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Model-Based Temporal Object Verification
Using Video

Baoxin Li, Rama Chellappa, Fellow, IEEE, Qinfen Zheng, and Sandor Z. Der

Abstract—An approach to model-based dynamic object verifi-
cation and identification using video is proposed. From image se-
quences containing the moving object, we compute its motion tra-
jectory. Then we estimate its three-dimensional (3-D) pose at each
time step. Pose estimation is formulated as a search problem, with
the search space constrained by the motion trajectory information
of the moving object and assumptions about the scene structure. A
generalized Hausdorff metric, which is more robust to noise and
allows a confidence interpretation, is suggested for the matching
procedure used for pose estimation as well as the identification and
verification problem. The pose evolution curves are used to assist
in the acceptance or rejection of an object hypothesis. The models
are acquired from real image sequences of the objects. Edge maps
are extracted and used for matching. Results are presented for both
infrared and optical sequences containing moving objects involved
in complex motions.

Index Terms—Hausdorff matching, moving object recognition,
object recognition, video processing.

I. INTRODUCTION

FOR many years, object recognition algorithms have been
based on a single image or a few images acquired from dif-

ferent aspects. While advances have been made in simple con-
strained situations such as indoor environments, object recog-
nition in natural scenes remains a challenging problem. Among
the many difficulties, a prominent one is that in real applica-
tions, theoretically there exist infinitely many poses (orienta-
tions) for a given object. Therefore, two-dimensional (2-D) ap-
proaches, which are largely based on 2-D matching under some
simplified transformation group, will not solve the three-dimen-
sional (3-D) object recognition problem. To overcome the need
for search in the viewpoint space, approaches based on geo-
metric invariants have been proposed (for example, see [16] and
[18]). Although the invariance approach is theoretically attrac-
tive, it would be difficult to apply it to complex objects in natural
scenes. Appearance-based recognition schemes (for example,
see [11]) try to tackle the viewpoint problem by using visual
learning. In [11], the authors reported promising results for a test
data set. Although appearance-based approaches do not require
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explicit feature extraction, their success relies on visual learning
from a training set. A good training set is not always easy to ob-
tain. Besides, due to shape variations, training images always
contain some background region. Although when training, one
can set the background to a uniform value (as in [11]), it is not
always possible to black out the background at the recognition
stage—one needs to know the object type and its exact orienta-
tion in order to do so, which is what a recognition algorithm is
attempting to do. Backgrounds can greatly affect the projection
of an input image onto the eigenspace. In addition, when the
camera sensor is infrared, as in most surveillance applications,
the object signature becomes too variable to be characterized
by only a few images even at a fixed pose. In [9], some recogni-
tion algorithms including several learning algorithms were com-
pared, using a large database containing over 17 000 images of
ten object classes. It was reported that even the best recogni-
tion results were unsatisfactory for this infrared database. One
possible explanation for the results in [9] is that when objects
have abundant pose variations, the appearance manifolds be-
come heavily overlapped, making recognition harder. In such a
situation, one may have to resort to some geometric (shape) fea-
tures, which, unfortunately, are again dependent on viewpoint.

An interesting observation is that when the object is moving,
human beings can quickly guess its pose, and then verify some
features unique to that pose. This suggests that additional infor-
mation can be exploited to make object recognition more fea-
sible when a video sequence is available. This paper presents a
technique for model-based temporal object verification/identifi-
cation. In a sense, verification and identification are constrained
cases of recognition. To be specific, in this paper, identification
refers to the following problem: given an image sequence con-
taining a moving object, to identify the object as one of a few
hypotheses; or, to identify the desired object in a sequence con-
taining multiple objects. Identification is dynamic in that we
have a time-evolving scene due to object motion and possible
sensor motion. Verification is used in a slightly different situa-
tion, which answers the following questions: Is this the object
seen in the previous frames? and How confident of this am I?
This is especially interesting in situations of temporary loss of
tracking due to, for example, occlusion by other objects. Veri-
fication is in a sense similar to the tracking problem but here it
emphasizes the acceptance or rejection of a certain object hy-
pothesis, rather than just tracking by using some features. Obvi-
ously, model-based verification/identification has many appli-
cations. For example, in visual autonomous surveillance as in
following a face in the crowd, the recognition problem can often
be reduced to the verification/identification problem.

1057–7149/01$10.00 © 2001 IEEE
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Fig. 1. Typical identification/verification setup using video from a moving
camera platform.

In applications such as visual autonomous surveillance, the
camera itself is often moving during the acquisition process. A
general setup for this kind of problems is illustrated in Fig. 1.
Due to camera motion, a sensor motion compensation process
is often needed to remove the unwanted camera motion if we
want to detect the object based on its motion.

In this paper, from image sequences containing the moving
object, the 3-D pose of the object is estimated at each time step.
Pose estimation is formulated as a search problem, with the
search space strictly constrained by the motion trajectory infor-
mation of the moving object and assumptions about the scene
structure. A generalized version of the Hausdorff metric [1],
which is more robust to noise and allows a confidence inter-
pretation, is suggested for the search problem. The pose evo-
lution curves are used to assist in the acceptance or rejection
of an object hypothesis. Experiments on several sequences are
presented. The experiments demonstrate how the concepts and
algorithms for model-based temporal identification/verification
could work in real applications.

II. M ATCHING BASED ON THEHAUSDORFFMETRIC

The Hausdorff metric [7] is a mathematical measure for com-
paring two sets of points in terms of their least similar members.
Formally, given two finite point sets and

, the Hausdorff metric is defined as

(1)

where

(2)

and is an underlying norm. If a model image and a scene
image are first processed to give two characteristic point sets,
then the model-scene matching is realized by comparing the
point sets in terms of the Hausdorff metric. Intuitively, when
there are multiple models, recognition is simply done by
computing the corresponding Hausdorff distances between the
models and the scene, and then picking out the best match.

A. Some Modified Versions of the Hausdorff Metric

Although theoretically attractive, the Hausdorff metricis
not directly usable in practice, because the or oper-
ation in the definition makes and hence very sensitive to
noise—a single noisy point can pull the value offar from its
noise-free counterpart. Some modifications have therefore been
proposed in the literature. For example, in [9], a weighted sum
version was proposed and found to slightly improve the recog-
nition rate; and in [5], a th ranked partial “distance”
was used to detect a model in a static scene. The same partial
“distance” was also used to track people in [8]. Although these

modifications improve the robustness in practice, the obtained
“distances” (a weighted one in [9] and ath ranked one in [5])
no longer possess the properties of a metric. That is to say they
are not realdistancesin the strict sense. We argue that being a
metric (i.e., obeying the axiomatic rules for a metric) is impor-
tant because when doing identification or verification, generally
we have several hypotheses, and we need to use a measure that
can reflect our confidence in choosing one over the others. This
is not like detection or tracking, where one only needs to find an
optimal match for a given mask. For example, it’s easy to con-
struct examples where a partial distance does not give a mea-
sure of similarity between point sets. Although these examples
are unlikely to occur, one does face difficulties when the models
are relatively simple point sets (with not too many points) while
the scene is highly cluttered. Therefore, the above-mentioned
modified versions of the Hausdorff distance do not necessarily
offer good measures for comparison among different models.

B. Version of the Hausdorff Metric

Another equivalent representation of the Hausdorff metric is
(see [6])

(3)

with

where is a set and a metric such that is a metric
space, and and . In the image analysis context,
can simply be the set of all the image grid points, andis usually
the norm, while and are two compact sets in the image
plane. In this paper, we use edges as the features for matching;
thus, and are just edge maps derived from intensity images.

To alleviate the instability in (3) due to the or oper-
ation, Baddeley [1] has suggested anaverage as follows:

(4)

where is the number of points in , and .
So defined is still a metric, and topologically equiv-
alent to , but is more robust to noisy data since the
contribution of a single point has been weighted. Also, by using
the average, (4) has an “expected risk” interpretation: given,
a set which minimizes is one which maximizes
the pixelwise likelihood of (if and
are treated as random sets). In applications, a cutoff function

, for a fixed , is incorporated into (4)
to give

(5)

The resulting is again a metric, and topologically
equivalent to . Note that in practice it is unnecessary to
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compute by its definition (i.e., by computing
), which is too expensive, especially with the norm.

Instead, distance transformations [3] are used. Thus, using a
supporting set will not cause significant extra computation,
although is larger than and .

C. Identification/Verification with

Given two point sets, provides a similarity measure be-
tween them. When this measure is applied to the identifica-
tion/verification problem, we are concerned not only with how
good the match is but also with where the match happens in
the scene. It would be meaningless to computebetween a
small model and a large scene image. Instead, usually a region
of interest (ROI) is detected first, and matching is carried out
between the ROI and the model. In particular, in identification
problems, given the edge mapof an ROI from the scene image
and models , , the task is to find a model
and a transformation such that

(6)

where is an allowed transformation group for the application.
Such will be regarded as the potential object appearing in
the current scene. Since is a metric, we can also interpret the
values as a measure of
confidence of choosing in the current frame. If , then
the problem is reduced to detecting an object in the scene; in
addition, if the model is extracted from earlier frames in the se-
quence, the problem reduces to one of tracking and verification.

It is not hard to search over when is the translation group.
However it is difficult to consider other transformation groups
such as affine. Even if we consider only rotation and scale, the
search becomes a daunting task. The authors of [8] have pro-
posed an efficient search scheme for rotation using the fact that
the image takes value only on a digitized grid. In Section III-B,
motion-based segmentation is used to minimize the need for
search over the scale space.

III. M ODEL-BASED POSE ESTIMATION AND

OBJECTVERIFICATION

In this section, we present an approach to pose estimation
and verification based on matching using theversion of the
Hausdorff metric, with the motion trajectory information from
motion analysis being used as a constraint to reduce the search
space. The model acquisition step is discussed in Section III-A.
Section III-B gives a brief overview of a framework for detec-
tion, tracking and segmentation of moving objects in video ac-
quired by a moving platform. Pose estimation and object iden-
tification are discussed in Section III-C. Section III-D discusses
methods for excluding clutter from the ROI. The pose evolu-
tion curve is defined in Section III-E. Section III-F discusses
the interpretation of as a confidence measure, and a confi-
dence figure is defined. Experimental results are presented in
Section IV.

Fig. 2. Two angles defining the object orientation with respect to the camera
under the assumption of level ground (i.e., theX–Y plane is horizontal).

A. Model Acquisition

When a 3-D object is subject to complex 3-D motion
with respect to the camera, in general, multiple views of the
object are needed for adequate modeling of the object. For a
matching-based approach, images from these views constitute
a model base. In general, there are two ways for constructing
a model base: by using computer aided design (CAD) models
or by extracting objects from real images. Three-dimensional
CAD models allow one to easily manipulate the object orienta-
tion. However most objects of interest do not come with CAD
models. In this paper, for the identification experiments, the
models are constructed from real images: model images were
taken at various camera depression angles, with the objects
rotating horizontally. This allows the approach to extend to real
applications easily: for any real object of interest, we can build
its model by acquiring a set of images of the object at different
viewpoints, hence relaxing the need for a 3-D CAD model.

Although in general, the orientation of a rigid object has three
degrees of freedom, some assumptions can be made for spe-
cific applications. For example, if the object is on nearly level
ground, as in most surveillance applications, its orientation can
be characterized by only two variables. If we use an object-cen-
tered coordinate system, the object orientation is equivalent to
the camera viewing angles, defined by two anglesand as
illustrated in Fig. 2.

Notice that even under the above assumption, there are still
infinitely many orientations in theory. But some observations
can be made to determine the orientations that are characteristic.
For example, with fixed, although can vary from 0 to 360 ,
it is not necessary to store images at every degree ofsince
the object looks very similar when changes only by a small
number (say, less than 5). A similar argument is valid for ,
which takes values in the interval [0, 90 ]. More constraints
can be included for a specific application. For example, in many
applications, the value ofcan only change within a small range
or can even be fixed. Research has shown that it seems that the
human visual system represents objects only by a few 2-D views
(e.g., [14]). Not much is known, however, about the number of
views required for a specific object. In this work, we represent
an object with a model base in whichand take on only a
finite set of values.
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Fig. 3. Whole framework shown as a diagram of procedures.

Fig. 4. Dynamic verification with theH metric: a moving object is first detected and its edge map is used in the following frames for verification. The sequence
is infrared with frame size128 � 128 pixels.

Besides orientation,scale is another variable that needs to
be considered. It is possible to transform the scene object, the
model, or both, to bring them to the same size before performing
matching. Each method has its advantages and disadvantages, as
discussed in [15]. For appearance-based approaches, the model
base (or the parametric space) is constructed at a fixed scale.
Therefore, during recognition, the object size needs to be nor-
malized with respect to the model base. There is a potential
problem with the above normalization: if the object is at a much
lower resolution than the training images, normalization can
only bring the object to the samesize, but not to the samescale
at which the training images were looked at. Considering this,
we propose to acquire the model images at a resolution higher
than that at which the object is most likely to appear in real ap-
plications. At the identification/verification stage, we bring the
model to the scale of the scene object. Note that this is essen-
tially a downsampling process, and we are getting rid of detailed
information rather than trying to add more information. Equiva-
lently, one can build a multi-scale model base which keeps sev-
eral versions at different scales for an object at a certain orien-
tation.

B. Framework for Moving Object Detection, Tracking, and
Segmentation

As stated in the introduction, in many applications, the
camera is moving during the acquisition process. Therefore
sensor motion compensation is typically required before one
can exploit the object-induced motion information. Sensor
motion compensation is also known in the literature as image
sequence stabilization. Roughly speaking, there are two
types of stabilization methods: feature-based and optical
flow-based. We believe that optical flow-based methods are

more appropriate if the camera is of the infrared type (as in
most surveillance applications) since reliable feature detection
is more difficult in infrared imagery. Also, the brightness
(thermal) constancy assumption is more appropriate for in-
frared images, which is essential to the computation of optical
flow. We follow the framework reported in [10] which inte-
grates image sequence stabilization, moving object detection,
tracking and segmentation, to form the frontend of the recog-
nition system. Stabilization is based on the optical flow-based
approach reported in [13], where the optical flow is modeled
as a weighted sum of basis functions, and permits accurate and
fast motion computation. The computed flow field is then used
to estimate the motion parameters. An affine transformation is
used to model the sensor motion. That is, the transformation
between the pixels of frameand frame is defined by

(7)

where and are pixels of frame
and frame , respectively.
After sensor motion compensation, changing parts are de-

tected from the camera motion compensated frame differences.
These changing parts are segmented from the background to
form ROI’s, and then tracked and updated incrementally based
on the successive motion measurements. If the object is big
enough, it is also possible to get its boundary by motion-based
segmentation. Otherwise, a bounding box is used to define the
ROI. Segmentation greatly facilitates matching: recall from (5),
that a supporting set is needed for computing . In practice,
a smaller is desired to facilitate the computation. Segmenta-
tion not only provides a small but also greatly decreases the
search region for the operation in (6). For example, we can
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Fig. 5. Dynamic identification with theH metric: at each frame the models are compared against the detected ROI according to (6), and theH values are used
to choose one out of the three hypotheses.

estimate the scaling from a model to the scene using the size
of the ROI (this step, however, needs to account for the inac-
curacies in the segmentation step). Another example is, when
attempting verification, if the sensor-induced motion is domi-
nant, the affine parameters computed from (7) can be used to
estimate the scale factorbetween two ROI’s in corresponding
frames by

(8)

as will be illustrated by an experiment in Section IV.

C. Pose Estimation and Object Identification

The segmentation step in the previous section locates poten-
tial moving objects. If the object is subject to nearly translational
rigid motion, we can use the average of the flow field in the seg-
mented area to approximate the object velocity. If the object
is too small to support the average computation, an alternative
way is to estimate the velocity from the change in the mass
center of the detected changing area. The details of the algo-
rithm can be found in [17]. For the pose estimation algorithm,
only the direction of is used to assist search over the model
base, although the value of is potentially usable.

With plotted in a regular – coordinate
system [with horizontal -axis, vertical -axis and lying
in the upper-right quadrant], we can easily identify the con-
straints on the angles, imposed by the signs of the com-
ponents of . For example, consider a forward moving object.
Assuming , we have

if , then
if , then
if , then totally determines the object orientation
in a top view;
if , then and

, etc.

One can find that constraints of the last type are most effec-
tive, and also most common in real applications. For example,
a typical surveillance camera may havebetween 0 and 90 .
Under the constraint provided by motion analysis, pose estima-
tion and object identification problems are reduced to the fol-
lowing search problem: given an ROI, find the best matching
model from only the model images whose orientations
lie in the subspace with and
being two intervals, and and being estimated as above.
The values of and are application-dependent. In the ex-
periments reported in this paper, we let . Formally,
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by using (9), we estimate the object pose for the current frame
as

(9)

where is defined as before, and is the model with
orientation parameter [note that in practice, a local search
using (6) is still needed to account for the inaccuracy of the
segmentation step]. Obviously, (6) and (9) involve essentially
similar computations except that we use the former to choose
the object type and the latter to decide the orientation. In fact, if
we treat the same object at different poses as different classes,
then (9) is implied by (6).

The benefit from the constrained search is twofold: the search
is speeded up; and more importantly, by reducing the number
of candidates, the probability of false match is reduced. Fur-
ther constraints can be obtained if we consider the relationship
among frames which are temporally close. In this work, we ex-
ploit this type of information through what we refer to as the
pose evolution curveas discussed in Section III-E.

Note that, in the worst case where motion analysis gives to-
tally false information for, the constraints obtained above are no
longer valid. To deal with this situation, the algorithm should re-
sort to basic full search whenever the confidence measure (see
Section III-F) of the current estimate drops below a threshold.

D. Excluding Clutter in the ROI

The detected ROI contains not only the potential object but
also background clutter. According to (5), every edge pixel
within the ROI could contribute to , which is unde-
sirable. When doing identification, the following technique is
used to exclude clutter before calculating : given a model

and an ROI , we keep points in the ROI only if they are
within a certain distance of . Here is a transformed
version of under transformation . That is, a new ROI
is formed by

and (10)

where is a small positive number. On the other hand, if we
are attempting verification, the model is typically an ROI from
previous frames. In this situation, the segmentation boundary
estimated in Section III-B will also be used to constrain, and
a larger should be used to account for the inaccuracies in the
segmentation.

E. Pose Evolution Curve

By plotting the estimated pose over time, we get thepose evo-
lution curvefor the object. The curve is an additional indicator
of identification/verification confidence: under the continuous
motion assumption, the pose evolution curves should display
some smoothness in either theor domain. For example, if
the pose evolution curve suffers from random jitter between ad-
jacent frames, chances are that the object hypothesis is wrong to
begin with. Of course, when objects are similar in shape, there
may not be enough information from the pose evolution curves
only, but the corresponding value should offer information

Fig. 6. H values and confidence figures for the sequence in Fig. 5, from
frame 318 to 327: (a)H values versus frame index and (b) computed
confidence figureP .

for identification purposes. The following quantityis defined
to give a quantitative description of the smoothness of the pose
evolution curve:

(11)

where
number of frames;
frame index;
pose evolution curve;
smoothed version of ( de-
notes convolution).

Here, is a discrete window function whose support
is , with I a small positive integer. In the experiments
in this paper, and

. In general, given a sequence, a correct
hypothesis should yield a pose evolution curve with a smaller
than an incorrect hypothesis does.

When the number of model images is large, it is helpful to
also consider several top matches given by (9), instead of only
looking at the best matching one. If we keep several top matches
and plot the estimated poses in a common coordinate system at
each frame, we get the band of pose estimates. This pose infor-
mation is also helpful for testing the hypotheses; if a hypothesis
is correct, the corresponding pose band should be more concen-
trated than that of a wrong hypothesis, unless the object’s ap-
pearance changes dramatically even with small changes in ori-
entation. Again, to quantitatively evaluate how a pose band is
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Fig. 7. Sample images in the model base. The upper row is for model 1; the lower row for model 2.

Fig. 8. Dynamic identification with theH metric. The task is to identify the moving object in the scene as one of the two hypotheses. Top row: sample images
(of size320� 240) from one sequence with black tank moving around. The moving object has been highlighted by a bounding box defined at the segmentation
step. Middle row: two hypotheses. Bottom row: correspondingH values and estimated poses(�; �) at each frame for the two hypotheses. Even though the two
hypotheses are similar in shape, at each frame, the algorithm gives smallerH values for hypothesis 1 than for hypothesis 2.

concentrated, the following quantity is defined, if the top
matches are kept:

(12)

where are as before, and is the average of the pose
angles given by the top matches at frame. In general, given a
sequence, a correct hypothesis should yield a band of poses with
smaller than an incorrect hypothesis does. The motivation
behind the above definitions is thatand are in a sense like
sample mean square deviations.

Notice that the pose angleis periodic, i.e., 360 is equiva-
lent to 0 . Therefore when calculating the average of angles [the
moving average for in (11) and the average over thean-
gles in (12)], the value of should be wrapped around with
respect to 360whenever the periodicity demands it.

F. Interpreting as a Confidence Measure

As mentioned earlier, has some nice properties such as
being a metric, improved robustness, “expected risk” interpre-
tation, etc. Being a metric is important especially from a the-
oretical point of view. For example, we would like a measure

that gives the same result for and .
These properties of allow a confidence interpretation. For
the identification problem, this means that at each step the

value for each model is treated as a measure ofconfidencein
choosing a certain model: the smaller this number is, the more
confident we are of choosing the model. If multiple models are
kept as frames are processed, although at some time we may
make the wrong choice, subsequent updates will hopefully pro-
vide the right choice.

For the verification problem, a confidence interpretation is
also helpful: whenever there is a sharp decrease in confidence,
what may have happened is that the object is no longer the pre-
vious one,or the orientation of the object has changed dramat-
ically. This information can be used to update the model hy-
potheses. Verification, in this respect, is similar to a tracking
problem like that in [8]. But keeping a 3-D model of the object
allows one to tackle problems involving more general complex
3-D motions.

To conform with the common understanding ofconfidence,
i.e., with real numbers 1.0 and 0.0 representing the most and
least confidences respectively, we define a confidence figure
based on the value as

(13)

The meaning is obvious: when , which means
, we set ; and when goes to infinity,

. The underlying reason for choosing function
is that it is a convex function on and thus



904 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 6, JUNE 2001

Fig. 9. Confidence figureP versus frame index (computed every three
frames; note that nothing is shown for those frames in which the object is
invisible; same for Figs. 10 and 11).

Fig. 10. Pose evolution curves (angle�) for the sequence shown in Fig. 8. The
computedS values [see (11)] are 8.1 and 64.9 for hypothesis 1 and hypothesis
2, respectively, strengthening the confidence in choosing hypothesis 1.

is still a metric, which is desirable for comparing multiple
hypotheses. It is worth pointing out that this confidence figure
depends on the measurement of, thus it will change if is
reparameterized (for instance, if the resolution of the image is
doubled). Therefore, it is better to use this figure for comparing
different hypotheses than to interpret it for a single hypothesis
along the temporal axis unless the size of the supportingis
fixed for all frames.

In summary, the whole framework is illustrated by the dia-
gram shown in Fig. 3. It is worth pointing out that we have
assumed that the object is moving and that detection and seg-
mentation are based on analyzing the object motion. If the ob-
ject is stationary and/or the detection and segmentation are ac-
complished by other means, the verification step still works (in
this case, pose variation may still exist due to sensor motion).
We have used the dotted-lined path to show that possibility al-
though it is not implemented in the current work. Notice that,
if no pose variations are considered, then the pose estimation

Fig. 11. Bands of the pose estimates (angle�) versus frame index. (a)
Hypothesis 1 and (b) hypothesis 2. The computedC values [see (12)] are 20.9
and 80.4 for hypothesis 1 and hypothesis 2, respectively, strengthening the
confidence in choosing hypothesis 1.

module would not be used. This is equivalent to choosing (6) or
(9) based on the specific problem.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Experiments have been performed with both infrared and
optical sequences. Several experimental results are presented
in this section. For convenience of presentation, the detailed
discussion of the results is mainly focused on two sequences,
one infrared and one optical. Experiments on other data will be
briefly listed. In the experiments presented in this paper,and

in (5) are fixed at 1 and 4 respectively, andin (10) is 5. The
edge maps were detected using Canny’s algorithm [4].

In the first experiment, simple verification is carried out on
an infrared sequence acquired by a helicopter flying toward a
tank. Due to the fast camera motion, the scaling effect becomes
significant within a few frames. Fig. 4 illustrates the verification
procedure. A moving object is first detected, which is possible
only after the dominant sensor motion is compensated. Then an
ROI is formed and processed to get the edge map of the ob-
ject. This edge map, used as the model, is verified in subsequent
frames. In Fig. 4, the ROI from frame 302 is superimposed on
frames 310, 315, and 320, after the locations have been esti-
mated using (6). Note the substantial scaling of the object—a
typical scale factor is 1.02 by (8) for two consecutive frames,
thus the object gets almost 1.4 times larger in frame 320 than
when it was in frame 302 (this is only during a period slightly
more than half a second with a 30 Hz frame rate). It would be



LI et al.: MODEL-BASED TEMPORAL OBJECT VERIFICATION USING VIDEO 905

Fig. 12. Each row contains sample images from an optical sequence. The first sequence is tested with the modelbase given by Fig. 7. The second sequence is
tested with models containing two cars, one of which being the moving car in the sequence, and rotation is allowed horizontally only.

very expensive if one wanted to handle this by searching over
the scale space using the Hausdorff metric. However, by com-
pensating the scaling using (8) the algorithm is able to locate the
tank and report small values (meaning high confidence).

In the above example, the object motion is approximately
2-D; thus verification is similar to a tracking problem after
the object has been detected. However, if the object is lost
somehow (e.g., due to occlusion), then re-appears later, the
algorithm should be able to verify if it is the previous object.
The idea becomes more obvious when the object motion is
3-D and induces dramatic orientation changes. In this situation,
even if simple tracking can be done on a frame-by-frame basis,
it is hard to say if it has found the same object because the
object looks too different in later frames than in earlier frames.
What might have happened is that the tracker has drifted away.
However, with a model in mind, verification can still be done
by updating the model according to the motion trajectory
information: if the confidence figure for certain model at the
current frame drops suddenly, but a new pose of the model
(either predicted by the trajectory or by a full search in pose
domain) gives high confidence, then the new pose will be kept
and the present object is verified to be the previous one. This
is represented by the feedback path from verification to pose
estimation in Fig. 3.

Fig. 5 shows how identification works for the same sequence
as in Fig. 4. Given the sequence, the task is to identify which of
the three hypotheses is present in the current sequence. In this
example the ground truth is model 2. In this experiment, object
contours derived from CAD models are used as models. For
each frame, an ROI is detected, then each model is warped to the
size of the ROI. To account for inaccuracies in the detection and
segmentation step, for each model, a local search in translation
space and in scale space is carried out according to (6), and
the best value is used for this model. It is clear from the
figure that, although in some individual frames the algorithm
reports false identification results (i.e., the value for model
2 is bigger than those for the others), by using multiple frames,
the overall confidence of choosing model 2 is higher than for
choosing others. To see this more clearly, we plotted in Fig. 6 the

value and the confidence figure for each model from frames
318 to 327. The overall confidence in model 2 is obvious.

In the next experiment, the sequences are optical images ac-
quired by a hand-held video camera. Model images were simi-
larly acquired, with the help of a turntable. The model base was
constructed as explained in Section III-A. Currently, the model
base contains two model tanks. Fig. 7 shows four model images
for each of the models. Accurate pose information can be ob-
tained for the model images if the camera is under fine control,
as in [11]. In this work, the model pose was obtained manually
through visual inspection of the model image. Thedomain is
only coarsely divided, with taking only two values, 30and
45 ; and for each , varies by approximately 5in [0 , 355 ]
(see Fig. 2 for the definitions of the angles).

Fig. 8 illustrates how identification works when the object
is subject to 3-D motion. The sequence contains two objects,
and only the black one is moving. The task is to identify the
moving object as one of the two hypotheses (i.e., the object
needs to be identified as one of the two candidate models). Of
course, in this example, the ground truth is model 1 (the black
object). The moving object is first detected and segmented by
the aforementioned procedure; then identification and pose es-
timation are carried out in each frame. The first row in Fig. 8
shows sample frames from one of the sequences with the de-
tected moving object highlighted by a bounding box (note that
only the black object is moving in this sequence). Below each
frame are the corresponding value and the estimated pose
(two angles and ) computed according to (9). In the compu-
tation, again a local search (of size pixels) in the translation
space was performed. Although no search in scale space was
performed in this example, the result is good enough, implying
that the segmentation step gives a good estimate of the scale
factor between the model and the scene object (a search over

is used in other experiments in the paper). It
is obvious that, although the appearances of the objects are dra-
matically different, they have similar geometric shapes. There-
fore it is in fact a difficult task to distinguish between these two
hypotheses only from their edge maps. Yet in each frame, the
algorithm is able to choose model 1 correctly, and the pose es-
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Fig. 13. Each column contains sample images from an IR sequence. The sequences are named asrng16 18; rng17 20; rng19 06; rng19 07, andrng19 18,
from left to right, respectively. Three hypotheses are assumed during verification. The object motion is assumed to be 2-D (no 3-D model of the objectsis available
in this case).

TABLE I
PERFORMANCE OF THEALGORITHM ON SOME TEST SEQUENCES

timates are close enough (see Fig. 8 for the estimated poses for
these sample frames).

Fig. 9 shows the confidence figure computed according to
(13) By plotting the estimated pose in each frame, we can get the
pose evolution curve for each hypothesis, as shown in Fig. 10.
The pose evolution curve is found to be able to strengthen the
confidence since the curve for hypothesis 1 is smoother than that
for hypothesis 2, which is reasonable under the assumption of
continuous motion. According to (11), the computedvalues
are 8.1 and 64.9 for hypothesis 1 and hypothesis 2, respectively.
Note that for the aforementioned reason, thevalue is not in-
formative in this experiment; thus only angleis plotted in the
pose evolution curve.

As mentioned before, when the number of model images is
large, it is helpful to keep several top matches given by (9), and
consider the band of pose estimates. For the sample sequence in
Fig. 8, the pose bands are plotted in Fig. 11 (for angleonly).
This pose information is illustrative: the band for hypothesis 1 is
more concentrated than that for hypothesis 2, thus strengthening
our confidence in choosing hypothesis 1. According to (11), the
computed values are 20.9 and 80.4 for hypothesis 1 and hy-
pothesis 2, respectively.

We now briefly list the experimental results for other se-
quences, including optical and infrared imagery. Fig. 12 shows
two optical sequences in which the objects are subject to 3-D
motion. The first sequence (two_tank1) was tested with the

model base shown in Fig. 7. The second sequence (two_car3)
was tested with two models containing two cars at different
horizontal orientations, one of which being the moving car in
the sequence. Fig. 13 shows sample sequences from a large
FLIR database. Each of these sequences was tested with three
hypotheses which are edge maps from other sequences in the
database, with one being true hypotheses. The experimental
results are summarized in Table I. Since each sequence is
relatively long and the object is only big enough near the
terminal portion of the sequence, we used only the final few
frames in verification, as shown in the column “number of
frames used.” Note that there is no 3-D model available for
the sequences, and the object motion is largely 2-D in the last
few frames. Thus verification was done by using (6), and no

and values were computed. For sequences in Fig. 12, (9)
was used, and correspondingand values were computed.
From the table, it is obvious that although at some frames the
algorithm may be confused, there is not a single case where the
algorithm fails if all the frames are considered. Specifically,
and values alone are able to give correct results when they
are available.

V. SUMMARY

Object recognition is a well-researched area, and has been
approached from different aspects (e.g., [2], [12]). In this paper,
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we attempted to exploit temporal information in video to as-
sist recognition. Specifically, in addition to using motion for
detection and segmentation, our approach uses the trajectory
of a moving object to predict its approximate pose. Also, the
motion coherence of an underlying object is measured through
the pose evolution curses. The experiments demonstrate how the
concepts and algorithms for dynamic identification/verification
work on real video. The paper is focused on studying the po-
tential of the idea of temporal object verification using video.
The work reported here is intended to show how temporal infor-
mation can be exploited to help verification/identification when
video is available, rather than to build an end-to-end system.
When building an end-to-end system, many system-level issues
arise, such as time and space complexity, which are not ad-
dressed in this paper.

In this work, although feature (edge) detection is necessary,
we use the version of Hausdorff metric-based matching,
which does not require feature correspondence and is robust to
noise, hence relaxing the requirements on the feature detection
step. This may be attractive especially in applications that use
infrared sensor, since in this situation, feature-detection is not
reliable, and appearance-based approaches may also have dif-
ficulties. However, the work is not intended to replace other
methods such as appearance-based recognition approaches. In
fact, our major focus has been on how to utilize temporal infor-
mation available in a video for better recognition. Some basic
ideas developed in the work are meaningful irrespective of the
specific representation of the object, such as pose prediction
based on the object’s trajectory, and computing motion coher-
ence based on pose evolution curves, etc. Also, the approach
is proposed for a more constrained scenario: verification and
identification (with much fewer hypotheses than a recognition
algorithm usually assumes), and simple object motion has been
assumed. Even though this is a constrained scenario, similar sit-
uations can be found in many applications such as surveillance
systems. We have found the proposed method promising for ver-
ification/identification tasks.
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