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Abstract

For many applications in graphics, design, and human
computer interaction, it is essential to understand where
humans look in a scene. Where eye tracking devices are
not a viable option, models of saliency can be used to pre-
dict fixation locations. Most saliency approaches are based
on bottom-up computation that does not consider top-down
image semantics and often does not match actual eye move-
ments. To address this problem, we collected eye tracking
data of 15 viewers on 1003 images and use this database as
training and testing examples to learn a model of saliency
based on low, middle and high-level image features. This
large database of eye tracking data is publicly available
with this paper.

1. Introduction

For many applications in graphics, design, and human
computer interaction, it is essential to understand where hu-
mans look in a scene. For example, an understanding of vi-
sual attention is useful for automatic image cropping [16],
thumbnailing, or image search. It can be used to direct
foveated image and video compression [22], [7] and levels
of detail in non-photorealistic rendering [4]. It can also be
used in advertising design, adaptive image display on small
devices, or seam carving [14].

Some of these applications have been demonstrated by
incorporating eye tracking into the process: a user sits in
front of a computer with an eye tracker that records the
user’s fixations and feeds the data into the method. How-
ever, eye tracking is not always an option. Eye trackers are
expensive and interactive techniques are a burden when pro-
cessing lots of data. Therefore, it is necessary to have a
way to predict where users will look without the eye track-
ing hardware. As an alternative, models of saliency have
been used to measure the conspicuity of a location, or the
likelihood of a location to attract the attention of human ob-
servers.

Most models of saliency [9] [13] [8] are biologically

Figure 1. Eye tracking data. We collected eye-tracking data
on 1003 images from 15 viewers to use as ground truth data to
train a model of saliency using machine learning. Gaze tracking
paths and fixation locations are recorded for each viewer (b). A
continuous saliency map (c) is found by convolving a gaussian
over the fixation locations of all users. This saliency map can be
thresholded to show the most salient 20 percent of the image (d).

inspired and based on a bottom-up computational model.
Typically, multiple low-level visual features such as inten-
sity, color, orientation, texture and motion are extracted
from the image at multiple scales. After a saliency map
is computed for each of the features, they are normalized
and combined in a linear or non-linear fashion into a mas-
ter saliency map that represents the saliency of each pixel.
Sometimes specific locations are identified through a com-
bination of winner-take-all and inhibition-of-return opera-
tions.

Though the models do well qualitatively, the models
have limited use because they frequently do not match ac-
tual human saccades from eye-tracking data, as in Fig 2,
and finding a closer match depends on tuning many design
parameters.



Figure 2. Current saliency models do not accurately predict
human fixations. In row one, the low-level model selects bright
spots of light as salient while viewers look at the human. In row
two, the low level model selects the building’s strong edges and
windows as salient while viewers fixate on the text.

We make two contributions in this paper. The first
is a large database of eye tracking experiments with la-
bels and analysis, and the second is a supervised learning
model of saliency which combines both bottom-up image-
based saliency cues and top-down image semantic depen-
dent cues. Our database consists of eye tracking data from
15 different users across 1003 images. To our knowledge, it
is the first time such an extensive collection of eye tracking
data is available for quantitative analysis. For a given im-
age, the eye tracking data is used to create a “ground truth”
saliency map which represents where viewers actually look
(Fig 1). We propose a set of low, mid and high-level im-
age features used to define salient locations and use a linear
support vector machine to train a model of saliency. We
compare the performance of saliency models created with
different features and show how combining all features pro-
duces the highest performing model. As a demonstration
that our model can be used for graphics applications, we
show the DeCarlo and Santella [4] abstracted nonphotoreal-
istic rendering technique adapted to use our saliency model
instead of eye tracking input.

Other researchers have also made some headway on im-
proving low level saliency models. Bruce and Tsotsos [2]
present a model for visual saliency built on a first prin-
ciples information theoretic formulation dubbed Attention
based on Information Maximization (AIM) which performs
marginally better than the Itti model. Avraham and Lin-
denbaum’s work on Esaliency [1] uses a stochastic model
to estimate the most probable targets mathematically. The
main difference between these works and ours is that their

models are derived mathematically and not trained directly
from a large database of eye tracking data. Cerf et al. [3]
improve upon the Itti model by adding face detection to the
model. In addition to adding face detection, we add sev-
eral other higher level features which provide us with an
increased performance over both the Itti and Cerf models.

Our work is most closely related to the work of Kien-
zle et al. [10] who also learn a model of saliency directly
from human eye movement data. Their model consists of
a nonlinear mapping from a normalized image patch to
a real value, trained to yield positive outputs on fixated
patches, and negative outputs on randomly selected image
patches. In contrast to our work, they only used low-level
features. Furthermore, their training set comprises only 200
grayscale natural scene images.

In the specific situation of trying to predict where peo-
ple look in a pedestrian search task Ehinger et al. [5] show
that a model of search guidance combining three sources:
low level saliency, target features, and scene context, out-
performs models based on any of these single sources. Our
work focuses on predicting saliency in a free viewing con-
text and creates a model with a larger set of image features.

2. Database of eye tracking data

We collected a large database of eye tracking data to al-
low large-scale quantitative analysis of fixation points and
gaze paths and to provide ground truth data for saliency
model research. The images, eye tracking data, and accom-
panying code in Matlab are all available on the web to fa-
cilitate research in perception and saliency across the vision
and graphics community.

2.1. Data gathering protocol

We collected 1003 random images from Flickr creative
commons and LabelMe [15] (Fig 3) and recorded eye track-
ing data from fifteen users who free viewed these images.
The longest dimension of each image was 1024 pixels and
the other dimension ranged from 405 to 1024 with the ma-
jority at 768 pixels. There were 779 landscape images and
228 portrait images. The users were males and females
between the ages of 18 and 35. Two of the viewers were
researchers on the project and the others were naive view-
ers. All viewers sat at a distance of approximately two feet
from a 19 inch computer screen of resolution 1280x1024 in
a dark room and used a chin rest to stabilize their head. An
eye tracker recorded their gaze path on a separate computer
as they viewed each image at full resolution for 3 seconds
separated by 1 second of viewing a gray screen. To ensure
high-quality tracking results, we checked camera calibra-
tion every 50 images. We divided the viewing into two ses-
sions of 500 randomly ordered images. Each session was
done on average at one week apart. We provided a mem-



Figure 3. Images. A sample of the 1003 images that we collected
from Flickr and LabelMe. Though they were shown at original res-
olution and aspect ratio in the experiment, they have been resized
for viewing here.

ory test at the end of both viewings to motivate users to pay
attention to the images: we showed them 100 images and
asked them to indicate which ones they had seen before.
We discarded the first fixation from each scanpath to avoid
adding trivial information from the initial center fixation.

In order to obtain a continuous saliency map of an im-
age from the eye tracking data of a user, we convolve a
gaussian filter across the user’s fixation locations, similar
to the “landscape map” of [20]. We also generate a saliency
map of the average locations fixated by all viewers. We can
choose to threshold this continuous saliency map to get a bi-
nary map of the top n percent salient locations of the image
(Fig 1d).

2.2. Analysis of dataset

For some images, all viewers fixate on the same loca-
tions, while in other images viewers’ fixations are dispersed
all over the image. We analyze this consistency of human
fixations over an image by measuring the entropy of the av-
erage continuous saliency map across viewers. Though the
original images were of varying aspect rations, we resized
them to 200x200 pixel images before calculating entropy.
Figure 4 shows a histogram of the entropies of the images
in our database. It also shows a sample of 12 saliency maps
with lowest and highest entropy and their corresponding im-
ages.

Our data indicates a strong bias for human fixations to be
near the center of the image, as is consistent with previously
analyzed eye tracking datasets [23] [19]. Figure 4 shows the
average human saliency map from all 1003 images. 40%
of fixations lie within the center 11% of the image; 70%
of fixations lie within the center 25% of the image. This
bias has often been attributed to the setup of the experiment
where users are placed centrally in front of the screen, and
to the fact that human photographers tend to place objects
of interest in the center of photographs [23].

We use an ROC metric to evaluate the performance of
human saliency maps to predict eye fixations. Using this
method, the saliency map from the fixation locations of one

Figure 4. Analysis of fixation locations. The first two rows show
examples of saliency maps made from human fixations with low
and high entropy and their corresponding images. Images with
high consistency/low entropy tend to have one central object while
images with low consistency/high entropy are often images with
several different textures. Bottom left is a histogram of the saliency
map entropies. Bottom right is a plot of all the saliency maps
from human eye fixations indicating a strong bias to the center
of the image. 40% and 70% of fixations lie within the indicated
rectangles.

user is treated as a binary classifier on every pixel in the im-
age. Saliency maps are thresholded such that a given per-
cent of the image pixels are classified as fixated and the rest
are classified as not fixated. The human fixations from the
other 14 humans are used as ground truth. By varying the
threshold, the ROC curve is drawn and the area under the
curve indicates how well the saliency map from one user
can predict the ground truth fixations. Figure 5 shows the
average ROC curve over all users and all images. Note that
human performance is remarkably good: 60% of the ground
truth human fixations are within the top 5% salient areas of
a novel viewer’s saliency map, and 90 percent are within the
top 20 percent salient locations.

As stated before, the fixations in the database have a
strong bias towards the center. Because of this, we find
that simply using a Gaussian blob centered in the middle
of the image as the saliency map produces excellent results,



Figure 5. In this ROC curve, human performance is very high
demonstrating that the locations where a human looks are very
indicative of where other humans have looked. The gaussian cen-
ter model performs much better than chance because of the strong
bias of the fixations in the database towards the center.

as noted for other datasets as well by [23] [11]. We plot the
ROC curve for the center Gaussian on figure 5.

In order to analyze fixations on specific objects and im-
age features we hand labeled our image dataset. For each
image, we labeled bounding boxes around any faces and
text, and indicated a line for the horizon if present. Us-
ing these labeled bounding boxes we calculated that 10%
of fixations are on faces (Fig 6). Though we did not label
all people, we noticed that many fixations landed on people
(including representations of people like drawings or sculp-
tures) even if their faces were not visible. In addition, 11%
of fixations are on text. This may be because signs are in-
nately designed to be salient (for example a stop sign or a
store sign are created specifically to draw attention). We use
these ground truth labels to study fixation prediction perfor-
mance on faces and as a ground truth for face and horizon
detection. We also qualitatively found that fixations from
our database are often on animals, cars, and human body
parts like eyes and hands. These objects reflect both a no-
tion of what humans are attracted to and what objects are in
our dataset.

By analyzing images with faces we noticed that viewers
fixate on faces when they are within a certain size of the
image but fixate of parts of the face (eyes, nose, lips) when
presented with a close up of a face (Fig 7). This suggests
that there is a certain size for a region of interest (ROI) that a
person fixates on. To get a quick sense of the size of ROIs,
we drew a rough bounding box around clustered fixations
on 30 images. Figure 7 shows the histogram of the radii
of the resulting 102 ROIs. Investigating this concept is an
interesting area of future work.

Figure 6. Objects of interest. In our database, viewers frequently
fixated on faces, people, and text. Other fixations were on body
parts such as eyes and hands, cars and animals. We found the
above image areas by selecting bounding boxes around connected
areas of salient pixels on an image overlayed with its 3% salient
mask.

Figure 7. Size of regions of interest In many images, viewers fix-
ate on human faces. However, when viewing the close up of a
face, they look at specific parts of a face rather than the face as
a whole, suggesting a constrained area of the region of interest.
On the right is a histogram of the radii of the regions of interest in
pixels.

3. Learning a model of saliency

In contrast to previous computational models that com-
bine a set of biologically plausible filters together to esti-
mate visual saliency, we use a learning approach to train a
classifier directly from human eye tracking data.

3.1. Features used for machine learning

The following are the low-, mid- and high-level features
that we were motivated to work with after analyzing our
dataset. For each image, we precomputed the features for
every pixel of the image resized to 200x200 and used these
to train our model.



Figure 8. Features. A sample image (bottom right) and 33 of the
features that we use to train the model. These include subband
features, Itti and Koch saliency channels, distance to the center,
color features and automatic horizon, face, person and car detec-
tors. The labels for our training on this image are based on a
thresholded saliency map derived from human fixations (to the left
of bottom right).

Low-level features Because they are physiologically plau-
sible and have been shown to correlate with visual at-
tention, we use the local energy of the steerable pyra-
mid filters [17] as features. We currently find the pyra-
mid subbands in four orientations and three scales (see
Fig 8, first 13 images). We also include features used in
a simple saliency model described by Torralba [12] and
Rosenholtz [13] based on subband pyramids (Fig 8,
bottom left).

Intensity, orientation and color contrast have long been
seen as important features for bottom-up saliency. We
include the three channels corresponding to these im-
age features as calculated by Itti and Koch’s saliency
method [9].

We include the values of the red, green and blue chan-
nels, as well as the probabilities of each of these chan-
nels as features (Fig 8, images 20 to 25) and the prob-
ability of each color as computed from 3D color his-
tograms of the image filtered with a median filter at 6
different scales (Fig 8, images 26 to 31).

Mid-level features Because most objects rest on the sur-
face of the earth, the horizon is a place humans natu-
rally look for salient objects. We train a horizon line
detector from mid-level gist features [12].

High-level features Because we found that humans fixated
so consistently on people and faces we run the Viola

Figure 9. Comparison of saliency maps. Each row of images
compares the predictors of our SVM saliency model, the Itti
saliency map, the center prior, and the human ground truth, all
thresholded to show the top 10 percent salient locations.

Jones face detector [21] and the Felzenszwalb person
detector [6] and include these as features to our model.

Center prior When humans take pictures, they naturally
frame an object of interest near the center of the image.
For this reason, we include a feature which indicates
the distance to the center for each pixel.

3.2. Training

In order to train and test our model, we divided our set
of images into 903 training images and 100 testing images.
From each image we chose 10 positively labeled pixels ran-
domly from the top 20% salient locations of the human
ground truth saliency map and 10 negatively labeled pix-
els from the bottom 70% salient locations to yield a training
set of 18060 samples and testing set of 2000 samples. We
found that increasing the number of samples chosen per im-
age above 10 did not increase performance. It is probable
that after a certain number of samples per image, new sam-
ples only provide redundant information. We chose samples
from the top 20% and bottom 70% in order to have sam-
ples that were strongly positive and strongly negative; we
avoided samples on the boundary between the two. We did
not choose any samples within 10 pixels of the boundary of
the image.

Our tests on models trained using ratios of negative to
positive samples ranging from 1 to 5 showed no change in
the resulting ROC curve, so we chose to use a ratio of 1:1.

We normalized the features of our training set to have
zero mean and unit variance and used the same normaliza-
tion parameters to normalize our test data.

We used the liblinear support vector machine to train a
model on the 9030 positive and 9030 negative training sam-
ples. We used models with linear kernels because we found
from experimentation that they performed as well as mod-
els with radial basis function kernels and models found with



multiple kernel learning [18] for our specific task. Linear
models are also faster to compute and the resulting weights
of features are easier to understand. We set the misclassifi-
cation cost c at 1. We found that performance was the same
for c = 1 to c = 10,000 and decreased when smaller than 1.

3.3. Performance

We measure performance of saliency models in two
ways. First, we measure performance of each model by its
ROC curve. Second, we examine the performance of differ-
ent models on specific subsets of samples: samples inside
and outside a central area of the image and on faces.

Performance on testing images In Figure 10, we see a
ROC curve describing the performance of different saliency
models averaged over all testing images. For each image we
predict the saliency per pixel using a specific trained model.
Instead of using the predicted labels (indicated by the sign
of wT x + b where w and b are learned parameters and x
refers to the feature vector), we use the value of wT x + b
as a continuous saliency map which indicates how salient
each pixel is. Then we threshold this saliency map at n =1,
3, 5, 10, 15, 20, 25, and 30 percent of the image for binary
saliency maps which are typically relevant for applications.
For each binary map, we find the percentage of human fix-
ations within the salient areas of the map as the measure
of performance. Notice that as the percentage of the image
considered salient goes to 100%, the predictability, or per-
centage of human fixations within the salient locations also
goes to 100%.

We make the following observations from the ROC
curves: (1) The model with all features combined outper-
forms models trained on single sets of features and models
trained on competing saliency features from Torralba and
Rozenholtz, Itti and Koch and Cerf et al. Note that we im-
plement the Cerf et al. method by training an SVM on Itti
features and face detection alone. We learn the best weights
for the linear combination of features instead of using equal
weights as they do. (2) The model with all features reaches
88% of the way to human performance. For example, when
images are thresholded at 20% salient, our model performs
at 75% while humans are at 85%. (3) The model with all
features except the distance to the center performs as well
as the model based on the distance to the center. This is
quite good considering this model does not leverage any
of the information about location and thus does not at all
benefit from the huge bias of fixations toward the center.
(4) The model trained on all features except the center per-
forms much better than any of the models trained on single
sets of features. For example, at the 20% salient location
threshold, the Torralba based model performs at 50% while
the all-in-without-center model performs at 60% for a 20%
jump in performance. (5) Though object detectors may be

Figure 10. The ROC curve of performances for SVMs trained on
each set of features individually and combined together. We also
plot human performance and chance for comparison.

very good at locating salient objects when those objects are
present in an image, it is not good at locating other salient
locations when the objects are not present. Thus, the over-
all performance for the object detector model is low and
these features should be used only in conjunction with other
features. (6) All models perform significantly better than
chance indicating that each of the features individually do
have some power to predict salient locations.

We measure which features add most to the model by
calculating the delta improvement between the center model
and the center model with a given set of features. We ob-
serve that subband features and Torralba’s features (which
use subband features) add the greatest improvement. Af-
ter that is color features, horizon detection, face and object
detectors, and Itti channels.

Performance on testing samples To understand the im-
pact of the bias towards the center of the dataset for some
models, we divided each image into a circular central and
a peripheral region. The central region was defined by the
model based only on the feature which gave the distance of
the example to the center. In this model, any sample farther
than 0.42 units away from the center (where the distance
from the center to the corner is 1) was labeled negative and
anything closer was labeled positive. This is equivalent to
the center 27.7% of the image. Given this threshold, we di-



Figure 11. Here we show the average rate of true positives and true
negatives for SVMs trained with different feature sets on different
subsets of samples. This value is equivalent to the performance of
the model if there were an equal number of positive and negative
samples in each subset.

vided the samples to those inside and outside the center. In
addition, we chose to look at samples that landed on faces
since viewers were particularly attracted by them.

In Figure 11 we plot performance of the model for dif-
ferent subsets of samples. The performance here is defined
as the average of the true positive and true negative rates.
This is equivalent to the performance of the model if there
were an equal number of positive and negative samples in
each subset.

We make the following observations about the trained
models from this measure of performance: (1) Even though
center model performs well over all the samples (both sam-
ples inside and outside the center), it performs only as well
as chance for the other subsets of samples. (2) While over
all samples the performance of the center model and the all-
features-without-center model perform the same, the later
model performs more robustly over all subsets of samples.
(3) Understandably, the model trained on features from ob-
ject detectors for faces, people and cars performs better on
the subsets with faces. (4) The SVMs using the center prior
feature and the one using all features perform very well on
1000 positive and negative random testing points but are
outperformed both in the inside and outside region. This
paradox stems from the fact that 79% of the 1000 salient
testing points are in the inside region, whereas 75% of the
non-salient testing points are in the outside. One can show
that this biased distribution provides a lift in performance

Figure 12. Stylization and abstraction of photographs DeCarlo
and Santella [4] use eye tracking data to decide how to render a
photograph with differing levels of detail. We replicate this appli-
cation without the need for eye tracking hardware.

for methods that would either have a high true negative rate
outside or a high true positive rate inside, such as the center
prior.

Discussion This eye tracking database allows us to quan-
tify how consistent human fixations are across an image. In
general, the fixation locations of several humans is strongly
indicative of where a new viewer will look. So far, computer
generated models have not matched humans’ ability to pre-
dict fixation locations though we feel we have moved a step
closer in that direction by using a model that combines low,
mid and high level features.

Qualitatively, we learned that when free viewing images,
humans consistently look at some common objects: They
look at text, other people and specifically faces. If not peo-
ple, they look at other living animals and specifically their
faces. In the absence of specific objects or text, humans tend
towards the center of the image or locations where low-level
features are salient. As text, face, person and other object
detectors get better, models of saliency which include object
detectors will also get better. Though all these trends are not
surprising, we are excited that this database will allow us to
measure the trends quantitatively.

3.4. Applications

A good saliency model enables many applications that
automatically take into account a notion of human percep-
tion: where humans look and what they are interested in. As
an example, we use our model in conjunction with the tech-
nique of DeCarlo and Santella [4] to automatically create a
non photorealistic rendering of a photograph with different
levels of detail (Fig 12). They render more details at the
locations users fixated on and less detail in the rest of the
image. While they require information from an eye track-
ing device in order to tailor the level of detail, we use our
saliency model to predict locations where people look.



4. Conclusion

In this work we make the following contributions: We
develop a collection of eye tracking data from 15 people
across 1003 images and have made it public for research
use. This is the largest eye tracking database of natural im-
ages that we are aware of and permits large-scale quanti-
tative analysis of fixations points and gaze paths. We use
machine learning to train a bottom-up, top-down model of
saliency based on low, mid and high-level image features.
We demonstrate that our model outperforms several exist-
ing models and the center prior. Finally, we show an exam-
ple of how our model can be used in practice for graphics
applications.

For future work we are interested in understanding the
impact of framing, cropping and scaling images on fixa-
tions. We believe that the same image cropped at different
sizes will lead viewers to fixate on different objects in the
image and should be more carefully examined.
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