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Model-Based Temporal Object Verification
Using Video

Baoxin Li, Rama Chellappdellow, IEEE Qinfen Zheng, and Sandor Z. Der

Abstract—An approach to model-based dynamic object verifi- explicit feature extraction, their success relies on visual learning
cation and identification using video is proposed. From image se- from a training set. A good training set is not always easy to ob-
quences containing the moving object, we compute its motion tra- 14, Besides, due to shape variations, training images always

jectory. Then we estimate its three-dimensional (3-D) pose at each tai back d ion. Alth h when traini
time step. Pose estimation is formulated as a search problem, with €OMt&iN SOME backgrouna region. ough when training, one

the search space constrained by the motion trajectory information can set the background to a uniform value (as in [11]), it is not
of the moving object and assumptions about the scene structure. A always possible to black out the background at the recognition
generalized Hausdorff metric, which is more robust to noise and stage—one needs to know the object type and its exact orienta-
allows a confidence interpretation, is suggested for the matching iq'in order to do so, which is what a recognition algorithm is
procedure used for pose estimation as well as the identification and . L
verification problem. The pose evolution curves are used to assist attemptlng t_o do. Background_s can greatly aﬁec_t .the projection
in the acceptance or rejection of an object hypothesis. The models Of an input image onto the eigenspace. In addition, when the
are acquired from real image sequences of the objects. Edge mapscamera sensor is infrared, as in most surveillance applications,

are extracted and used for matching. Results are presented for both the object signature becomes too variable to be characterized
infrared and optical sequences containing moving objects involved by only a few images even at a fixed pose. In [9], some recogni-
in complex motions. . . . . . L

tion algorithms including several learning algorithms were com-
pared, using a large database containing over 17 000 images of
ten object classes. It was reported that even the best recogni-
tion results were unsatisfactory for this infrared database. One
I. INTRODUCTION possible explanation for the results in [9] is that when objects

OR many years, object recognition algorithms have begﬁwe abungiant pose variation;, the appearance manifolds be-
based on a single image or a few images acquired from feme heavily overlapped, making recognition harder. In such a

ferent aspects. While advances have been made in simple C%prl_atlon, one may have to resort to some geometric (shape) fea-

strained situations such as indoor environments, object recgg—es' which, unfortunately, are again dependent on viewpoint.

nition in natural scenes remains a challenging problem. Among?n interesting observation is that when the object is moving,
the many difficulties, a prominent one is that in real applicdluman beings can quickly guess its pose, and then verify some
tions, theoretically there exist infinitely many poses (orientd€atures unique to that pose. This suggests that additional infor-
tions) for a given object. Therefore, two-dimensional (2-D) agnation can be exploited to make object recognition more fea-
proaches, which are largely based on 2-D matching under so$file when a video sequence is available. This paper presents a
simplified transformation group, will not solve the three-dimeriechnique for model-based temporal object verification/identifi-
sional (3-D) object recognition problem. To overcome the ne€ation. In a sense, verification and identification are constrained
for search in the viewpoint space, approaches based on geases of recognition. To be specific, in this paper, identification
metric invariants have been proposed (for example, see [16] arters to the following problem: given an image sequence con-
[18]). Although the invariance approach is theoretically attrataining a moving object, to identify the object as one of a few
tive, it would be difficult to apply it to complex objects in naturahypotheses; or, to identify the desired object in a sequence con-
scenes. Appearance-based recognition schemes (for exantgi@ing multiple objects. Identification is dynamic in that we
see [11]) try to tackle the viewpoint problem by using visuatave a time-evolving scene due to object motion and possible
learning. In[11], the authors reported promising results for a teginsor motion. Verification is used in a slightly different situa-
data set. Although appearance-based approaches do not reqigre which answers the following questions: Is this the object
seen in the previous frames? and How confident of this am 1?
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/\/\/§\/\ modifications improve the robustness in practice, the obtained
/\/ _ camers “distances” (a weighted one in [9] andféth ranked one in [5])
o no longer possess the properties of a metric. That is to say they

are not reatlistancesn the strict sense. We argue that being a
metric (i.e., obeying the axiomatic rules for a metric) is impor-
%ant because when doing identification or verification, generally
we have several hypotheses, and we need to use a measure that
fFan reflect our confidence in choosing one over the others. This

camera itself is often moving during the acquisition process.' not like detection or tracking, where one only needs to find an

general setup for this kind of problems is illustrated in Fig. fptlgael)zr;?c?elo\r,vig\ée; maﬁ; zgz:ggéng:)z;tsofaﬁzetzcgzg

Due to camera motion, a sensor motion compensation procl?\ggI ample par 9

is often needed to remove the unwanted camera motion if Ware of similarity between point sets. Although these examples

want to detect the object based on its motion are unlikely to occur, one does face difficulties when the models
In this paper, from image sequences containing the moviﬁ‘é: reIative_Iy si_mple point sets (with not too many points) while

object, the 3-D pose of the object is estimated at each time step:. SCcene 1s hlghly cluttered. Therefore, the above-mentlongd

Pose estimation is formulated as a search problem, with dified versions of the Hausdqrff distance dg not necessarily

search space strictly constrained by the motion trajectory infGto " good measures for comparison among different models.

mation of the moving object qnd assumptions about t_he scq@_eLp Version of the Hausdorff Metric

structure. A generalizel, version of the Hausdorff metric [1],

which is more robust to noise and allows a confidence inter-

pretation, is suggested for the search problem. The pose ese [6])

lution curves are used to assist in the acceptance or rejection H(A, B) = sup |p(z, A) — p(z, B)| 3)

of an object hypothesis. Experiments on several sequences are ’ z€X ’ ’

presented. The experiments demonstrate how the conceptsva\}n

algorithms for model-based temporal identification/verification

could work in real applications. olz, A) 2 ggg{p(x, a)}

Fig. 1. Typical identification/verification setup using video from a movin
camera platform.

In applications such as visual autonomous surveillance,

Another equivalent representation of the Hausdorff metric is

Il. MATCHING BASED ON THEHAUSDORFFMETRIC where X is a set angh a metric such thatX, p) is a metric

The Hausdorff metric [7] is a mathematical measure for coniPace, andl € X andB € .X. Inthe image analysis contex,
paring two sets of points in terms of their least similar membei@@n Simply be the set of all the image grid points, afglusually

Formally, given two finite point setst = {a,, ..., a,} and thels norm, whileA andZ3 are two compact sets in the image
B={b, ..., b}, the Hausdorff metric is defined ag' plane. In this paper, we use edges as the features for matching;

! thus,A andB are just edge maps derived from intensity images.

H(A, B) =max{h(A, B), (B, A)} (2) To alleviate the instability in (3) due to thap or max oper-
here ation, Baddeley [1] has suggestedanaverage as follows:
w
_ 1 1/p
M, B) = sup g la =l @ mra By = | Y el A) = ple BF| @
reX

and|| - || is an underlying norm. If a model image and a scene

image are first processed to give two characteristic point se ,%ref?l():;;lf JtreBnqmbe_:lT of p0|r_1ts 'm;j’ andll S p ”< o0
then the model-scene matching is realized by comparing tﬁg efinediz”(4, )'S_ stilla metric, an topo ogically equiv-
lent to H(A, B), but is more robust to noisy data since the

point sets in terms of the Hausdorff metric. Intuitively, whe - . . . :
ntribution of a single point has been weighted. Also, by using

there are multiple models, recognition is simply done b h . d risk” i ion- i
computing the corresponding Hausdorff distances between g average, (4) has an "expected risk” interpretation: gien

models and the scene, and then picking out the best match. a setB Wh_iCh _min_imizesHP(A, B) is one which maximizes
the pixelwise likelihood of p(z, A) = p(x, B)} (if AandB

A. Some Modified Versions of the Hausdorff Metric are treated as random sets). In applications, a cutoff function
Although theoretically attractive, the Hausdorff metHcis :)(;’ivcg = min{t, ¢}, forafixede > 0, is incorporated into (4)

not directly usable in practice, because the or max oper-
ation in the definition makeé and hencef very sensitive to  gr(4 B)

noise—a single noisy point can pull the valuerbffar from its 1/p
nmse—free_countgrpart. Some modlflcauqns have thgrefore been _ 1 Z lw(p(z, A), ¢) — w(p(z, B), ¢)|P _
proposed in the literature. For example, in [9], a weighted sum n(X) =

version was proposed and found to slightly improve the recog- (5)
nition rate; and in [5], &th ranked partial “distance?( A, B)

was used to detect a model in a static scene. The same paftta resultingH?(A, B) is again a metric, and topologically
“distance” was also used to track people in [8]. Although thesguivalenttad (A, B). Note thatin practice itis unnecessary to
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computep(z, A) by its definition (i.e., by computing(z, v) = Camera
[l — ¥l|), which is too expensive, especially with the norm. 7

Instead, distance transformations [3] are used. Thus, using a o
supporting sefX’ will not cause significant extra computation, e
althoughX is larger than4d and .

C. Identification/Verification withH?

Given two point setsH? provides a similarity measure be- e [ Y
tween them. When this measure is applied to the identifica- AR e
tion/verification problem, we are concerned not only with how Tl
good the match is but also with where the match happens in X/
the scene. It would be meaningless to compidtebetween a
small model and a large scene image. Instead, usually a regli:on
of interest (ROI) is detected first, and matching is carried OHLgd
between the ROI and the model. In particular, in identification
problems, given the edge mé&of an ROI from the scene image o
andm modelsM;,i = 1, ..., m, the taskis to find amodel/; A. Model Acquisition
and a transformatioft” € 7 such that

2. Two angles defining the object orientation with respect to the camera
er the assumption of level ground (i.e., ffieY” plane is horizontal).

When a 3-D object is subject to complex 3-D motion
with respect to the camera, in general, multiple views of the
object are needed for adequate modeling of the object. For a

HP(R, T'(Mj)) = min min HP(R, T(M;)) (6) matching-based approach, images from these views constitute

=1 TeT a model base. In general, there are two ways for constructing

where7 is an allowed transformation group for the applicatiorﬁ model bas_e: by using computer f”"ded design (CAD) m(_)dels
or by extracting objects from real images. Three-dimensional

SuchM; will be regarded as the potential object appearing LD models all i ol he obi _
the current scene. Sinéé? is a metric, we can also interpret the=/\P Models allow one to easily manipulate the object orienta-

valuesminger H?(R, T(M,), i = 1 m as a measure of 1oN- However most objects of interest do not come with CAD
confidenceTgf choosi7nM< inzthe curr7e'n't'f7rame lfn — 1 then ™Models. In this paper, for the identification experiments, the

the problem is reduced to detecting an object in the scene;nﬂ‘lzdels’ tare gonstructed fr%m real !mageszl modgltrllnlﬁgesb\{verte
addition, if the model is extracted from earlier frames in the st2 €N at various camera cepression angles, wi € objects
guence, the problem reduces to one of tracking and verificatidRtaing .h0r|zont<.ally. This allows thg apprgach to extend to rgal
Itis not hard to search ov@r when7 is the translation group. gppllcanons easﬂy:. for any reaI_ object of |ntere§t, we can build
However it is difficult to consider other transformation groupg_s mod.el byhacqumnlg qset r?f |ma%e]:5 of tgeDong([:)t at dd|ff:arent
such as affine. Even if we consider only rotation and scale, thigwpoints, hence refaxing t.e needfora s-L D MOodel.
search becomes a daunting task. The authors of [8] have prOAlthough in general, the orlentat|onlofar|g|d object has three
posed an efficient search scheme for rotation using the fact tﬂ&grees _Of f'reedom, some aSS‘,Jmp“O”S can be made for spe-
the image takes value only on a digitized grid. In Section ”l_é:,IfIC applications. For example, if the object is on nearly level

motion-based segmentation is used to minimize the need gipund, as in most surveillance applications, its orientation can
search over the scale space be characterized by only two variables. If we use an object-cen-

tered coordinate system, the object orientation is equivalent to
the camera viewing angles, defined by two angilesnd ¢ as
lIl. M ODEL-BASED POSE ESTIMATION AND illustrated in Fig. 2. _ _
OBJECT VERIFICATION Notice that even under the above assumption, there are still
infinitely many orientations in theory. But some observations
In this section, we present an approach to pose estimatitan be made to determine the orientations that are characteristic.
and verification based on matching using heversion of the For example, witk fixed, althoughx can vary from 0 to 360,
Hausdorff metric, with the motion trajectory information fromit is not necessary to store images at every degree sifice
motion analysis being used as a constraint to reduce the sedhehobject looks very similar whem changes only by a small
space. The model acquisition step is discussed in Section lll+Aumber (say, less tharfb A similar argument is valid for,
Section IlI-B gives a brief overview of a framework for detecwhich takes values in the interval{090°]. More constraints
tion, tracking and segmentation of moving objects in video acan be included for a specific application. For example, in many
quired by a moving platform. Pose estimation and object ideapplications, the value gfcan only change within a small range
tification are discussed in Section IlI-C. Section I1I-D discusses can even be fixed. Research has shown that it seems that the
methods for excluding clutter from the ROI. The pose evollruman visual system represents objects only by a few 2-D views
tion curve is defined in Section IlI-E. Section IlI-F discusse&.g., [14]). Not much is known, however, about the number of
the interpretation oH? as a confidence measure, and a confisiews required for a specific object. In this work, we represent
dence figure is defined. Experimental results are presentedam object with a model base in whieghand ¢ take on only a
Section IV. finite set of values.



900 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 6, JUNE 2001

} 1
! . . L. 1 .
——L | Sensor Motion | .| Moving Object | Object : Pose Estimationl—sl Pose Evolution

Video Int | | Compensation Detection Segmentation | & | Curves

o = ]

1 : [

: : D Verification
b Vo Verification Results

I Object Detection
L

____________________________

and Segmentatior] Using HP

F- frame 310 frame 315 frame 320

Edge from RO

Fig. 4. Dynamic verification with thé/» metric: a moving object is first detected and its edge map is used in the following frames for verification. The sequence
is infrared with frame siz&28 x 128 pixels.

Besides orientatiorscaleis another variable that needs tanore appropriate if the camera is of the infrared type (as in
be considered. It is possible to transform the scene object, thest surveillance applications) since reliable feature detection
model, or both, to bring them to the same size before performiiggy more difficult in infrared imagery. Also, the brightness
matching. Each method has its advantages and disadvantage@hasmal) constancy assumption is more appropriate for in-
discussed in [15]. For appearance-based approaches, the mirdedd images, which is essential to the computation of optical
base (or the parametric space) is constructed at a fixed sclitav. We follow the framework reported in [10] which inte-
Therefore, during recognition, the object size needs to be ngrates image sequence stabilization, moving object detection,
malized with respect to the model base. There is a potentigdcking and segmentation, to form the frontend of the recog-
problem with the above normalization: if the object is at a muafition system. Stabilization is based on the optical flow-based
lower resolution than the training images, normalization capproach reported in [13], where the optical flow is modeled
only bring the object to the sanséze but not to the samscale as a weighted sum of basis functions, and permits accurate and
at which the training images were looked at. Considering thigst motion computation. The computed flow field is then used
we propose to acquire the model images at a resolution higheestimate the motion parameters. An affine transformation is
than that at which the object is most likely to appear in real apsed to model the sensor motion. That is, the transformation
plications. At the identification/verification stage, we bring th&etween the pixels of frameand framek + 1 is defined by
model to the scale of the scene object. Note that this is essen-
tially a downsampling process, and we are getting rid of detailed P = <T11 12 ) i+ <Tl’ ) )
information rather than trying to add more information. Equiva- Ty
lently, one can build a multi-scale model base which keeps sgyhereP; = (x;, ;)7 andP;’ = (', %) are pixels of frame
eral versions at different scales for an object at a certain orighand framek + 1, respectively.

tation. After sensor motion compensation, changing parts are de-
) ) ) . tected from the camera motion compensated frame differences.
B. Framework for Moving Object Detection, Tracking, and  rhege changing parts are segmented from the background to
Segmentation form ROI's, and then tracked and updated incrementally based
As stated in the introduction, in many applications, then the successive motion measurements. If the object is big
camera is moving during the acquisition process. Therefagaough, it is also possible to get its boundary by motion-based
sensor motion compensation is typically required before osegmentation. Otherwise, a bounding box is used to define the
can exploit the object-induced motion information. Sens®&Ol. Segmentation greatly facilitates matching: recall from (5),
motion compensation is also known in the literature as imagfeat a supporting se¥ is needed for computing®. In practice,
sequence stabilization. Roughly speaking, there are twemallerX is desired to facilitate the computation. Segmenta-
types of stabilization methods: feature-based and optidan not only provides a smalX but also greatly decreases the
flow-based. We believe that optical flow-based methods asearch region for thain operation in (6). For example, we can

721 T22
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Fig.5. Dynamic identification with thé/? metric: at each frame the models are compared against the detected ROI according to (6)Hhdahes are used
to choose one out of the three hypotheses.

estimate the scaling from a model to the scene using the siz&Vith V. = (V,, V,) plotted in a regulatX—Y" coordinate

of the ROI (this step, however, needs to account for the inagystem [with horizontak -axis, verticall™-axis and 1, 1) lying
curacies in the segmentation step). Another example is, whHarthe upper-right quadrant], we can easily identify the con-
attempting verification, if the sensor-induced motion is domstraints on the angles, ¢ imposed by the signs of the com-
nant, the affine parameters computed from (7) can be usedptments ofV. For example, consider a forward moving object.
estimate the scale factelbetween two ROI's in correspondingAssuminge € [0°, 90°], we have

frames b .
y if $ =0°,thenV, < 0= « € (0°, 180°);

if ¢ = 0°, thenV, > 0 = a € (180°, 360°);

s = \/(7’31 iy + 15 +735)/2 (8) if = 90°, thenV totally determines the object orientation
_ _ ' _ _ in a top view;
as will be illustrated by an experiment in Section IV. if ¢ € (0°,90°), thenV, > 0andV, > 0 = « €

(180°, 270°), etc.

One can find that constraints of the last type are most effec-
The segmentation step in the previous section locates potéwe, and also most common in real applications. For example,
tial moving objects. If the object is subject to nearly translationaltypical surveillance camera may hayéetween 0 and 96.
rigid motion, we can use the average of the flow field in the segnder the constraint provided by motion analysis, pose estima-
mented area to approximate the object velodityif the object tion and object identification problems are reduced to the fol-
is too small to support the average computation, an alternatlegving search problem: given an ROI, find the best matching
way is to estimate the velocify’ from the change in the massmodel from only the model images whose orientatiGms¢)
center of the detected changing area. The details of the algjein the subspacel x ® with A = (a1, az) and® = (1, ¢2)
rithm can be found in [17]. For the pose estimation algorithnbeing two intervals, and; and«- being estimated as above.
only the direction ofV is used to assist search over the modélhe values of; and¢, are application-dependent. In the ex-
base, although the value ¥ is potentially usable. periments reported in this paper, we det= (0, 90). Formally,

C. Pose Estimation and Object Identification
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by using (9), we estimate the object pose for the current fran 065
0.6F —— for model 1
as B — for model 2
Eo 554 —. for model 3 ,
(&, §) = argmin HP(R, M(«, ¢)) @ £ os
a, pCAXP § 0.45 N

whereR is defined as before, anti{(«, ¢) is the model with iEL 0.4r
orientation parametétr, ¢) [note thatin practice, alocal searché 0.35N, , : L
using (6) is still needed to account for the inaccuracy of thg o5/ \\ // -

segmentation step]. Obviously, (6) and (9) involve essentialS , 5| Y/
similar computations except that we use the former to choo

o. ‘ . ‘ .
the object type and the latter to decide the orientation. In fact, Sis 320 822 o indot 326 328
we treat the same object at different poses as different class (a)

then (9) is implied by (6).

The benefit from the constrained search is twofold: the sear
is speeded up; and more importantly, by reducing the numk , ©-95¢
of candidates, the probability of false match is reduced. Fuc» 0.9t T e
ther constraints can be obtained if we consider the relatlonsfoo asl —. for model 3
among frames which are temporally close. In this work, we e osl A\ e
ploit this type of information through what we refer to as the3 7 o - o e
pose evolution curvas discussed in Section llI-E. g0-787 Sl T

Note that, in the worst case where motion analysis gives tE 0.71 ’ N
tally false information for, the constraints obtained above are [ o0.65) N
longer valid. To deal with this situation, the algorithm should re og . . . .
sort to basic full search whenever the confidence measure (: 18 820 882 e indea 826 828

Section llI-F) of the current estimate drops below a threshold

1

; ; Fig. 6. H" values and confidence figures for the sequence in Fig. 5, from
D. EXCIUdIng Clutter in the ROI frame 318 to 327: (a)H? values versus frame index and (b) computed

The detected ROI contains not only the potential object benfidence figureP. .
also background clutter. According to (5), every edge pixel
within the ROI could contribute té7?( A, B), which is unde- for identification purposes. The following quantityis defined
sirable. When doing identification, the following technique i$0 give a quantitative description of the smoothness of the pose
used to exclude clutter before calculatify: given a model evolution curve:
M and an ROIR, we keep points in the ROI only if they are

within a certain distance af(M). HereZ'(M) is a transformed S = 1 Z(p(t) —q(1))? (11)
version of M under transformatiofi’. That is, a new ROR’ N
is formed by
where
YR N number of frames;
R ={«x:Vz € Randp(z, T(M)) < t} (10) . frame index:
. . ] p(t) pose evolution curve;

wheret is a smalll positive number. Op thel other hand, if we ;) — p(t) * window(t) smoothed version of(t) (+ de-
are attempting verification, the model is typically an ROI from notes convolution).

previous frames. In this situation, the segmentation boundqq)ére wmdow( ) is a discrete window function whose support

a largert should be used to account for the maccurames in t"}?tms paperl = 1 andwindow(—1) = 0_207 window(0) =

segmentation. 0.5, window(1) = 0.25. In general, given a sequence, a correct
hypothesis should yield a pose evolution curve with a smaller
than an incorrect hypothesis does.

By plotting the estimated pose over time, we getdhse evo- ~ When the number of model images is large, it is helpful to
lution curvefor the object. The curve is an additional indicatoalso consider several top matches given by (9), instead of only
of identification/verification confidence: under the continuouoking at the best matching one. If we keep several top matches
motion assumption, the pose evolution curves should displagd plot the estimated poses in a common coordinate system at
some smoothness in either tieor ® domain. For example, if each frame, we get the band of pose estimates. This pose infor-
the pose evolution curve suffers from random jitter between agtation is also helpful for testing the hypotheses; if a hypothesis
jacent frames, chances are that the object hypothesis is wrongstoorrect, the corresponding pose band should be more concen-
begin with. Of course, when objects are similar in shape, thdarated than that of a wrong hypothesis, unless the object’s ap-
may not be enough information from the pose evolution curvegarance changes dramatically even with small changes in ori-
only, but the corresponding? value should offer information entation. Again, to quantitatively evaluate how a pose band is

E. Pose Evolution Curve
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Fig. 7. Sample images in the model base. The upper row is for model 1; the lower row for model 2.

Frome#112

—

=

Framefii | FrametiMs Trame TR

. l‘[nmnﬂlﬂﬁ . IFranme# | 50

Hypilsesis | Hypothesis 2
HL: 0.3, (200,450 HI: 026, (15545) HU:024, (13300 HE 024, (60,300 101 27, (60,300 HL:0G21, (35,30)
H2: 045, (200.45) H2: 031, (14045 H2: 025, (120300 HZ:032,011045) H2:032,(2530) H2:0.28, (35,50)

Fig. 8. Dynamic identification with thé/ » metric. The task is to identify the moving object in the scene as one of the two hypotheses. Top row: sample images
(of size320 x 240) from one sequence with black tank moving around. The moving object has been highlighted by a bounding box defined at the segmentation
step. Middle row: two hypotheses. Bottom row: correspondiffgvalues and estimated podes ¢) at each frame for the two hypotheses. Even though the two
hypotheses are similar in shape, at each frame, the algorithm gives siiallalues for hypothesis 1 than for hypothesis 2.

concentrated, the following quantity is defined, if the topB  value for each model is treated as a measureoofidencen
matches are kept: choosing a certain model: the smaller this number is, the more
confident we are of choosing the model. If multiple models are
kept as frames are processed, although at some time we may
} (12)  make the wrong choice, subsequent updates will hopefully pro-
vide the right choice.
. For the verification problem, a confidence interpretation is
where N, ¢ are as before, ani(?) is the average of the posey s helpful: whenever there is a sharp decrease in confidence,
angles given by the tof maiches atframe In general, given a \ynat may have happened is that the object is no longer the pre-
sequence, a correct hypothesis should yield a band of poses Wjth;s one or the orientation of the object has changed dramat-
smallerC' than an incorrect hypothesis does. The motivatiqag)ly This information can be used to update the model hy-
behind the above definitions is thétandC' are in a sense like yotheses. Verification, in this respect, is similar to a tracking
sample mean square deviations. problem like that in [8]. But keeping a 3-D model of the object

Notice that the pose angteis periodic, i.e., 36Dis equiva- gjiows one to tackle problems involving more general complex
lentto 0. Therefore when calculating the average of angles [thep motions.

. 1 g R
=N zt: B Z(Pi(t) —p(t))

i=1

moving average fog(?) in (11) and the average over thean- 14 conform with the common understandingagnfidence
gles in (12)], the value of(t) should be wrapped around with; ¢ "\yith real numbers 1.0 and 0.0 representing the most and
respect to 360whenever the periodicity demands it. least confidences respectively, we define a confidence figure

. ' based on theéZ? value as
F. Interpreting 4? as a Confidence Measure

As mentioned earlietH? has some nice properties such as po_1_ H?P
being a metric, improved robustness, “expected risk” interpre- T 14+ Hr’
tation, etc. Being a metric is important especially from a the-
oretical point of view. For example, we would like a measur€he meaning is obvious: whed? (A, B) = 0.0, which means
(-, -) that gives the same result foX;, X5) and (X», X1). A= B, we setP. = 1.0; and whenH?( A, B) goes to infinity,
These properties af? allow a confidence interpretation. ForP. = 0.0. The underlying reason for choosing functif:) =
the identification problem, this means that at each stegthe z/(1 + ) is that it is a convex function ofd, cc) and thus

(13)
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Y (9) based on the specific problem.
% 40 80 80 100 120 140 160 IV. EXPERIMENTAL RESULTS AND ANALYSIS

Frame index Experiments have been performed with both infrared and

Fig. 10. Pose evolution curves (anglgfor the sequence shown in Fig. 8. Theoptical sequences. Several experimental results are presented
computeds values [see (11)] are 8.1 and 64.9 for hypothesis 1 and hypothefig this section. For convenience of presentation, the detailed
2, respectively, strengthening the confidence in choosing hypothesis 1. discussion of the results is mainly focused on two sequences,
one infrared and one optical. Experiments on other data will be
foHP is stillametric, which is desirable for comparing multiplebriefly listed. In the experiments presented in this papemd
hypotheses. It is worth pointing out that this confidence figurein (5) are fixed at 1 and 4 respectively, ahih (10) is 5. The
depends on the measurementf, thus it will change ifH? is  edge maps were detected using Canny’s algorithm [4].
reparameterized (for instance, if the resolution of the image isIn the first experiment, simple verification is carried out on
doubled). Therefore, it is better to use this figure for compariran infrared sequence acquired by a helicopter flying toward a
different hypotheses than to interpret it for a single hypothegenk. Due to the fast camera motion, the scaling effect becomes
along the temporal axis unless the size of the suppoting significant within a few frames. Fig. 4 illustrates the verification
fixed for all frames. procedure. A moving object is first detected, which is possible
In summary, the whole framework is illustrated by the diaenly after the dominant sensor motion is compensated. Then an
gram shown in Fig. 3. It is worth pointing out that we hav&Ol is formed and processed to get the edge map of the ob-
assumed that the object is moving and that detection and sggt. This edge map, used as the model, is verified in subsequent
mentation are based on analyzing the object motion. If the dibames. In Fig. 4, the ROI from frame 302 is superimposed on
ject is stationary and/or the detection and segmentation are fiames 310, 315, and 320, after the locations have been esti-
complished by other means, the verification step still works (immated using (6). Note the substantial scaling of the object—a
this case, pose variation may still exist due to sensor motiotypical scale factor is 1.02 by (8) for two consecutive frames,
We have used the dotted-lined path to show that possibility #fus the object gets almost 1.4 times larger in frame 320 than
though it is not implemented in the current work. Notice thatyhen it was in frame 302 (this is only during a period slightly
if no pose variations are considered, then the pose estimatinare than half a second with a 30 Hz frame rate). It would be
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Fig. 12. Each row contains sample images from an optical sequence. The first sequence is tested with the modelbase given by Fig. 7. The secand sequence i
tested with models containing two cars, one of which being the moving car in the sequence, and rotation is allowed horizontally only.

very expensive if one wanted to handle this by searching ovB” value and the confidence figure for each model from frames
the scale space using the Hausdorff metric. However, by coB18 to 327. The overall confidence in model 2 is obvious.
pensating the scaling using (8) the algorithm is able to locate thdn the next experiment, the sequences are optical images ac-
tank and report smal/? values (meaning high confidence). quired by a hand-held video camera. Model images were simi-
In the above example, the object motion is approximatelsrly acquired, with the help of a turntable. The model base was
2-D; thus verification is similar to a tracking problem afteconstructed as explained in Section IlI-A. Currently, the model
the object has been detected. However, if the object is |dmise contains two model tanks. Fig. 7 shows four model images
somehow (e.g., due to occlusion), then re-appears later, foeeach of the models. Accurate pose information can be ob-
algorithm should be able to verify if it is the previous objectained for the model images if the camera is under fine control,
The idea becomes more obvious when the object motionais in [11]. In this work, the model pose was obtained manually
3-D and induces dramatic orientation changes. In this situatighrough visual inspection of the model image. Thdomain is
even if simple tracking can be done on a frame-by-frame basisly coarsely divided, withk taking only two values, 30and
it is hard to say if it has found the same object because th&; and for each, « varies by approximately®sin [0°, 355°]
object looks too different in later frames than in earlier frameésee Fig. 2 for the definitions of the angles).
What might have happened is that the tracker has drifted awayFig. 8 illustrates how identification works when the object
However, with a model in mind, verification can still be donés subject to 3-D motion. The sequence contains two objects,
by updating the model according to the motion trajectognd only the black one is moving. The task is to identify the
information: if the confidence figure for certain model at thenoving object as one of the two hypotheses (i.e., the object
current frame drops suddenly, but a new pose of the modededs to be identified as one of the two candidate models). Of
(either predicted by the trajectory or by a full search in posmurse, in this example, the ground truth is model 1 (the black
domain) gives high confidence, then the new pose will be kepbject). The moving object is first detected and segmented by
and the present object is verified to be the previous one. Thiee aforementioned procedure; then identification and pose es-
is represented by the feedback path from verification to posmation are carried out in each frame. The first row in Fig. 8
estimation in Fig. 3. shows sample frames from one of the sequences with the de-
Fig. 5 shows how identification works for the same sequentected moving object highlighted by a bounding box (note that
as in Fig. 4. Given the sequence, the task is to identify which ofily the black object is moving in this sequence). Below each
the three hypotheses is present in the current sequence. Infiliime are the correspondig? value and the estimated pose
example the ground truth is model 2. In this experiment, objedtvo anglesy and¢) computed according to (9). In the compu-
contours derived from CAD models are used as models. Ration, again a local search (of size 3 pixels) in the translation
each frame, an ROl is detected, then each model is warped togpace was performed. Although no search in scale space was
size of the ROI. To account for inaccuracies in the detection apdrformed in this example, the result is good enough, implying
segmentation step, for each model, a local search in translatibat the segmentation step gives a good estimate of the scale
space and in scale space is carried out according to (6), dactor between the model and the scene object (a search over
the bestH? value is used for this model. It is clear from thes = 0.9, 1.0, 1.1 is used in other experiments in the paper). It
figure that, although in some individual frames the algorithnis obvious that, although the appearances of the objects are dra-
reports false identification results (i.e., th&” value for model matically different, they have similar geometric shapes. There-
2 is bigger than those for the others), by using multiple frameeye it is in fact a difficult task to distinguish between these two
the overall confidence of choosing model 2 is higher than ftwypotheses only from their edge maps. Yet in each frame, the
choosing others. To see this more clearly, we plotted in Fig. 6 thlgorithm is able to choose model 1 correctly, and the pose es-
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Fig. 13. Each column contains sample images from an IR sequence. The sequences are nagl€d & rngl7_20, rngl9.06, rngl9.07,andrngl19_18,

from left to right, respectively. Three hypotheses are assumed during verification. The object motion is assumed to be 2-D (no 3-D model ofithevallguts
in this case).

TABLE |
PERFORMANCE OF THEALGORITHM ON SOME TEST SEQUENCES
Sermenss Nusubwr of Number of Prames | Number of Correct | Coevert | Corvent
N Hypotheses Azsaumed | Used for VeriBeation Frames By HY Hy 87 | By 7

By bk & HEH i1 Yex Yeou
b i 2 134 1y Yoz Yes
raght ¥ 25 1% -

vl & sl pid ]

gk I 3 25 & .
ruglh f 35 il . -
raglh ¥ 3 et i - -

timates are close enough (see Fig. 8 for the estimated posestiodel base shown in Fig. 7. The second sequence (two_car3)
these sample frames). was tested with two models containing two cars at different
Fig. 9 shows the confidence figure computed according tmrizontal orientations, one of which being the moving car in
(13) By plotting the estimated pose in each frame, we can get the sequence. Fig. 13 shows sample sequences from a large
pose evolution curve for each hypothesis, as shown in Fig. FLIR database. Each of these sequences was tested with three
The pose evolution curve is found to be able to strengthen thgpotheses which are edge maps from other sequences in the
confidence since the curve for hypothesis 1 is smoother than tHatabase, with one being true hypotheses. The experimental
for hypothesis 2, which is reasonable under the assumptionre$ults are summarized in Table I. Since each sequence is
continuous motion. According to (11), the computedalues relatively long and the object is only big enough near the
are 8.1 and 64.9 for hypothesis 1 and hypothesis 2, respectivedyminal portion of the sequence, we used only the final few
Note that for the aforementioned reason, ¢healue is not in- frames in verification, as shown in the column “number of
formative in this experiment; thus only anglds plotted in the frames used.” Note that there is no 3-D model available for
pose evolution curve. the sequences, and the object motion is largely 2-D in the last
As mentioned before, when the number of model imagesfesn frames. Thus verification was done by using (6), and no
large, it is helpful to keep several top matches given by (9), asdand C values were computed. For sequences in Fig. 12, (9)
consider the band of pose estimates. For the sample sequeneess used, and correspondifgand C values were computed.
Fig. 8, the pose bands are plotted in Fig. 11 (for amgtmly). From the table, it is obvious that although at some frames the
This pose information is illustrative: the band for hypothesis 1 &gorithm may be confused, there is not a single case where the
more concentrated than that for hypothesis 2, thus strengtherétgprithm fails if all the frames are considered. Specificadly,
our confidence in choosing hypothesis 1. According to (11), tled C values alone are able to give correct results when they
computedC values are 20.9 and 80.4 for hypothesis 1 and hgre available.
pothesis 2, respectively.
We now briefly list the experimental results for other se-
guences, including optical and infrared imagery. Fig. 12 shows
two optical sequences in which the objects are subject to 3-DObject recognition is a well-researched area, and has been
motion. The first sequence (two_tankl) was tested with tlaproached from different aspects (e.g., [2], [12]). In this paper,

V. SUMMARY
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we attempted to exploit temporal information in video to as- [g]
sist recognition. Specifically, in addition to using motion for
detection and segmentation, our approach uses the trajector[}é]
of a moving object to predict its approximate pose. Also, the
motion coherence of an underlying object is measured through
the pose evolution curses. The experiments demonstrate how thlg]
concepts and algorithms for dynamic identification/verification
work on real video. The paper is focused on studying the potll
tential of the idea of temporal object verification using video.[12
The work reported here is intended to show how temporal infor-
mation can be exploited to help verification/identification when(13]
video is available, rather than to build an end-to-end system.
When building an end-to-end system, many system-level issug¢s]
arise, such as time and space complexity, which are not a([jis]
dressed in this paper. [16]
In this work, although feature (edge) detection is necessary,
we use theL, version of Hausdorff metric-based matching, [17]
which does not require feature correspondence and is robust to
noise, hence relaxing the requirements on the feature detectiqrs]
step. This may be attractive especially in applications that use
infrared sensor, since in this situation, feature-detection is not
reliable, and appearance-based approaches may also have dif-
ficulties. However, the work is not intended to replace other

methods such as appearance-based recognition approaches. In

fact, our major focus has been on how to utilize temporal infor-
mation available in a video for better recognition. Some ba
ideas developed in the work are meaningful irrespective of t
specific representation of the object, such as pose predict]
based on the object’s trajectory, and computing motion coh
ence based on pose evolution curves, etc. Also, the appro
is proposed for a more constrained scenario: verification a|
identification (with much fewer hypotheses than a recogniti
algorithm usually assumes), and simple object motion has been

907

D. Huttenlocher, J. Noh, and W. Rucklidge, “Tracking nonrigid objects
in complex scenes,” iRroc. Int. Conf. Comput. VisBerlin, Germany,
1993, pp. 93-101.

B. Li, R. Chellappa, Q. Zheng, and S. Der, “Experimental evaluation
of neural, statistical and model-based approaches to FLIR APRE.
SPIE vol. 3371, pp. 388-397, 1998.

B. Li, Q. Zheng, and S. Der, “Moving object detection and tracking in
FLIR images acquired by a looming platform,”voc. Joint Conf. In-
formation ScienceRResearch Triangle Park, NC, 1998, pp. 319-322.
H. Murase and S. Nayar, “Visual learning and recognition of 3-D objects
from appearanceJht. J. Comput. Vis.vol. 14, pp. 5-24, 1995.

] R. P. N. Rao, “Dynamic appearance-based recognitionPrat. IEEE

Conf. Computer Vision Pattern Recognitjd®97, pp. 540-546.

S. Srinivasan and R. Chellappa, “Image stabilization and mosaicking
using the overlapped basis optical flow field,”roc. IEEE Int. Conf.
Image ProcessingSanta Barbara, CA, 1997.

M. Tarr and S. Pinker, “Mental rotation and orientation-dependence in
shape recognition,Cogn. Psycho].vol. 21, pp. 233-282, 1989.

S. Ullman,High-Level Vision Cambridge, MA: MIT Press, 1996.

1. Weiss, “Geometric invariants and object recognitidnf: J. Comput.

Vis, vol. 10, pp. 207-231, 1993.

Q. Zheng and R. Chellappa, “Motion detection in image sequences ac-
quired from a moving platform,” irfProc. IEEE Int. Conf. Acoustics,
Speech, Signal Processinginneapolis, MN, 1993, pp. 201-204.

A. Zisserman, D. Forsyth, J. Mundy, C. Rothwell, J. Liu, and N. Pillow,
“3D object recognition using invarianceArtif. Intell., vol. 78, pp.
239-288, 1995.

Baoxin Li received the B.S. and M.S. degrees in elec-
trical engineering from the University of Science and
Technology, China, in 1992 and 1995, respectively.
He received the Ph.D. degree in electrical engineering
from the University of Maryland, College Park, in
2000.

He is currently with Sharp Laboratories of
America, Inc., Camas, WA, working on multimedia
analysis for consumer applications. He was pre-
viously with the Center for Automation Research,
University of Maryland, working on face and object

assumed. Even though this is a constrained scenario similar%’i’f—king and verification in video, automatic target recognition, and neural
) ’ networks. His interests include pattern recognition, computer vision, neural

uations can be found in many applications such as surveillanggyorks, and multimedia processing.

systems. We have found the proposed method promising for ver-
ification/identification tasks.

ACKNOWLEDGMENT

The authors would like to thank Dr. R. Sims for providing the
FLIR data.

REFERENCES

Rama  Chellappa (S'78-M'79-SM’'83-F'92)
received the B.E. (Hons.) degree from the University
of Madras, Madras, India, in 1975 and the M.E.
(Distinction) degree from the Indian Institute of
Science, Bangalore, in 1977. He received the
M.S.E.E. and Ph.D. degrees in electrical engineering
from Purdue University, West Lafayette, IN, in 1978
and 1981, respectively.

Since 1991, he has been a Professor of electrical
engineering and an Affiliate Professor of computer
science with the University of Maryland, College

[1] A.J.Baddeley, “Errors in binary images and&p version of the Haus- Park. He is also an Associate Director with the Center for Automation Research
dorff metric,” Nieuw Archief voor Wiskundeol. 10, pp. 157-183, 1992. and is also affiliated with the Institute for Advanced Computer Studies. Prior to

R. Basri and D. Jacobs, “Recognition using region correspondence,”jgining the University of Maryland, he was an Associate Professor and Director

[2
Proc. Int. Conf. Computer Visiori995.

[3] G. Borgefors, “Distance transformations in digital images,Ciomput.
Vis., Graph., Image Proceswsol. 34, 1986, pp. 344-371.

[4] J. Canny, “A computational approach to edge detectit/BEE Trans.
Pattern Anal. Machine Intellvol. PAMI-8, pp. 679-698, 1986.

(5]

1996.

[6]
Verlag, 1967.
[7] F. Hausdorff,Set Theory2nd ed. New York: Chelsea, 1962.

of the Signal and Image Processing Institute with the University of Southern
California, Los Angeles. During the last 20 years, he has published numerous
book chapters and peer-reviewed journal and conference papers. Several of
his journal papers have been reproduced in collected works published by
IEEE Press, IEEE Computer Society Press, and MIT Press. He has edited

D. Doria and D. Huttenlocher, “Progress on the fast adaptive target de-collection of papers oDigital Image ProcessingSanta Clara, CA: IEEE
tection program,"RSTA Tech. Rep. ARPA IU Prograpp. 589-594,

Computer Society Press), co-authored a research monographrtificial
Neural Networks for Computer Visiofwith Y. T. Zhou) (Berlin, Germany:

H. FedererGeometric Measure Theary Berlin, Germany: Springer- Springer-Verlag), and co-edited a book bfarkov Random Fieldgwith A.

K. Jain) (New York: Academic). He also served as Co-Editor-in-Chief of
Graphical Models and Image Processingis current research interests are



908 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 6, JUNE 2001

image compression, automatic target recognition from stationary and mov]
platforms, surveillance and monitoring, automatic design of vision algorithm
synthetic aperture radar image understanding, and commercial application
image processing and understanding.

Dr. Chellappa has served as an Associate Editor for the IERZ&IJACTIONS
ON SIGNAL PROCESSING IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE, |IEEE TRANSACTIONS ON IMAGE PROCESSING and
IEEE TRANSACTIONS ONNEURAL NETWORKS He served as a member of the
|IEEE Signal Processing Society Board of Governors from 1996 to 1999. H University of Maryland, College Park. During
currently serving as the Editor-in-Chief of IEEERANSACTIONS ONPATTERN 1994-1995, he was a Scientist with the Lockheed
ANALYSIS AND MACHINE INTELLIGENCE. He has received several awards, Martin Laboratory, Baltimore, MD. Since 1996,
including the 1985 NSF Presidential Young Investigator Award, a 1985 IBMe has been an Associate Research Scientist with the Center for Automation
Faculty Development Award, the 1991 Excellence in Teaching Award from tiiResearch, University of Maryland. His research interests include image and
School of Engineering, University of Southern California, and the 1992 Begideo analysis, automatic target detection/recognition, human identification,
Industry Related Paper Award from the International Association of Pattemmotion analysis, and remote sensing.

Recognition (with Q. Zheng). He has been recently elected as a distinguished
Faculty Research Fellow (1996-1998) at the University of Maryland. He is a
Fellow of the International Association for Pattern Recognition. He has served
as a General and Technical Program Chair for several IEEE international ¢
national conferences and workshops.

Qinfen Zhengreceived the B.S. and M.S. degrees in
electrical engineering from the University of Science
and Technology, China, in 1981 and 1984, respec-
tively. He received the Ph.D. degree in electrical en-
gineering from the University of Southern California,
Los Angeles, in 1992.

From 1992 to 1994, he was an Assistant Research
Scientist with the Center for Automation Research,

Sandor Z. Derreceived the B.S. and M.S. degrees in
electrical engineering from Virginia Polytechnic In-
stitute, Blacksburg, in 1986 and 1988, respectively.
Hereceived the Ph.D. degree in electrical engineering
from the University of Maryland, College Park, in
1995.

He is currently with the U.S. Army Research
Laboratory, Adelphi, MD, working on image
exploitation, including automatic target recognition
and sensor modeling. He was previously with the
U.S. Army Night Vision and Electronic Sensors
Directorate, working on synthetic image generation, automatic target recogni-
tion, and sensor simulation. His interests include pattern recognition, computer
vision, neural networks, and optical sensors.




