNN, when trained with the test set, and tested with the training set (only
with those five target types available in the test set).

could be what some researchers are doing now: simulation of infrared scenes [18, 19], but
trying to address all possible variations in infrared imagery (in fact, in any imagery) by
simulation is an extremely difficult task. Other alternatives include using video data. Video
may provide more information through multiframe integration and, if the target is moving,
through motion analysis, which is beyond the scope of this discussion.

The problem of pose. In the database, each target has abundant poses even though the
orientation only changes horizontally. For most targets, since their length is usually larger
than their width, the targets will have much more pixels in a side view than in a head view (or
a tail view). It was conjectured that maybe some views suffer from misclassification worse
than that of others. Our experiments do not give a strong indication about this, however.
In Fig. 10, we plot the distribution of the number of misclassified targets with respect to
pose angle for each target type. In this figure, the horizontal axis is pose angle (recall from
Section 3.1, the test set only has coarsely labeled orientations), and the vertical axis is the
number of misclassified target chips. The results are again from a four-layered CNN. From
these plots, it is difficult to draw any universal conclusion about the relationship of pose
and misclassification rate.

To take the pose problem one step further, we also designed a hierarchical pose estimator,
which is intended to show if we can reliably estimate the pose of a target from the test set,
given that we know the pose for each target in the training set. Pose information could be
utilized in methods such as PCA and LDA to exclude background. Also, if we know the
possible orientation of a target, we can validate the target type by using some features unique
to the target in that orientation. A hierarchical system that combines CNN and PCA or LDA
together to do pose estimation was constructed. A block diagram of the approach is shown
in Fig. 11. This approach takes the top k outputs of the CNN as possible candidates, then
uses PCA or LDA to get an estimated pose for each candidate. Two methods of estimating
the pose have been studied:

Method 1. For each target type, use the corresponding training data to construct a single
eigenspace. Pose estimation is then carried out in that eigenspace.

Method 2. For each target type, divide all the training images into eight groups according
to their orientation (for example, those with aspect angle falling between −22.5◦ and 22.5◦

20 LI ET AL.

FIG. 10. The distribution of the number of incorrectly classified targets with respect to the target poses. The
horizontal axis is pose angle (0◦, 45◦, . . . , 315◦; see description of the database), and the vertical axis is the number
of targets that are misclassified. Each figure is for one target type, as labeled.

FIG. 11. A hierarchical pose estimator.

EXPERIMENTAL EVALUATION OF FLIR ATR APPROACHES 21

are classified as group 1, between 22.5◦ and 67.5◦ as group 2, and so on), then use the LDA
method to do pose estimation.

Since we have a hypothesis as to the target type, we can use the corresponding silhouette
to mask the image chip so that the background is excluded before applying PCA or LDA.
Specifically, in method 1, we use the union of the silhouettes of all orientations of a certain
target type to mask the image chip (in practice, the union is expanded a little before masking
to allow a certain degree of translation of the target). In method 2, the union is taken only
among those orientations in the same group, thus maximally excluding the background.
Also, in practice, when forming the groups, a small overlap should be used to avoid sharp
jumps between groups. Another slightly different method is, for each target type, to do
the same division as in method 2, and then construct one eigenspace for each of the eight
groups. This, however, would need comparison of distances in eight eigenspaces to give a
final pose estimate.

This approach works very well for the training set (as before, when testing with a training
image by PCA or LDA, the best response should be always discarded): when a bias of up to
10◦ is allowed, it gives correct pose estimates for over 90% of the input images. However,
for the test set, the pose estimator gives a rate of correctness of around 80% even if a 45◦

bias is allowed. This result appears to support the conclusion that pose alone is not the
reason for the less-than-desirable performance of the algorithms. Otherwise, after we have
treated targets at different orientations separately (as in Method 2 above), we should have
obtained good pose estimation results.

Is the number of classes an issue? All the experiments presented so far have used all
the targets at the same time in training. Is it because we mix so many targets (5 classes for
the experiment of Fig. 9, and 10 classes for all the rest) together? Can we do better if we
“decompose” the problem into two-class problems such as TG1 and non-TG1? To answer
this, we use the whole training set to train a CNN for this two-class problem. Note that due
to the imbalance in the numbers of TGx and non-TGx targets, we must randomly reuse TGx
targets such that the training will not be biased toward non-TGx targets. In this situation,
we can compute the recognition rate together with false alarms. Figure 12 shows typical
results, using “TG1 and non-TG1” as the example. It is obvious from the figure that, even
if the problem is reduced to a binary classification task, there is no significant change in the
test set performance.

FIG. 12. Two-class problem: TG1 and non-TG1. Left: learning curves. Right: false alarms.

22 LI ET AL.

Another issue related to the number of classes is how one class is misclassified as other
classes: is a target almost always misclassified as a particular target (or a particular set of
targets) whenever a misclassification happens? Recall from our previous experiments, in
many cases, we can choose the top k matches (or responses). We have found that with
the four-layered CNN, we can obtain around 70% recognition rate for the test set if the
top two responses are allowed (meaning that whenever the top two responses include the
right target then it will be treated as correct recognition), and the recognition rate goes to
85% if the top three choices are allowed. This seems to suggest that there is some special
pattern in misclassification. The so-called confusion matrix is a good reflection of this type
of information. Given Nc classes, the confusion matrix is of size Nc × Nc, whose diagonal
entries are the number of targets that are correctly classified, while the off-diagonal entries
are the number of misclassifications. The following is a typical confusion matrix obtained
with the four-layered CNN when the top two choices are allowed. The matrix is organized
in the order of TG1 · · · TG10. Since there are only five classes in the test set, five rows are
all zeros, but we have kept them for clarity. Although one can find that, for example, TG7
is rarely classified as TG8 (only one case), the matrix is rather scattered in off-diagonal
positions, meaning in general one target is likely misclassified as any other target:




624 52 9 9 17 26 4 18 21 19
36 483 34 19 22 46 8 13 14 23
22 43 458 26 44 16 43 2 41 74
20 9 14 453 9 7 10 12 20 23

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

21 16 34 32 24 16 383 1 34 56
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




.

The influence of background. Another important issue is the background. Even though
we have a target chip, it always contains some background. Feeding the background into an
algorithm may force the algorithm to figure out the differences between the backgrounds
instead of the differences between the targets, or at least partially so. This becomes worse
if we are using some approaches that totally depend on training without explicit feature
extraction, such as CNN. In fact, this may also be true with other approaches such as
PCA, which is indeed very sensitive to background. We have attempted to reduce the
influence of the background by using silhouettes in some of the experiments. However,
even if with accurate silhouettes alignment to help the exclusion of background, if the
algorithm requires a fix-sized input (as CNN or PCA does), we still must feed into the
algorithm some background region for those views where the target is smaller. To analyze
the effect of the background, simulation may be easily done with synthetic data, but it
is difficult for a real database. It remains to be future work to find an effective way for
evaluating the influence of the background.

As we have mentioned, although we used CNN in the above analyses, similar results were
observed when using other algorithms. All these experiments and analyses suggest that the
less-than-desirable performance of the algorithms on the test set is mainly due to the mutual
underrepresentativeness between the training and test sets, and cannot be easily attributed to

EXPERIMENTAL EVALUATION OF FLIR ATR APPROACHES 23

any other single source such as pose, the number of classes, and extreme similarity between
any pair of specific target types. In fact, even though the database is reasonably large, it
has not covered the variations in depression angle. Thus the conclusion about the mutual
representativeness is then not to complain about the database itself. Instead, it suggests that,
in general, it would be hard to expect these evaluated approaches to make a breakthrough
on FLIR ATR, since a universally “good” training set is not yet available.

4. SUMMARY AND CONCLUSION

Several recently developed FLIR ATR approaches have been evaluated based on their
performance on a common large database. We implemented several techniques including
CNN, PCA, LDA, LVQ, MNN, the Hausdorff metric-based matching technique, and a
geometric hashing method. Using a common database allows a comparison of performances
of conceptually different techniques as well as conceptually similar approaches. For the
database used, we found that neural network-based approaches (CNN, LVQ and MNN)
gave better results than the PCA, LDA and model-based approaches. Also they are easy to
use since explicit feature extraction is not required. Although not as good, the Hausdorff
metric-based method also performed well. The PCA-based, LDA-based, and geometric
hashing methods gave relatively low recognition rates for this database. We analyzed the
possible reasons for the less-than-desirable performance of all the algorithms.

It is interesting to note that a human being can correctly recognize targets in many cases
that baffle the approaches discussed above, even if he/she gets familiar with the targets only
through learning using the same training set. This suggests that some human capability not
yet understood is effective.

Note that this paper has focused on FLIR ATR from still imagery. There is a significant
amount of work on performance evaluation of ATR using other cues (for example, see
[20–21]). There are also efforts on fusing different cues, using multispectrum sensor, using
video, etc., that are not covered by our evaluation. However, as long as a still FLIR image is
the only cue, it seems that new and better approaches are still needed, which may probably
have to be radically different from current algorithms.

ACKNOWLEDGMENTS

Comments from the anonymous reviewers are greatly appreciated, as they have considerably improved the
presentation. The support of the Army Federated Laboratories/Lockheed Sanders under Contract DAAL-01-96-2-
0001 is gratefully acknowledged. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government.

REFERENCES

1. Y. LeCun and Y. Bengio, Convolutional networks for images, speech, and time series, in The Handbook of
Brain Theory and Neural Networks (M. Arbib, Ed.), pp. 255–258, MIT Press, Cambridge, MA, 1995.

2. A. Pentland, B. Moghaddam and T. Starner, View-based and modular eigenspaces for face recognition, in
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1994, pp. 84–91.

3. K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed., Academic Press, New York, 1990.

4. L. A. Chan, N. M. Nasrabadi, and V. Mirelli, Multi-stage target recognition using modular vector quantizers
and multilayer perceptrons, in Proc. Computer Vision Pattern Recognition, 1996, pp. 114–119.

24 LI ET AL.

5. L. C. Wang, S. Z. Der, and N. M. Nasrabadi, A committee of networks classifier with multi-resolution feature
extraction for automatic target recognition, in Proc. IEEE Int. Conf. Neural Networks, 1997, Vol. 3, 1596–1600.

6. D. Doria and D. Huttenlocher, Progress on the fast adaptive target detection program, RSTA Technical Reports
of the ARPA IU Program, 1996, pp. 589–594.

7. Y. Lamdan and H. Wolfson, Geometric hashing: A general and efficient model-based recognition scheme, in
Proc. 2nd Inter. Conf. Computer Vision, 1988, pp. 238–249.

8. A. Akerman, R. Patton, W. Delashmit, and R. Hummel, Target identification using geometric hashing and
FLIR/LADAR fusion, in RSTA Technical Reports of the ARPA IU Program, 1996, pp. 595–618.

9. K. Hornik, M. Stinchcombe, and H. White, Multi-layer feedforward networks are universal approximators,
Neural Networks 2, 1989, 359–366.

10. T. Kohonen, The self-organizing Map, Proc. IEEE 78, 1990, 1464–1480.

11. L. C. Wang, S. Der, and N. Nasrabadi, Composite classifiers for automatic target recognition, Opt. Eng. 37,
1998, 856–868.

12. R. Jacobs and M. Jordan, Learning piecewise control strategies in a modular neural networkarchitecture, IEEE
Trans. Systems Man Cybernet. 23, 1993, 337–345.

13. M. Perrone, General averaging results for convex optimization, in Proc. Connectionist Models Summer School,
1993, pp. 364–371.

14. D. H. Wolpert, Stacked generalization, Neural Networks 5, 1992, 241–259.

15. H. Wolfson, Model-based object recognition by geometric hashing, in Proc. European Conf. Computer Vision,
1990, pp. 526–536.

16. S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, New York, 1994.

17. J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell. 8, 1986,
679–698.

18. M. Cooper, A. Lanterman, S. Joshi, and M. Miller, Representing the variation of thermodynamic state via
principal components analysis, in Proc. 3rd Workshop Conventional Weapon ATR, 1996, pp. 479–490.

19. M. Cooper, U. Grenander, M. Miller, and A. Srivastava, Accommodating geometric and thermodynamic
variability for forward-looking infrared sensors, in Proc. SPIE, Algorithms for Synthetic Aperture Radar
(E. Zelnio, Ed.), Vol. 3070, pp. 162–172, 1997.

20. D. E. Dudgeon, ATR performance modeling and estimation, MIT Lincoln Labs Technical Report 1051,
Lexington, MA, 1998.

21. M. Phillips and S. R. Sims, Signal-to-clutter measure for ATR performance comparison, Proc. SPIE 3069,
1997, 74–81.

22. A. Mahalanobis, D. Carlson, B. Vijava Kumar, and S. R. Sims, Distance classifier correlation filter, Proc.
SPIE 2238, 1994, 2–13.

	1. INTRODUCTION
	2. OVERVIEW OF THE APPROACHES
	FIG. 1.

	3. EXPERIMENTAL RESULTS AND DISCUSSION
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	TABLE 1
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	4. SUMMARY AND CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

