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Abstract

By combining Histograms of Oriented Gradients (HOG)

and Local Binary Pattern (LBP) as the feature set, we pro-

pose a novel human detection approach capable of handling

partial occlusion. Two kinds of detectors, i.e., global de-

tector for whole scanning windows and part detectors for

local regions, are learned from the training data using lin-

ear SVM. For each ambiguous scanning window, we con-

struct an occlusion likelihood map by using the response

of each block of the HOG feature to the global detector.

The occlusion likelihood map is then segmented by Mean-

shift approach. The segmented portion of the window with

a majority of negative response is inferred as an occluded

region. If partial occlusion is indicated with high likelihood

in a certain scanning window, part detectors are applied

on the unoccluded regions to achieve the final classifica-

tion on the current scanning window. With the help of the

augmented HOG-LBP feature and the global-part occlu-

sion handling method, we achieve a detection rate of 91.3%
with FPPW= 10−6, 94.7% with FPPW= 10−5, and 97.9%
with FPPW= 10−4 on the INRIA dataset, which, to our best

knowledge, is the best human detection performance on the

INRIA dataset. The global-part occlusion handling method

is further validated using synthesized occlusion data con-

structed from the INRIA and Pascal dataset.

1. Introduction

Human detection has very important applications in

video surveillance, content-based image/video retrieval,

video annotation, and assisted living. However, detecting

humans in images/videos is a challenging task owing to

their variable appearance and the wide range of poses that

they can adopt.

The results of The Pascal Challenge from 2005 to 2008

[12] and the recent research [8, 13, 15, 28, 18, 21] indicate

that sliding window classifiers are presently the predomi-

nant method being used in object detection, or more specif-

ically, human detection, due to their good performance.

Figure 1. The first row shows ambiguous images in the scanning

windows. The second row shows the corresponding segmented

occlusion likelihood images. For each segmented region, the neg-

ative overall score, i.e. the sum of the HOG block responses to the

global detector, indicates possible partial occlusion. The first four

columns are from the INRIA testing data. The last two columns

are samples of our synthesized data with partial occlusion.

For the sliding window detection approach, each image is

densely scanned from the top left to the bottom right with

rectangular sliding windows (as shown in Figure 1) in dif-

ferent scales. For each sliding window, certain features such

as edges, image patches, and wavelet coefficients are ex-

tracted and fed to a classifier, which is trained offline using

labeled training data. The classifier will classify the sliding

windows, which bound a person, as positive samples, and

the others as negative samples. Currently, the Support Vec-

tor Machine (SVM) and variants of boosted decision trees

are two leading classifiers for their good performance and

efficiency.

Although preferred for its performance in general, com-

pared to other detectors such as part-based detectors [1,

14, 16, 19, 32], the sliding window approach handles par-

tial occlusions poorly. Because the features inside the scan-

ning window are densely selected, if a portion of the scan-

ning window is occluded, the features corresponding to the

occluded area are inherently noisy and will deteriorate the

classification result of the whole window. On the other side,
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part based detectors [16, 19, 32] can alleviate the occlusion

problem to some extent by relying on the unoccluded part

to determine the human position.

In order to integrate the advantage of part-based detec-

tors in occlusion handling to the sliding-window detectors,

we need to find the occluded regions inside the sliding win-

dow when partial occlusion appears. Therefore, we have

to answer two key questions: 1)How to decide whether the

partial occlusion occurs in a scanning window? 2)If there

is partial occlusion in the sliding window, how to estimate

its location?

To infer the occluded regions when partial occlusions

happen, we propose an approach based on segmenting the

“locally distributed” scores of the global classification score

inside each sliding window.

Through the study of the classification scores of the lin-

ear SVM on the INRIA dataset [8, 9], we found an interest-

ing phenomenon: If a portion of the pedestrian is occluded,

the densely extracted blocks of Histograms of Oriented Gra-

dients (HOG) feature [8] in that area uniformly respond to

the linear SVM classifier with negative inner products.

This interesting phenomenon leads us to study the cause

behind it. The HOG feature of each scanning window

is constituted by 105 gradient histograms extracted from
7 × 15 = 105 blocks (image patches of 16 × 16 pixels).
By noticing the linearity of the scalar product, the linear

SVM score of each scanning window is actually an inner

product between the HOG feature (i.e. the concatenation of

the 105 orientation histograms) and a vector w, which is
the weighted sum of all the support vectors learned. (The

procedure of distributing the constant bias β to each block

is discussed in section 3.3.)

Therefore, the linear SVM score is a sum of 105 linear
products between the HOG blocks and the corresponding

wi, i = 1, . . . , 105. In our framework, these 105 linear
products are called responses of the HOG blocks. For an

ambiguous scanning window, we construct a binary occlu-

sion likelihood image with a resolution of 7 × 15. The in-
tensity of each pixel in the occlusion likelihood image is the

sign of the corresponding block response.

For each sliding window with ambiguous classification

score, we can segment out the possible occlusion regions by

running image segmentation algorithms on the binary oc-

clusion likelihood image. The mean shift algorithm [4, 5] is

applied to segment the binary image for each window. The

real-valued response of each block is used as the weight-

ing density of each pixel in the mean shift framework. The

segmented regions with a negative overall response are in-

ferred as an occluded region for scanning window. Some

examples of the segmented occlusion likelihood image are

shown in Figure 1. The negative regions are possible oc-

cluded regions.

Once the occluded regions are detected, we minimize the

occlusion effects by resorting to a part-based detector on the

unoccluded area. (See details in Section 3.3).

The contribution of this paper is three-fold: 1) Through

occlusion inference on sliding window classification re-

sults, we propose an approach to integrate the advantage

of part-based detectors in occlusion handling to the sliding-

window detectors; 2) An augmented feature, HOG-LBP,

which combines HOG with cell-structured Local Binary

Pattern (LBP) [3], is proposed as the feature, based on

which the HOG-LBP human detector achieves better per-

formance than all of known state-of-the-art human detectors

[8, 28, 18, 34, 25, 27, 20] on INRIA dataset (refer to section

3.1 and section 4 for details). 3) We simplify the trilinear

interpolation procedure as a 2D convolution so that it can

be integrated to the integral histogram approach, which is

essential to the efficiency of sliding window detectors.

2. Related Work

Wu and Nevatia [32, 33] use Bayesian combination to

combine the part detectors to get a robust detection in the

situation of partial occlusion. They assume the humans

walk on a ground plane and the image is captured by a cam-

era looking down to the ground. Stein [26] takes advantage

of occlusion boundaries to help high-level reasoning and

improve object segmentation. Lin and Tang [6] presents a

framework to automatically detect and recover the occluded

facial region. Fu et al. [23] proposed a detection algorithm

based on the occlusion reasoning and partial division block

template matching for tracking task.

Mu et al. [20] state that traditional LBP operator in [2]

does not suit the human detection problem well. We pro-

posed a different cell-structured LBP. The scanning window

are divided into non-overlapping cells with the size 16×16.
The LBPs extracted from cells are concatenate into a cell-

structured LBP, similar to the cell-block structure in [8]. As

shown in Figure 6(a) in the experiments section, the de-

tection results based on our cell-structured LBP are much

better than [20].

3. Approach

The human detection procedure based on the HOG-LBP

feature is shown in Figure 2. Our occlusion handling idea is

based on global and part detectors trained using the HOG-

LBP feature.
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Figure 2. The framework of HOG-LBP detector (without occlu-

sion handling).



3.1. Human Detection using Integrated HOG­LBP

As a dense version of the dominating SIFT [17] fea-

ture, HOG [8] has shown great success in object detection

and recognition [8, 9, 13, 25, 34]. HOG has been widely

accepted as one of the best features to capture the edge or

local shape information.

While the LBP operator [22] is an exceptional texture

descriptors. It has been widely used in various applications

and has achieved very good results in face recognition [3].

The LBP is highly discriminative and its key advantages,

namely its invariance to monotonic gray level changes and

computational efficiency, make it suitable for demanding

image analysis tasks such as human detection.

We propose an augmented feature vector, which com-

bines the HOG feature with the cell-structured LBP fea-

ture. HOG performs poorly when the background is clut-

tered with noisy edges. Local Binary Pattern is complemen-

tary in this aspect. It can filter out noises using the concept

of uniform pattern [22]. We believe that the appearance

of a human can be better captured if we combine both the

edge/local shape information and the texture information.

As shown in Figure 7 in the experiments section, our con-

jecture is verified by our experiments on the INRIA dataset.

We follow the procedure in [8] to extract the HOG fea-

ture. For the construction of the cell-structured LBP, we

directly build pattern histograms in cells. The histograms

of the LBP patterns from different cells are then concate-

nated to describe the texture of the current scanning win-

dow. We use the notation LBPu
n,r to denote LBP feature

that takes n sample points with radius r, and the number

of 0-1 transitions is no more than u. The pattern that satis-

fies this constraint is called uniform patterns in [22]. For

example, the pattern 0010010 is a nonuniform pattern for

LBP 2, and is a uniform pattern for LBP 4 because LBP 4

allows four 0-1 transitions. In our approach, different uni-

form patterns are counted into different bins and all of the

nonuniform patterns are voted into one bin.

Using the l∞ distance to measure the distance to the

center pixel, (i.e.d∞ ((x1, y1), (x2, y2)) = max(|x1 −
x2|, |y1 − y2|)), we illustrate the LBP8,1 feature extraction

process in Figure 3.
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200 220 156
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0 0 1
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Figure 3. The LBP8,1 feature extraction using l∞ distance.

In our implementation, we use Euclidean distance to

measure the distance to achieve better performance. Bilin-

ear interpolation is needed in order to extract the circular

local binary patterns from a rectangular lattice. The perfor-

mance comparison of the cell-structured LBP features with

different parameters is shown in Figure 6(a) in the experi-

ments section.

3.2. Integral Histogram Construction with Convo­
luted Trilinear Interpolation

In spite of its good performance, the approach of slid-

ing window classification is often criticized as being too

resource and computationally expensive. The integral im-

age/histogram [29, 24, 34], the efficient subwindow search

[15], and the increasingly powerful parallel computing

hardware (e.g. GPU and multicore CPU) help to alleviate

the speed problem. Within the framework of the integral

image/histogram [29, 24, 34], the extraction of the features

for scanning windows has a constant complexityO(c) (two
vector addition and two vector subtraction). Many state-of-

the-art detectors [28, 15, 34, 30, 25] based on sliding win-

dow classifiers use the integral image method to increase

the running speeds by several folds.

Trilinear interpolation and Gaussian weighting are two

important sub-procedures in HOG construction [8]. The

naive distribution scheme of the orientation magnitude

would cause aliasing effects, both in orientation bin and

spatial dimensions. Such aliasing effects can cause sudden

changes in the final features which make them not stable

enough. For example, if a strong edge pixel is at the bound-

ary of a cell in one image and, due to certain slight changes,

it falls into the neighboring cell in another image, the naive

voting scheme assigns the pixel’s weight to different his-

togram bins in the two cases. To avoid this problem, we

should distribute the effect of the gradient of each pixel to

its neighborhood. In our experiments on the INRIA dataset,

when FA=10−4, we found that the HOG-LBP detectorwith-

out the trilinear interpolation has a detection rate 3% lower.
The performance of our HOG-LBP detector is not affected

by the Gaussian weighting procedure.

It was believed that the trilinear interpolation didn’t fit

well into integral image approach [34]. While the inte-

grated HOG feature without trilinear interpolation is fast to

compute, it is inferior to the original HOG, as mentioned in

[34].

In order to take the advantage of the integral image with-

out impairing the performance, we propose an approach,

named as Convoluted Trilinear Interpolation (CTI), to do

the trilinear interpolation [7]. For HOG, the direction of

the gradient at each pixel is discretized into 9 bins. So at
each pixel, the gradient is a 2D vector with a real-valued

magnitude and a discretized direction (9 possible directions
uniformly distributed in [0, π)). During the construction of
the integral image of HOG, if we treat the feature value at

each pixel as a 2D vector, we won’t be able to do the trilin-

ear interpolation between pixels. To conquer this difficulty,

we treat the feature value at each pixel as a 9D vector, of

which the value at each dimension is the interpolated mag-



nitude value at the corresponding direction. The trilinear

interpolation can be done by convolution before construct-

ing the integral image as shown in Figure 4.

Integral(x,y)

Original pixel gradient Voted into adjacent bins

Convoluted bin image Integral bin image(over whole image)

Figure 4. The illustration of the trilinear interpolation in the frame-

work of integral image.

We designed a 7 by 7 convolution kernel to implement

the fast trilinear interpolation. The weights are distributed

to the neighborhood linearly according to the distances.

Conv(k)7×7 =
1

256
×

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1 2 3 4 3 2 1
2 4 6 8 6 4 2
3 6 9 12 9 6 3
4 8 12 16 12 8 4
3 6 9 12 9 6 3
2 4 6 8 6 4 2
1 2 3 4 3 2 1

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

(1)

First, we need to vote the gradient with a real-valued di-

rection between 0 and π into the 9 discrete bins according
to its direction and magnitude. Using bilinear interpolation,

we distribute the magnitude of the gradient into two adja-

cent bins(as shown in the top-right subplot of Figure 4).

Then, the kernel in Equation ( 1) is used to convolve over

the orientation bin image to achieve the trilinear interpola-

tion. The intermediate results are the trilinearly interpolated

gradient image (bottom-left subplot of Figure 4), ready for

integral image construction.

We want to emphasize that the CTI approach doesn’t in-

crease the space complexity of the integral image approach.

The intermediate trilinear interpolated results can be stored

using the space allocated for the integral image. The tri-

linear interpolated gradient histogram image is of the same

size as the integral image. The extra computation time is

slim. For each image, it is only a convolution with a 7 × 7
kernel, which can be further accelerated by Fast Fourier

Transform (FFT).

3.3. Combined Global/Part­based Detector for Oc­
clusion Handling

Through the study of the classification scores of the lin-

ear SVM classifiers, we found that if a portion of the pedes-

trian is occluded, the densely extracted blocks of features

in that area uniformly respond to the linear SVM classi-

fier with negative inner products. Taking advantage of this

henomenon, we propose to use the classification score of

each block to infer whether the occlusion occurs and where

it occurs. When the occlusion occurs, the part-based detec-

tor is triggered to examine the unoccluded portion, as shown

in Figure 5. The HOG feature of each scanning window is a

3780 dimensional feature. This 3780 dimensional feature is
constituted by the sub-HOG of 105 blocks. The sub-HOG
at each block is a 36 dimensional vector denoted as B. The
3780 dimensional HOG feature of each sliding window is:

x =







B1

...

B105






. With its canonical form, the decision

function for SVM classifier is:

f(x) = β +

l
∑

k=1

αk〈x,xk〉, (2)

where xk: k ∈ {1, 2, . . . , l} are the support vectors. If the
linear kernel SVM is used here, the inner product 〈., .〉 is
computed as the scalar product of two vectors in R

n. Tak-

ing into account the linearity of the scalar product, we can

rewrite the decision function as:

f(x) = β + x
T ·

l
∑

k=1

αkxk = β + w
T · x, (3)

wherew is the weighting vector of the linear SVM, i.e., the

weighted sum of all the support vectors learned:

w =

l
∑

k=1

αkxk =







w̃1

...

w̃105






. (4)

We distribute the constant bias β to each block Bi. Then
the real contribution of a block could be got by subtracting
the corresponding bias from the summation of feature inner
production over this block. That is, to find a set of βi such

that β =
∑105

i=1 βi for the following equation:

f(x) = β + w
T
· x =

105
X

i=1

βi + w̃
T
i · Bi =

105
X

i=1

fi(Bi). (5)

We learn the βi, i.e. the constant bias from the training

part of the INRIA dataset by collecting the relative ratio of

the bias constant in each block to the total bias constant.

Denote the set of HOG features of positive training samples

as: {x+
p } for p = 1, . . . , N+ (N+ is the number of positive

samples). The set of HOG features of negative samples is:

{x−

q } for q = 1, . . . , N− (N− is the number of negative

samples). The ith blocks of x+
p and x

−

q are denoted as B
+
p;i
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Figure 5. Occlusion reasoning/handling framework. A: block score before distributing bias(summation of SVM classification scores in

blocks); B: block score after distributing the bias; C: Segmented region after the mean shift merging.

and B
−

q;i, respectively. By summing all the positive and

negative classification scores, we have:

N+

∑

p=1

f(x+
p ) = S+ = N+β +

N+

∑

p=1

105
∑

i=1

w̃
T
i · B+

p;i (6)

N−

∑

q=1

f(x−

q ) = S− = N−β +
N−

∑

q=1

105
∑

i=1

w̃
T
i · B−

q;i. (7)

Denote A = −S−

S+ . By adding the equations ( 6) and ( 7),
we have:

0 = A·N
+

β+N
−

β+
105
X

i=1

w̃
T
i ·

0

@A

N+
X

p=1

B
+
p;i +

N−

X

q=1

B
−

q;i

1

A , (8)

i.e.,

β = B ·

105
X

i=1

w̃
T
i ·

0

@A

N+
X

p=1

B
+
p;i +

N−

X

q=1

B
−

q;i

1

A , (9)

where B = − 1
A·N++N− . We have:

βi = B · w̃
T
i ·

0

@A

N+
X

p=1

B
+
p;i +

N−

X

q=1

B
−

q;i

1

A . (10)

By Equation (10), we distribute the constant bias β to

each block Bi which translates the decision function of the

whole linear SVM to a summation of classification results

of each block. This approach of distributing keeps the rela-

tive bias ratio across the whole training dataset.

The negative blocks (i.e. fi(Bi) < 0) is, denoted asB−

i .

Similarly we denote positive blocks as B+
i . If the geomet-

ric locations of some negative blocksB−

i s are close to each

other, while other high-confidentB+
i s fall into other neigh-

boring areas of the scanning window, we tend to conclude

that this scanning window contains a human, who is par-

tially occluded in the location, whereB−

i s dominate.

We construct the binary occlusion likelihood image ac-

cording to the response of each block of the HOG feature

to the trained linear SVM. The intensity of the occlusion

likelihood image is the sign of fi(Bi).

For each sliding window with ambiguous classification

score (i.e.the score falls in the SVM classification margin

[-1, 1]), we can segment out the possible occlusion regions

by running image segmentation algorithms on the binary

occlusion likelihood image. Each block is treated as a pixel

in the binary likelihood image. Positive blocks have the in-

tensity 1 and negative blocks have the intensity −1. The
mean shift algorithm [4, 5] is applied to segment this bi-

nary image for each sliding window. The absolute value of

the real-valued response of each block (i.e. |fi(Bi)|) is used
as the weight ωi in [5]. The binary likelihood image can be

then segmented to different regions. A segmented region

of the window with an overall negative response is inferred

as an occluded region. But if all the segmented regions are

consistently negative, we tends to treat the image as a neg-

ative image. Some examples of the segmented occlusion

likelihood image are shown in Figure 1.

Our experiments on the INRIA dataset show that the ap-

proach can detect the occluded region accurately. Based on

the localization of the occluded portion, the part detector

running on the positive regions will be activated to make

more confident decision. The whole framework is shown

in Figure 5. In our approach, we train the upper body and

lower body detector as part detectors to handle occlusion,

combining with the global detecor.

4. Experimental Results

Three groups of experiments are carried to validate our

assumptions. We first study the factors affecting the perfor-

mance of the cell-structured LBP. Comparing to state-of-the

art human detectors, the second group of experiments shows

the exceptional performance of the convolutional-trilinear-

interpolated HOG-LBP feature. Finally, we compare the

detection results between the algorithms with and without

occlusion handling on both the original INRIA data and the

synthesized occlusion data constructed from the INRIA and

Pascal dataset.

4.1. Cell­structured LBP detector

We study the effects of different choices of sample points

{4, 6, 7, 8, 9, 10} and radius {1, 2} to the cell structured
LBP. Linear SVM is used to train and classify on the INRIA



human dataset. We also compared our cell-structured LBP

with S-LBP in [20]. As shown in Figure 6(a), LBP 2
8,1 per-

forms best. Using {4, 6} sample points or radius {2} would
decrease the performance very much. We also tried LBP

features with cell size 8 × 8, 16× 16, 32× 32 and find that
16 × 16 cell works best. This is because the LBP 2

8,1 pat-

terns of a 8 × 8 cell are too few to be discriminative and a
32 × 32 cell introduces too much smoothing over the his-
togram bins.
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Figure 6. (a) The performance comparison of LBP features with

different parameters on the INRIA dataset. The LBP with proper

parameter setting outperforms vector S-LBP proposed in [20].

The performance of F-LBP in [20] is not available in the normal

INRIA training-testing setup. (b) The performance comparison

for different normalization schemes for LBP feature usingLBP8,1

with a cell size 16 × 16.

Choosing a good normalization method is essential for

the performance of cell-structured LBP. As shown in Fig-

ure 6(b), the L1-sqrt normalization gives the best perfor-

mance. The L2 normalization decreases the performance

by 4%while using the L1 normalization would decrease the
performance by 9.5% with a false alarm of 10−4. Accord-

ing to Figure 6(b) and Figure 7, the cell-structured LBP

detector has outperformed the traditional HOG detector on

INRIA data.

4.2. Detection Results with HOG­LBP Feature

We use augmented HOG-LBP as the feature vector and

linear SVM as the classifier for the human detection on the

INRIA dataset. We use two different criteria: 1) The detec-

tion rate vs. False Positive PerWindow (FPPW); and 2) The

detection rate vs False Positive Per Image (FPPI). Evaluated

using both criteria, our HOG-LBP detector (with/without

occlusion handling) out perform all known state-of-the-art

detectors [8, 13, 28, 10, 31, 25, 34, 18] on the INRIA

dataset. Results are shown in Figure 71 and Figure 8.

The detector with occlusion handling algorithm is slightly

better than the HOG-LBP detector without occlusion han-

dling. The performances of the other algorithms are com-

pared [11].

1It has been reported in [11] that the features extracted in [18] contains

the boundary of the cropped positive examples, which implicitly encodes

the label information.
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Figure 7. The performance comparison between the proposed hu-

man detectors and the state-of-the-art detectors on INRIA dataset

using detection(=1−missing rate) VS FPPW.HOG-LBP with oc-
clusion handling: The augmented HOG-LBP with Convoluted

Trilinear Interpolation.Multi-Level HOG1: The detector [18] us-

ing Multilevel HOG and IKSVM. Riemannian Manifolds: The

detector [28] based on covariance tensor feature. Multi-Level

HOG and Riemannian Manifolds are the best curves in year

2008 and 2007, respectively.
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Figure 8. The performance comparison between the proposed

human detectors and the state-of-the-art detectors on INRIA

dataset using detection(=1−missing rate) VS FPPI. MultiFtr:
The detector [31] using Shape Context and Haar wavelets fea-

ture. LatSVM: The detector [13] using deformable model.

Multi-Level HOG:The detector [18] using Multilevel HOG and

IKSVM. Shapelet: The detector [25] using shapelet features. Ftr-

Mine: The detector [10] using Haar features and feature mining

algorithm. HOG-LBP: Our HOG-LBP detector without occlu-

sion handling. HOG-LBP & Occ: Our HOG-LBP detector with

occlusion handling.

We achieve a detection rate of 91.3% at 10−6 FPPW and

94.7% at 10−5 FPPW. The result closest to ours is from

Maji et al. [18] using Multi-Level HOG and Intersection

Kernel SVM (IKSVM). We improve the detection rate by

1.5% at FPPW=10−5 and by 8.0% at FPPW=10−6. It is

reported in [18] that the Multi-Level HOG can get only



50% detection rate using linear SVM, but it is improved by
about 47% at 10−4 FPPW [18] by using IKSVM. So it’s

interesting to see what the detection performance will be by

applying IKSVM as the classifier for our feature.

Since we achieved the desired performance on INRIA

data (only 25 positive samples are missed out of 1126 test-
ing positive image with the FPPW=10−4), we test the HOG-

LBP detector on a very challenging upper body dataset

(with 6000 positive samples and 4000 negative images),

which is made available to public for download 2 . Our de-

tector gains more than 20% improvement at 10−4 compared

to the HOG detector as shown in Figure 9.
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Figure 9. The performance comparison of HOG-LBP and HOG on

the NUS upper body dataset.

4.3. Experiment on Combined Global/Part­based
Detection for Occlusion Handling

As shown in Figure 10(a), our occlusion handling ap-

proach improved the detection results. The improvement is

less than 1% in detection rate. This is because the INRIA

dataset contains very few occluded pedestrians. We save

all the miss detection at 10−6 FPPW and find that only 28

positvie images are missclassified because of partial occlu-

sion. Our detector picks up 10 of them. Figure 11 shows
the samples.

In order to evaluate the proposed occlusion handling ap-

proach, we create synthesized data with partial occlusion by

overlaying PASCAL segmented objects to the testing im-

ages in the INRIA dataset, as shown in Figure 1. First, we

just add the objects to the lower part of the human. Then

they are added to a random position of the human to simu-

late various occlusion cases. Objects are resized in order to

generate different ratios of occlusion. Three detectors based

on the INRIA training dataset are built: the global detector,

the upper body detector and the lower body detector.

Following the procedure discussed in section 3.3, we first

check the consistency of the segmented binary occlusion

likelihood image. A part detector is activated over the pos-

2http://www.lv-nus.org/NUS-UBD.html
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Figure 10. (a) The performance comparison between with and

without occlusion handling on the original INRIA dataset. (b)

The occlusion handling comparison on the synthesized occlusion

dataset. 0.33: the occlusion ratio is 0.33; Org: Detection with-

out occlusion handling; OCC: Detection with occlusion handling;

Random: testing images are randomly occluded.

Figure 11. Samples of corrected miss detection

itive region when inconsistency is detected. The final de-

cision would be made based on the detector that has the

higher confidence. If both detectors are not confidential

enough (i.e. the classification score is smaller than a thresh-

old, 1.5 for example), we combine global and part detec-

tors by weighting the classification score. We give the score

of the global detector a weight 0.7 and 0.3 for part detec-

tor in our experiments. The reason that we give part de-

tector a smaller weight is that the global detector and the

part detector have different classification margins. In order

to keep the consistency of the confidence score, we make

the weights proportional to the corresponding classification

margins. As shown in Figure 10(b), our method improves

the detection results a lot on the synthesized dataset.

5. Conclusion

We propose a human detection approach capable of han-

dling partial occlusion and a feature set that combines the

trilinear interpolated HOG with LBP in the framework of

integral image. It has been shown in our experiments that

the HOG-LBP feature outperforms other state-of-the-art de-

tectors on the INRIA dataset. However, our detector cannot

handle the articulated deformation of people, which is the

next problem to be tackled.
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