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Abstract: Organizing data into sensible groupings is onethef most fundamental
modes of understanding and learning. As an exangplegmmon scheme of scientific
classification puts organisms into a system of eahtaxa: domain, kingdom, phylum,
class, etc.. Cluster analysis is the formal studyethods and algorithms for grouping, or
clustering, objects according to measured or peeceiintrinsic characteristics or
similarity. Cluster analysis does not use categlahels that tag objects with prior
identifiers, i.e., class labels. The absence oégmty information distinguishes data
clustering (unsupervised learning) from classifwat or discriminant analysis
(supervised learning). The aim of clustering idital structure in data and is therefore
exploratory in nature. Clustering has a long armth tistory in a variety of scientific
fields. One of the most popular and simple clusteralgorithms, K-means, was first
published in 1955. In spite of the fact that K-mearas proposed over 50 years ago and
thousands of clustering algorithms have been puddissince then, K-means is still
widely used. This speaks to the difficulty of desdigy a general purpose clustering
algorithm and the ill-posed problem of clusteringe provide a brief overview of
clustering, summarize well known clustering methatiscuss the major challenges and
key issues in designing clustering algorithms, pooht out some of the emerging and
useful research directions, including semi-supeniglustering, ensemble clustering,
simultaneous feature selection during data clusgesind large scale data clustering.

1. Introduction

Advances in sensing and storage technology andaliagrowth in applications such as
Internet search, digital imaging, and video sutaetde have created many high-volume,
high-dimensional data sets. It is estimated that ft#igital universe consumed
approximately 281 exabytes in 2007, and it is miejé to be 10 times that size by 2011.
(One exabyte is ~1Bbytes or 1,000,000 terabytes) [Gantz, 2008]. Mdshe data is
stored digitally in electronic media, thus provglinuge potential for the development of
automatic data analysis, classification, and regititechniques. In addition to the growth
in the amount of data, the variety of availablead@éext, image, and video) has also
increased. Inexpensive digital and video camerag n@ade available huge archives of

! This paper is based on the King-Sun Fu Prize teaelivered at the f9international
Conference on Pattern Recognition (ICPR), Tampa[d€cember 8, 2008.
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images and videos. The prevalence of RFID tagsamsponders due to their low cost
and small size has resulted in the deployment d¢ifomé of sensors that transmit data
regularly. E-mails, blogs, transaction data, arlibbs of Web pages create terabytes of
new data every day. Many of these data streamsresteuctured, adding to the difficulty
in analyzing them.

The increase in both the volume and the varietyabd requires advances in methodology
to automatically understand, process, and summ#énzeata. Data analysis techniques
can be broadly classified into two major types [@uk 1977]: (i) exploratory or
descriptive, meaning that the investigator does hate pre-specified models or
hypotheses but wants to understand the generahatiastics or structure of the high-
dimensional data, and (ipnfirmatoryor inferential, meaning that the investigator vgant
to confirm the validity of a hypothesis/model oset of assumptions given the available
data. Many statistical techniques have been praptmsanalyze the data, such as analysis
of variance, linear regression, discriminant aralyganonical correlation analysis,
multidimensional scaling, factor analysis, prin¢ig@mponent analysis, and cluster
analysis to name a few. A useful overview is girefiTabachnick & Fidell, 2007].

In pattern recognition, data analysis is concemvél predictive modeling: given some
training data, we want to predict the behaviorha tinseen test data. This task is also
referred to asearning Often, a clear distinction is made between lewymuroblems that
are (i) supervised (classification) or (ii) unsupsed (clustering), the first involving only
labeled data(training patterns with known category labels) iehhe latter involving
only unlabeled datgDuda et al., 2001]. Clustering is a more difficahd challenging
problem than classification. There is a growingeiast in a hybrid setting, callesgmi-
supervised learningChapelle et al., 2006]; in semi-supervised claszifon, the labels
of only a small portion of the training data set¢ awvailable. The unlabeled data, instead
of being discarded, are also used in the learnmeggss. In semi-supervised clustering,
instead of specifying the class labels, pair-wisastraints are specified, which is a
weake way of encoding the prior knowledge A pair-wisaust-link constraint
corresponds to the requirement that two objectaldhze assigned the same cluster label,
whereas the cluster labels of two objects partteigan acannot-linkconstraint should
be different. Constraints can be particularly bemalf in data clustering [Lange et al.,
2005, Basu et al., 2008], where precise definitiohsinderlying clusters are absent. In
the search for good models, one would like to idelall the available information, no
matter whether it is unlabeled data, data with taigs, or labeled data. Figure 1
illustrates this spectrum of different types ofrleag problems of interest in pattern
recognition and machine learning.
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Figure 1 Learning problems: dots correspond to points wittemy labels. Points with labels are denoted
by plus signs, asterisks, and crosses. In (c)nthst-link and cannot-link constraints are denotedadlid
and dashed lines, respectively (figure taken frbanpe et al., 2005]).

2. Data clustering

The goal of data clustering, also known as cluatalysis, is to discover thaatural
grouping(s) of a set of patterns, points, or olgje@Webster [Merriam-Webster Online
Dictionary, 2008] defines cluster analysis as “atistical classification technique for
discovering whether the individuals of a populatfah into different groups by making
guantitative comparisons of multiple charactersstidn example of clustering is shown
in Figure 2. The objective is to develop an auteenatgorithm that will discover the
natural groupings (Figure 2 (b)) fhe unlabeled data (Figure 2 (a)).

An operational definition of clustering can be sthas follows: Given eepresentatiorof

n objects, findK groups based on a measuresghilarity such that the similarities
between objects in the same group are high whiesimilarities between objects in
different groups are low. But, what is the notidrsionilarity? What is the definition of a
cluster? Figure 2 shows that clusters can diffaerms of theirshape size anddensity
The presence of noise in the data makes the datectithe clusters even more difficult.
An ideal cluster can be defined as a set of paivesiscompactandisolated In reality, a
cluster is a subjective entity that is in the ef/¢he beholder and whose significance and
interpretation requires domain knowledge. But, ehilumans are excellent cluster
seekers in two and possibly three dimensions, vesl reaitomatic algorithms for high
dimensional data. It is this challenge along wit tnknown number of clusters for the
given data that has resulted in thousands of clagtealgorithms that have been
published and that continue to appear.
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Figure 2 Diversity of clustersThe seven clusters in (a) (denoted by seven differelors in 1(b)) differ
in shape, size, and density. Although these claistey apparent to a data analyst, none of theadeail
clustering algorithms can detect all these clusters

2.1 Why clustering?

Cluster analysis is prevalent in any disciplinet thaolves analysis of multivariate data.
A search via Google Scholar [gsc, 2009] found 1,&8fries with the wordslata
clusteringthat appeareth 2007 alone. This vast literature speaks to thportance of
clustering in data analysis. It is difficult to eadstively list the numerous scientific fields
and applications that have utilized clustering megbhes as well as the thousands of
published algorithms. Image segmentation, an inapbgproblem in computer vision, can
be formulated as a clustering problem [Jain & Flytd@96, Frigui & Krishnapuram,
1999, Shi & Malik, 2000]. Documents can be clugddievayama & Tokunaga, 1995] to
generate topical hierarchies for efficient inforrmataccess [Sahami, 1998] or retrieval
[Bhatia & Deogun, 1998]. Clustering is also use@toup customers into different types
for efficient marketing [Arabie & Hubert, 1994], gyoup services delivery engagements
for workforce management and planning [Hu et @007 as well as to study genome
data [Baldi & Hatfield, 2002] in biology.

Data clustering has been used for the followingehmain purposes.

* Underlying structureto gain insight into data, generate hypothesetgat
anomalies, and identify salient features.

* Natural classificationto identify the degree of similarity among forors
organisms (phylogenetic relationship).

» Compressionas a method for organizing the data and summarizithrough
cluster prototypes.
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An example of class discovery is shown in FigureH&re, clustering was used to
discover subclasses in an online handwritten cheraecognition application [Connell &
Jain, 2002]. Different users write the same digitdifferent ways, thereby increasing the
within-class variance. Clustering the training pats from a class can discover new
subclasses, called the lexemes in handwritten cteam Instead of using a single model
for each character, multiple models based on thmben of subclasses are used to
improve the recognition accuracy.

Given the large number of Web pages on the Intemest search queries typically result
in an extremely large number of hits. This credtes need for search results to be
organized. Search engines like Clusty (www.clusg).@luster the search results and
present them in a more organized way to the user.
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Figure 3 Finding subclasses using data clustering. (a) bhdhow two different ways of writing the digit
2; (c) three different subclasses for the charadttgd) three different subclasses for the letigr

2.2 Historical developments

The development of clustering methodology has lezeeuly interdisciplinary endeavor.
Taxonomists, social scientists, psychologists, dyisits, statisticians, mathematicians,
engineers, computer scientists, medical researchadsothers who collect and process
real data have all contributed to clustering metthogly. According to JSTOR ([jst, 2009],
data clusteringfirst appeared in the title of a 1954 article degalwith anthropological
data. Data clustering is also known as Q-analygmlogy, clumping, and taxonomy
[Jain & Dubes, 1988] depending on the field wheiis applied. There are several books
published on data clustering; classic ones are dikalSand Sneath [Sokal & Sneath,
1963], Anderberg [Anderberg, 1973], Hartigan [Hgeita, 1975], Jain and Dubes [Jain &
Dubes, 1988] and Duda et al. [Duda et al., 2001)s€ring algorithms have also been
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extensively studied in data mining (see books by ldad Kamber [Han & Kamber,
2000] and Tan et al. [Tan et al., 2005]) and maet@arning [Bishop, 2006]).

Clustering algorithms can be broadly divided intwot groups: hierarchical and
partitional. Hierarchical clustering algorithms recursively finésted clusters either in
agglomerative mode (starting with each data painits own cluster and merging the
most similar pair of clusters successively to farluster hierarchy) or in divisive (top-
down) mode (starting with all the data points ire@fuster and recursively dividing each
cluster into smaller clusters). Compared to hidnaad clustering algorithms, partitional
clustering algorithms find all the clusters simoiausly as a partition of the data and do
not impose a hierarchical structure. Input to adrehical algorithm is an x n similarity
matrix, wheren is the number of objects to be clustered. On therchand, a partitional
algorithm can use either anx d pattern matrix, where objects are embedded inda
dimensional feature space, orrar n similarity matrix. Note that a similarity matrix ma
be easily derived from a pattern matrix, but ortdora methods such as multi-
dimensional scaling (MDS) are needed to derive @epa matrix from a similarity
matrix.

The most well-known hierarchical algorithms aregi@dink and complete-link; the most
popular and the simplest partitional algorithm ismi€ans. Since partitional algorithms
are preferred in pattern recognition due to theneadf available data, our coverage here
is focused on these algorithms. K-means has a aimth diverse history as it was
independently discovered in different scientifielfis by Steinhaus (1956) [Steinhaus,
1956], Lloyd (proposed in 1957, published in 1984pyd, 1982], Ball & Hall (1965)
[Ball & Hall, 1965] and McQueen (1967) [MacQueel6T]. Even though K-means was
first proposed over 50 years ago, it is still orfighe most widely used algorithms for
clustering. Ease of implementation, simplicity,i@éncy, and empirical success are the
main reasons for its popularity. Below we will firsummarize the development in K-
means, and then discuss the major approaches #vat been developed for data
clustering.

2.3 K-Means algorithm

Let X ={x},i =1...,n be the set oh d-dimensional points to be clustered into a set of
K clusters, C ={q, k=1,...,K}. K-means algorithm finds a partition such that the

squared error between the empirical mean of aearumtd the points in the cluster is
minimized. Lety, be the mean of cluster, . The squared error betwegn and the

points in clusterc, is defined as

J(c) = Z”Xi - i P

%Ly

The goal of K-means is to minimize the sum of theased error over aK clusters,
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Minimizing this objective function is known to ba &P-hard problem (even for K = 2)
[Drineas et al., 1999]. Thus K-means, which is @edy algorithm, can only converge to

a local minimum, even though recent study has sheitim a large probability K-means
could converge to the global optimum when cluséeeswell separated [Meila, 2006]. K-
means starts with an initial partition wikhclusters and assign patterns to clusters so as
to reduce the squared error. Since the squared &ways decrease with an increase in
the number of clustets (with J(C) = 0 whenK = n), it can be minimized only for a fixed
number of clusters. The main steps of K-means #dlgorare as follows [Jain & Dubes,
1988].

1. Select an initial partition witK clusters; repeat steps 2 and 3 until cluster
membership stabilizes.

2. Generate a new partition by assigning each patiteits closest cluster center.

3. Compute new cluster centers.

Figure 4 shows an illustration of K-means algoritbma two-dimensional dataset with
three clusters.
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Figure 4 lllustration of K-means algorithm. (a) Two-dimensa input data with three clusters; (b) three
seed points selected as cluster centers and iaggignment of the data points to clusters; (c)d& (
intermediate iterations updating cluster labels tedt centers; (e) final clustering obtained byreans
algorithm at convergenc



To appear irPattern Recognition Letters, 2009.

Parameters of K-means

The K-means algorithm requires three user-specpig@meters: number of clustdfs
cluster initialization, and distance metric. Thesnoritical choice i. While no perfect
mathematical criterion exists, a humber of hewss{see [Tibshirani et al., 2001] and
discussion therein) are available for choodtngdypically, K-means is run independently
for different values oK and the partition that appears the most meanirgftiie domain
expert is selected. Different initializations caad to different final clustering because
K-means only converges to local minima. One waguercome the local minima is to
run the K-means algorithm, for a given K, with niplk different initial partitions and
choose the partition with the smallest squaredrerro

K-means is typically used with the Euclidean metoiccomputing the distance between
points and cluster centers. As a result, K-meardsfspherical or ball-shaped clusters in
data. K-means with Mahalanobis distance metric hasn used to detect hyper-
ellipsoidal clusters [Mao & Jain, 1996], but thisntes at the expense of higher
computational cost. A variant of K-means using ltakura-Saito distance has been used
for vector quantization in speech processing [Liedal., 1980] and K-means with, L
distance was proposed in [Kashima et al., 2008heBae et al. [Banerjee et al., 2004]
exploits the family of Bregman distance for K-means

Extensions of K-means

The basic K-means algorithm has been extended ny mdferent ways. Some of these
extensions deal with additional heuristics invotyithe minimum cluster size and
merging and splitting clusters. Two well-known \enis of K-means in pattern
recognition literature are ISODATA [Ball & Hall, 8] and FORGY [Forgy, 1965]. In
K-means, each data point is assigned to a singkterl (callechard assignmeit Fuzzy
c-means proposed by Dunn [Dunn, 1973] and later improvsdBezdek [Bezdek,
1981], is an extension of K-means where each daitat pan be a member of multiple
clusters with a membership valuoft assignmeht A good overview of fuzzy set based
clustering is available in Backer (1978) [Backe$78]. Data reduction by replacing
group examples with their centriods before clustgrinem was used to speed up K-
means and fuzzy C-means in [Eschrich etal., 2088me of the other significant
modifications are summarized below. Steinbach .€iSaéinbach et al., 2000] proposed a
hierarchical divisive version of K-means, callbtecting K-meansthat recursively
partitions the data into two clusters at each stegPelleg & Moore, 1999]kd-tree is
used to efficiently identify the closest clustentses for all the data points, a key step in
K-mean. Bradley et al. [Bradley et al., 1998] prdeed a fast scalable and single-pass
version of K-means that does not require all tha da be fit in the memory at the same
time. X-meangPelleg & Moore, 2000] automatically find§ by optimizing a criterion
such as Akaike Information Criterion (AIC) or Baigs Information Criterion (BIC). In
K-medoid[Kaufman & Rousseeuw, 20054|usters are represented using the median of
the data instead of the medternel K-meangScholkopf et al., 1998fvas proposedo
detect arbitrary shaped clusters, with an apprapranoice of the kernel similarity
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function. Note that all these extensions introduce some iaddit algorithmic parameters
that must be specified by the user.

2.4 Major approaches to clustering

As mentioned before, thousands of clustering algos have been proposed in the
literature in many different scientific discipline$his makes it extremely difficult to

review all the published approaches. Nevertheleksstering methods differ on the
choice of the objective function, probabilistic gestive models, and heuristics. We will
briefly review some of the major approaches.

Clusters can be defined as high density regionthénfeature space separated by low
density regions. Algorithms following this notiofh @usters directly search for connected
dense regions in the feature space. Different dhgons use different definitions of
connectedness. The Jarvis-Patrick algorithm defthessimilarity between a pair of
points as the number of common neighbors they shérere neighbors are the points
present in a region of pre-specified radius arotlmedpoint [Frank & Todeschini, 1994].
Ester et al. [Ester et al.,, 1996] proposed the DBSIlustering algorithm, which is
similar to the Jarvis-Patrick algorithm. It dirgcHearches for connected dense regions in
the feature space by estimating the density usiveg Rarzen window method. The
performance of the Jarvis-Patrick algorithm and BBSI depend on two parameters:
neighborhood size in terms of distance, and theirmim number of points in a
neighborhood for its inclusion in a cluster. In digeh, a number of probabilistic models
have been developed for data clustering that mibeetlensity function by a probabilistic
mixture model. These approaches assume that tlee islajenerated from a mixture
distribution, where each cluster is described by @r more mixture components
[McLachlan & Basford, 1987]. The EM algorithm [Dester et al., 1977] is often used to
infer the parameters in mixture models. Several eB@an approaches have been
developed to improve the mixture models for datestelring, including Latent Dirichlet
Allocation (LDA) [Blei et al., 2003], Pachinko Altation model[Li & McCallum, 2006]
and undirected graphical model for data clustefiigWelling & Hinton, 2005].

While the density based methods, particularly then-parametric density based
approaches, are attractive because of their inhattahty to deal with arbitrary shaped
clusters, they have limitations in handling higmdnsional data. When the data is high-
dimensional, the feature space is usually sparséjng it difficult to distinguish high-
density regions from low-density regions. Subspauastering algorithms overcome this
limitation by finding clusters embedded in low-dinséonal subspaces of the given high-
dimensional data. CLIQUE [Agrawal et al., 1998] asscalable clustering algorithm
designed to find subspaces in the data with higisithe clusters. Because it estimates the
density only in a low dimensional subspace, CLIQd{#es not suffer from the problem
of high dimensionality.

Graph theoretic clustering, sometimes referredstes@ectral clustering, represents the
data points as nodes in a weighted graph. The edgesecting the nodes are weighted
by their pair-wise similarity. The central ideatégspartition the nodes into two subséts
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andB such that the cut size, i.e., the sum of the wsighsigned to the edges connecting
between nodes iA andB, is minimized. Initial algorithms solved this ptetn using the
minimum cut algorithm, which often results in clerst of imbalaned sizes. A cluster size
(number of data points in a cluster) constraint Water adopted by the Ratio cut
algorithm [Hagen & Kahng, 1992]. An efficient appmnmate graph-cut based clustering
algorithm with cluster size (volume of the cluster, sum of edge weights within a
cluster) constraint, called Normalized Cut, wastfproposed by Shi and Malik [Shi &
Malik, 2000]. Its multiclass version was proposed Yu and Shi [Yu & Shi, 2003].
Meila and Shi [Meila & Shi, 2001] presented a Mark®andom Walk view of spectral
clustering and proposed the Modified Normalized QUNCut) algorithm that can
handle an arbitrary number of clusters. Anotheiavdrof spectral clustering algorithm
was proposed by Ng et al. [Ng et al., 2001], whergew data representation is derived
from the normalized eigenvectors of a kernel mattiaplacian Eigenmap [Belkin &
Niyogi, 2002] is another spectral clustering methioat derives the data representation
based on the eigenvectors of the graph Laplaciafmbinn and Buhmann [Hofmann &
Buhmann, 1997] proposed a deterministic annealilggprishm for clustering data
represtented using proximity measures betweendteabjects.

Several clustering algorithms have an informatlweotetic formulation. For example, the
minimum entropy method presented in [Roberts et2fl01] assumes that the data is
generated using a mixture model and each clusterodeled using a semi-parametric
probability density. The parameters are estimatgdmiaximizing the KL-divergence
between the unconditional density and the condiiodensity of a data points
conditioned over the cluster. This minimizes thertap between the conditional and
unconditional densities, thereby separating thetels from each other. In other words,
this formulation results in an approach that miziesi the expected entropy of the
partitions over the observed data. The informatomttleneck method [Tishby et al.,
1999] was proposed as a generalization to thediatertion theory and adopts a lossy
data compression view. In simple words, given atjaistribution over two random
variables, Information Bottleneck compresses oné¢hefvariables while retaining the
maximum amount of mutual information with respect the other variable. An
application of this to document clustering is shawifSlonim & Tishby, 2000] where the
two random variables are words and documents. Tdrésnare clustered first, such that
the mutual information with respect to documentsneximally retained, and using the
clustered words, the documents are clustered swaththe mutual information between
clustered words and clustered documents is maxymetihined.

3. User's dilemma

In spite of the prevalence of such a large numbeclustering algorithms, and their
success in a number of different application domaitlustering remains a difficult
problem. This can be attributed to the inherentueagss in the definition of a cluster,
and the difficulty in defining an appropriate siarity measure and objective function.

The following fundamental challenges associatech wiustering were highlighted in
[Jain & Dubes, 1988], which are relevant even ts tlay.
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(a) What is a cluster?

(b) What features should be used?

(c) Should the data be normalized?

(d) Does the data contain any outliers?

(e) How do we define the pair-wise similarity?

(H How many clusters are present in the data?
(g) Which clustering method should be used?

(h) Does the data have any clustering tendency?
(i) Are the discovered clusters and partition valid?

We will highlight and illustrate some of these dbabes below.
3.1 Data representation

Data representations one of the most important factors that influenice performance
of the clustering algorithm. If the representat(choice of features) is good, the clusters
are likely to be compact and isolated and evenrglsi clustering algorithm such as K-
means will find them. Unfortunately, there is noivemsally good representation; the
choice of representation must be guided by the dok@owledge. Figure 5(a) shows a
dataset where K-means fails to partition it inte ttwvo “natural” clusters. The partition
obtained by K-means is shown by a dashed linegnrei5(a). However, when the same
data points in (a) are represented using the tapeigenvectors of the RBF similarity
matrix computed from the data in Figure 5(b), thecome well separated, making it
trivial for K-means to cluster the data [Ng et aD01].
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Figure 5 Importance of a good representation. (a) “Two rirdgtaset where Kneans fails to find the tv
“natural” clusters; the dashed line shows the lingdaster separation boundary obtained by running K
means with K = 2. (b) a new representation of thi&dn (a) based on the top 2 eigenvectors of thpt
Laplacian of the data, computed using an RBF kekKieheans now can easily detect the two clusters
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3.2 Purpose of grouping

The representation of the data is closely tied whe purpose of grouping. The
representation must go hand in hand with the eradl gfathe user. An example dataset of
16 animals represented using 13 Boolean featuresusaad in [Pampalk et al., 2003] to
demonstrate how the representation affects thepgrgu The animals are represented
using 13 Boolean features related to their appearand activity. When a large weight is
placed on the appearance features compared toctivityafeatures, the animals were
clustered intomammals vs. birdsOn the other hand, a large weight on the activity
features clustered the dataset iptedators vs. non-predatar8oth these partitioning
shown in Figure 6 are equally valid, and uncoveamniggful structures in the data. It is
up to the user to carefully choose his represeamtdt obtain a desired clustering.
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Figure 6 Different weights on features result in differergriitioning of the data. Sixteen animals are
represented based on 13 Boolean features relatagpearance and activity. (&) partitioning withgkar
weights assigned to the appearance based featbjes; partitioning with large weights assigned he t
activity features. The figures in (a) and (b) axeezpted from [Pampalk et al., 2003]), and are km@s
“heat maps” where the colors represent the den$isgmples at a location; the warmer the color)ahger
the density.

3.3 Number of Clusters

Automatically determining the number of clusters lHmeen one of the most difficult
problems in data clustering. Most methods for aatibically determining the number of
clusters cast it into the problem of model selectldsually, clustering algorithms are run
with different values oK; the bestvalue ofK is then chosen based on a predefined
criterion. Figueiredo and Jain [Figueiredo & Jak902] used the minimum message
length (MML) criteria [Wallace & Boulton, 1968, Wate & Freeman, 1987] in
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conjunction with the Gaussian mixture model (GMM) dstimateK. Their approach
starts with a large number of clusters, and gragumaérges the clusters if this leads to a
decrease in the MML criterion. A related approacih using the principle of Minimum
Description Length (MDL) was used in [Hansen & Y001] for selecting the number of
clusters. The other criteria for selecting the nemdif clusters are the Bayes Information
Criterion (BIC) and Akiake Information Criterion (8). Gap statistics [Tibshirani et al.,
2001] is another commonly used approach for degitiie number of clusters. The key
assumption is that when dividing data into an optimumber of clusters, the resulting
partition is most resilient to the random pertuidnad. The Dirichlet Process (DP)
[Ferguson, 1973, Rasmussen, 2000] introduces gammetric prior for the number of
clusters. It is often used by probabilistic modelslerive a posterior distribution for the
number of clusters, from which the most likely nienbf clusters can be computed. In
spite of these objective criteria, it is not easydecide which value df leads to more
meaningful clusters. Figure 7(a) shows a two-dinmrad synthetic dataset generated
from a mixture of six Gaussian components. The kabels of the points are shown in
Figure 7(e). When a mixture of Gaussians is fith® data with 2, 5 and 6 components,
shown in Figure 7(b)-(d), respectively, each onthem seems to be a reasonable fit.

(a) Input data (b) GMM (K=2) (c) GMM (K=5)

(d) GMM (K=6) (e) True labels, K =

Figure 7 Automatic selection of number of clusteks, (a) Input data generated from a mixture of six
Gaussian distributions; (b)-(d) Gaussian mixturaleddGMM) fit to the data with 2, 5 and 6 comporgnt
respectively; (e) true labels of the data.

3.4 Cluster validity
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Clustering algorithms tend to find clusters in theda irrespective of whether or not any
clusters are present. Figure 8(a) shows a datasietnw natural clustering; the points
here were generated uniformly in a unit square. éi@m, when the K-means algorithm is
run on this data witlK = 3, three clusters are identified as shown in Fed(b)! Cluster
validity refers to formal procedures that evaluate theltesf cluster analysis in a
guantitative and objective fashion [Jain & Dube338]. In fact, even before a clustering
algorithm is applied to the data, the user shoudtemhnine if the data even has a
clustering tendencfSmith & Jain, 1984].
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Figure 8 Cluster validity.(a) A dataset with no “natural” clustering; (b) Keans partition withk = 3.

Cluster validity indices can be defined based woedldifferent criteriainternal, relative,
and external [Jain & Dubes, 1988]Indices based oimternal criteria assess the fit
between the structure imposed by the clusteringréihgn (clustering) and the data using
the data alone. Indices basedretative criteriacompare multiple structures (generated
by different algorithms, for example) and decideichhof them is better in some sense.
External indicesmeasure the performance by matching cluster stidtuthe a priori
information, namely the “true” class labels (oftefierred to as ground truth). Typically,
clustering results are evaluated using the extecnigdrion, but if the true labels are
available, why even bother with clustering? Thelarobf cluster stability[Lange et al.,
2004] is appealing as an internal stability measGtaster stability is measured as the
amount of variation in the clustering solution odéferent sub-samples drawn from the
input data. Different measures of variation canused to obtain different stability
measures. In [Lange etal.,, 2004], a supervisedsifiar is trained on one of the
subsamples of the data, by using the cluster laidgned by clustering the subsample,
as thetrue labels. The performance of this classifier ontdsting subset(s) indicates the
stability of the clustering algorithm. In model bkdsalgorithms (e.g., centroid based
representation of clusters in K-means, or Gaus$ixture Models), the distance
between the models found for different subsampéeshe used to measure the stability
[von Luxburg & David, 2005]. Shamir and Tishby [$fhia & Tishby, 2008] define
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stability as the generalization ability of a clustg algorithm (in PAC-Bayesian sense).
They argue that since many algorithms can be shovee asymptotically stable, thate

at which the asymptotic stability is reached widspect to the number of samples is a
more useful measure of cluster stability. Crossaadion is a widely used evaluation
method in supervised learning. It has been adaptiednsupervised learning by
replacing the notaion of “prediction accuracy” wighdifferent validity measure. For
example, given the mixture models obtained fromdae in one fold, the likelihood of
the data in the other folds serves as an indicatidhe algorithm’s performance, and can
be used to determine the number of clusters

3.5 Comparing clustering algorithms

Different clustering algorithms often result in ieglly different partitions even on the
same data. In Figure 9, seven different algorithmese applied to cluster the 15 two-
dimensional points. FORGY, ISODATA, CLUSTER, and 3M are partitional
algorithms that minimize the squared error criter{they are variants of the basic K-
means algorithm). Of the remaining three algorithMST (minimum spanning tree) can
be viewed as a single-link hierarchical algoritrangd JP is a nearest neighbor clustering
algorithm. Note that a hierarchical algorithm cam Uised to generate a partition by
specifying a threshold on the similarity. It is @nt that none of the clustering is superior
to the other, but some are similar to the other.

An interesting question is to identify algorithmbat generate similar partitions
irrespective of the data. In other words, can wstelr the clustering algorithms? Jain et
al. [Jain et al., 2004] clustered 35 different tdumg algorithms into 5 groups based on
their partitions on 12 different datasets. The kinty between the clustering algorithms
is measured as the averaged similarity betweepdhéions obtained on the 12 datasets.
The similarity between a pair of partitions is measl using the Adjusted Rand Index
(ARI). A hierarchical clustering of the 35 clustagialgorithms is shown in Figure 10(a).
It is not surprising to see that the related atboms are clustered together. For a
visualization of the similarity between the algbnts, the 35 algorithms are also
embedded in a two-dimensional space; this is aeliegvy applying the Sammon’s
projection algorithm [J. W. Sammon, 1969] to th35 similarity matrix. Figure 10(b)
shows that all the CHAMELEON variations (6, 8-10¢ @lustered into a single cluster.
This plot suggests that the clustering algoritholfowing the same clustering strategy
result in similar clustering in spite of minor \ations in the parameters or objective
functions involved. In [Meila, 2003], a differentetnic in the space of clusterings, termed
Variation of Information (VI), was proposed. It nse@es the similarity between two
clustering algorithms by the amount of informatiomst or gained when choosing one
clustering over the other.
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(aj 15 pdints in‘2D (b) MST (c) FORGY (d) ISODATA
(e) WISH (f) CLUSTER (g) Complete-link (h) JP

Figure 9 Several clustering of fifteen patterns in two disiens: (a) fifteen patterns; (b) minimum
spanning tree of the fifteen patterns; (c) clusfesm FORGY:; (d) clusters from ISODATA; (e) cluster

from WISH; (f) clusters from CLUSTER; (g) clusteirom complete-link hierarchical clustering; and (h)
clusters from Jarvis-Patrick clustering algorith(figure reproduced from [Dubes & Jain, 1976]).
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Figure 10 Clustering of clustering algorithmg¢a) Hierarchical clustering of 35 different algbris; (b)
Sammon’s mapping of the 35 algorithms into a twmetisional space, with the clusters highlighted for
visualization. The algorithms in the group (4, 24-35) correspond to K-means, spectral clustering,
Gaussian mixture models, and Ward's linkage. Thgordhms in group (6, 8-10) correspond to
CHAMELEON algorithm with different objective funcins.

Clustering algorithms can also be compared at Heoretical level based on their
objective functions. In order to perform such a panson, a distinction should be made
between aclustering methodand aclustering algorithm[Jain & Dubes, 1988]. A

clustering method is a general strategy employeddive a clustering problem. A
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clustering algorithm, on the other hand, is simgfyinstance of a method. For instance,
minimizing the squared error is a clustering methadd there are many different
clustering algorithms, including K-means, that ismpkent the minimum squared error
method. Some equivalence relationships even betdiement clustering methods have
been shown. For example, Dhillon et al. [Dhillorakt 2004] show that spectral methods
and kernel K-means are equivalent; for a choic&evhel in spectral clustering, there
exists a kernel for which the objective functionk Kernel K-means and spectral
clustering are the same. The equivalence betweamegative matrix factorization for
clustering and kernel K-means algorithm is shown[Ding et al., 2005]. All these
methods are directly related to the analysis aémygctors of the similarity matrix.

The above discussion underscores one of the impdeats about clusteringhere is no
best clustering algorithmEach clustering algorithm imposes a structuretlen data
either explicitly or implicitly. When there is a gd match between the model and the
data, good patrtitions are obtained. Since the stre®f the data is not known a priori,
one needs to try competing and diverse approach@éstérmine an appropriate algorithm
for the clustering task at hand. This idea of natba®ustering algorithm is partially
captured by the impossibility theorem [Kleinberd)02], which states that no single
clustering algorithm simultaneously satisfies acddiasic axioms of data clustering.

3.6 Admissibility analysis of clustering algorithms

Fisher and Van Ness [Fisher & vanNess, 1971] fdyretalyzed clustering algorithms
with the objective of comparing them and providggjdance in choosing a clustering
procedure. They defined a setaafmissibility criteriafor clustering algorithms that test
the sensitivity of clustering algorithms with respéo the changes that do not alter the
essential structure of the data. A clustering IedaA-admissibléf it satisfies criteriorA.
Example criteria includeonvex, point and cluster proportion, cluster onass and
monotoneThey are briefly described below.

m  Convex:A clustering algorithm igonvex-admissibld it results in a clustering
where the convex hulls of clusters do not intersect

m Cluster proportion:A clustering algorithm igluster-proportion admissiblé the
cluster boundaries do not alter even if some of dlusters are duplicated an
arbitrary number of times.

» Cluster omissionA clustering algorithm ismission-admissiblé by removing
one of the clusters from the data and re-runnirgaligorithm, the clustering on
the remainingK-1 clusters is identical to the one obtained on theith W
clusters.

* Monotone:A clustering algorithm isnonotone-admissibiié the clustering results
do not change when a monotone transformation ieapfo the elements of the
similarity matrix.

Fisher and Van Ness proved that one cannot comsatgorithms that satisfy certain
admissibility criteria. For example, if an algonths monotone-admissible, it cannot be a
hierarchical clustering algorithm.
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Kleinberg [Kleinberg, 2002] addressed a similarigbeon, where he defined three criteria:

» Scale invarianceAn arbitrary scaling of the similarity metric musit change the
clustering results.

* RichnessThe clustering algorithm must be able to achidvpassible partitions
on the data.

» ConsistencyBYy shrinking within-cluster distances and stretghiretween-cluster
distances, the clustering results must not change.

Kleinberg also provides results similar to thaffeither & vanNess, 1971], showing that
it is impossible to construct an algorithm thatiegs all these properties hence the title
of his paper “An Impossibility Theorem for Clusteyl. Further discussions in
[Kleinberg, 2002] reveal that a clustering algantltan indeed be designed by relaxing
the definition ofsatisfyinga criterion tonearly-satisfyingthe criterion. While the set of
axioms defined here are reasonable to a large texbay are in no way the only possible
set of axioms, and hence the results must be netiexgh accordingly [S. Ben-David,
2008].

4 Trends in data clustering

Information explosion is not only creating largeaamts of data but also a diverse set of
data, bothstructuredandunstructured Unstructured datdas a collection of objects that
do not follow a specific format. For example, imagext, audio, video, etc. On the other
hand, instructured datathere are semantic relationships within each obijeat are
important. Most clustering approaches ignore thecture in the objects to be clustered
and use a feature vector based representationotar dtructured and unstructured data.
The traditional view of data partitioning based ctor-based feature representation
does not always serve as an adequate frameworknfit&s include objects represented
using sets of points [Lowe, 2004], consumer pureh&sords [Guha et al., 2000], data
collected from questionnaires and rankings [Craehl 1985], social networks
[Wasserman & Faust, 1994], and data streams [Gula.,e2003b]. Models and
algorithms are being developed to process hugemesuof heterogeneous data. A brief
summary of some of the recent trends in data aiastés presented below.

4.1 Clustering ensembles

The success of ensemble methods for supervisadnganas motivated the development
of ensemble methods for unsupervised learning [RBrethin, 2002]. The basic idea is
that by takingmultiple looksat the same data, one can generate multiple ipadit
(clustering ensemb)eof the same data. By combining the resulting ipants, it is
possible to obtain a good data partitioning evemwthe clusters are not compact and
well separated. Fred and Jain used this approactakigg an ensemble of partitions
obtained by K-means; the ensemble was obtainechagging the value of K and using
random cluster initializations. These partitiongevihen combined using a co-occurrence
matrix that resulted in a good separation of thestelrs. An example of a clustering
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ensemble is shown in Figure 11 where a “two-spidataset is used to demonstrate its
effectiveness. K-means is run multiple, say N, 8mdth varying values of the number of
clustersK. The new similarity between a pair of points isired as the number of times
the two points co-occur in the same cluster in Nsraf K-means. The final clustering is
obtained by clustering the data based on the nemwpse similarity. Strehl and Ghosh
[Strehl & Ghosh, 2003] proposed several probaislistodels for integrating multiple
partitions. More recent work on cluster ensembéaslze found in [Hore et al., 2009a].

There are many different ways of generating a elusy ensemble and then combining
the partitions. For example, multiple data panmisiccan be generated by: (i) applying
different clustering algorithms, (ii) applying tlsame clustering algorithm with different
values of parameters or initializations, and (iidombining of different data
representations (feature spaces) and clusteringyitdgns. The evidence accumulation
step that combines the information provided bydtterent partitions can be viewed as
learning the similarity measure among the datatpoin

IS
X

Figure 11 Clustering ensembles. Multiple runs of K-meansumed to learn the pair-wise similarity
using the “co-occurrence” of points in clustersisTdimilarity can be used to detect arbitrary sklape
clusters.

4.2 Semi-supervised clustering

Clustering is inherently an ill-posed problem wh#re goal is to partition the data into
some unknown number of clusters based on intriméczmation alone. The data-driven
nature of clustering makes it very difficult to dgs clustering algorithms that will
correctly find clusters in the given data. Any ertd orside informatioravailable along
with the n x d pattern matrix or the n x n simitarmatrix can be extremely useful in
finding a good partition of data. Clustering algloms that utilize such side information
are said to be operating irsami-supervised mod€hapelle et al., 2006]. There are two
open questions: (i) how should the side informatimn specified? and (i) how is it
obtained in practice? One of the most common meathofl specifying the side
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information is in the form of pair-wise constraints must-link constrainspecifies that
the point pair connected by the constraint belantp¢ same cluster. On the other hand, a
cannot-link constraintspecifies that the point pair connected by thestamt do not
belong to the same cluster. It is generally assutim&icthe constraints are provided by the
domain expert. There is limited work on automatycderiving constraints from the data.
Some attempts to derive constraints from domaimlogy and other external sources
into clustering algorithms include the usage of Wwet ontology, gene ontology,
Wikipedia, etc. to guide clustering solutions. Hoee these are mostly feature
constraints and not constraints on the instancesghfgd et al., 2003, Liu et al., 2004,
Banerjee et al.,, 2007b]. Other approaches for dioty side information include (i)
“seeding”, where some labeled data is used alotiy laige amount of unlabeled data for
better clustering [Basu etal.,, 2002] and (ii) noeth that allow encouraging or
discouraging some links [Law et al., 2005, Figugaret al., 2006].

Figure 12 illustrates the semi-supervised learnmgn image segmentation application
[6]. The textured image to be segmented (clusjeredshown in Figure 12 (a). In
addition to the image, a set of user-specified-p@se constraints on the pixel labels are
also provided. Figure 12 (b) shows the clusteribtpimed when no constraints are used,
while Figure 12 (c) shows improved clustering wilie use of constraints. In both the
cases, the number of clusters was assumed to benk{o=5).

(a) Input image and constraints b) No constraints (c) 10%eds in constraints

Figure 12 Semi-supervised learning. (a) Input image congistiiffive homogeneous textured regions;
examples of must-link (solid blue lines) and mustlink (broken red lines) constraints between [sixe
be clustered are specified. (b) 5-cluster solufgmgmentation) without constraints. (c) Improvagstgring
(with five clusters) with 10% of the data pointslinded in the pair-wise constraints [6].

Most approaches [Bar-Hillel et al., 2003, Basulget2004, Chapelle et al., 2006, Lu &
Leen, 2007] to semi-supervised clustering modifg tvbjective function of existing
clustering algorithms to incorporate the pair-wgsmstraints. It is desirable to have an
approach to semi-supervised clustering that camawgpthe performance of an already
existing clustering algorithm without modifying BoostClustelLiu et al., 2007] adopts
this philosophy and follows a boosting frameworkirtgprove the performance of any
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given clustering algorithm using pair-wise consitsi It iteratively modifies the input to
the clustering algorithm by generating new dataeggntations (transforming the n x n
similarity matrix) such that the pair-wise constitaiare satisfied while also maintaining
the integrity of the clustering output. Figure 1®ws the performance of BoostCluster
evaluated on handwritten digit database in the té@obsitory [Blake & Merz, 1998] with
4,000 points in 256-dimensional feature space. ®aster is able to improve the
performance of all the three commonly used clustealgorithms, K-means, single-link,
and Spectral clustering as pair-wise constraings amtded to the data. Only must-link
constraints are specified here and the numberuef ¢tusters is assumed to be known
(K=10).
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Figure 13 Performance of BoostCluster (measured using Noee@lMutual Information (NMI)) as the
number of pair-wise constraints are increased.tfitee plots correspond to boosted performance -of K
means, Single-Link (SLINK), and Spectral cluster{8§EC).

4.3 Large scale clustering

Large-scale data clustering addresses the challehgkistering millions of data points

that are represented in thousands of featureseTlabhows a few examples of real-world
applications for large-scale data clustering. Belowe review the application of large-

scale data clustering to content-based image vatrie

Application Description # Objects # Features

document clustering| group documents of similardspi 10° 10"
[Andrews & Fox, 2007]

gene clustering group genes with similar expression | 10° 107
levels[A. V. Lukashin & Fuchs, 2003]

content-based image quantize low-level image 10° 10°

retrieval features[J. Philbin & Zisserman, 2007]

clustering of earth | derive climate indices[Michael Steinba¢h0’ 10°

science data & Potter, 2003]
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Table 1: Example applications of large-scale datstering

(a) 370 (b) 64

Figure 14 Threetattoo images represented using SIFT key poingg. a(pair of similar images has 370
matching key points; (b) a pair of different imades 64 matching key points. The green lines shmawv t
matching key-points between the images [Lee eRaD].

The goal of Content Based Image Retrieval (CBIRpigetrieve visually similar images
to a given query image. Although the topic has b&tedied for the past 15 years or so,
there has been only limited success. Most earljkwar CBIR was based on computing
color, shapeandtexturebased features and using them to define a sinyilagtween the
images. A 2008 survey on CBIR highlights the d#fer approaches used for CBIR
through time [Datta et al., 2008]. Recent approacfog CBIR use key point based
features. For example, SIFT [Lowe, 2004] descrgptan be used to represent the images
(see Figure 14). However, once the size of the endafabase increases (~10 million),
and assuming 10 milliseconds to compute the majcboore between an image pair, a
linear search would take approximately 30 houraniewer one query. This clearly is
unacceptable.

On the other hand, text retrieval applicationsmateh faster. It takes about one-tenth of a
second to search 10 billion documents in Googlaoxel approach for image retrieval is
to convert the problem into a text retrieval probleThe key points from all the images
are first clustered into a large number of clustgrkich is usually much less than the
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number of key points themselves). These are calisdal words.An image is then
represented by a histogram of visual words, ibe iumber of key-points from the image
that are in each word or each cluster. By reprasgrdach image by a histogram of
visual words, we can then cast the problem of imsgarch into a problem of text
retrieval and exploit text search engines for eht image retrieval. One of the major
challenges in quantizing key points is the numbklgects to be clustered. For a
collection of 1,000 images with an average of 1,889 points and target number of
5,000 visual words, it requires clusterind bbjects into 5,000 clusters.

A large number of clustering algorithms have beewvetbped to efficiently handle large-
size data sets. Most of these studies can be fotakssito four categories:

m Efficient Nearest Neighbor (NN) Search. One of Hasic operations in any data
clustering algorithm is to decide the cluster mership of each data point, which
requires NN search. Algorithms for efficient NN s#aare either tree-based (e.g. kd-
tree [Moore, 1998, Muja & Lowe, 2009]) or randonojection based (e.g., Locality
Sensitive Hash [Buhler, 2001]).

s Data Summarization. Objective here is to improwe thustering efficiency by first
summarizing a large data set into a relatively smialbset, and then applying the
clustering algorithms to the summarized data sedantple algorithms include
BIRCH [Zhang et al., 1996], divide-and-conquer [8ib@ach et al., 2000], coreset K-
means [Har-peled & Mazumdar, 2004], and coarseniathods [Karypis & Kumar,
1995].

m Distributed Computing. Approaches in this categfbhillon & Modha, 1999]
divide each step of a data clustering algorithrmo mtnumber of procedures that can
be computed independently. These independent caigrgl procedures will then
be carried out in parallel by different processtarseduce the overall computation
time.

m Incremental Clustering. These algorithms, for exinfBradley et al., 1998] are
designed to operate in a single pass over dataspgminmprove the efficiency of data
clustering. This is in contrast to most cluster@gorithms that require multiple
passes over data points before identifying thetetusenters. COBWEB is a popular
hierarchical clustering algorithm that does a ®ngass through the available data
and arranges it into a classification tree incretagn[Fisher, 1987].

m  Sampling-based methods. Algorithms like CURE [Gebal., 1998, Kollios et al.,
2003] subsample a large dataset selectively, arfdrpe clustering over the smaller
set, which is later transferred to the larger dztas

4.4 Multi-way clustering

Objects or entities to be clustered are often farnby a combination ofrelated
heterogeneous components. For example, a docusenade of words, title, authors,
citations, etc. While objects can be converted iatgpooled feature vector of its
components prior to clustering, it is not a natuegdresentation of the objects and may
result in poor clustering performance.
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Co-clustering [Hartigan, 1972, Mirkin, 1996] aints d¢luster both features and instances
of the data (or both rows and columns of th& d pattern matrix) simultaneously to
identify the subset of features where the resulthugters are meaningful according to
certain evaluation criterion. This problem was tfigudied under the nameirect
clustering by Hartigan [Hartigan, 1972]. It is also calldd-dimensional clustering
[Cheng & Church, 2000]double clusteringcoupled clusteringor bimodal clustering
This notion is also related to subspace clustenihgre all the clusters are identified in a
common subspace. Co-clustering is most populdrdrfield of bioinformatics, especially
in gene clustering, and has also been successipiiired to document clustering [Slonim
& Tishby, 2000, Dhillon et al., 2003].

The co-clustering framework was extendednalti-way clusteringn [Bekkerman et al.,
2005] to cluster a set of objects by simultaneoudlystering their heterogeneous
components. Indeed, the problem is much more aigilig because different pairs of
components may participate in different types ohilsirity relationships. In addition,
some relations may involve more than two componeBasierjee et al. [Banerjee et al.,
2007a] present a family of multi-way clustering egtes that is applicable to a class of
loss functions known as Bregman divergences. Siadhwt al.[Sindhwani et al., 2008]
apply semi-supervised learning in the co-clustefraghework.

4.5 Heterogeneous data

In traditional pattern recognition settings, a tgatvector consists of measurements of
different properties of an object. This represeotatof objects is not a natural
representation for several types of d&taterogeneous datefers to the data where the
objects may not beaturally represented using a fixed length feature vector.

Rank Data: Consider a dataset generated by ranking of a setnodvies by different
people; only some of the objects are ranked. The task is to cluster thesusdiwose
rankings are similar and also to identify the ‘es@ntative rankings’ of each group
[Mallows, 1957, Critchlow, 1985, Busse et al., 2D07

Dynamic Data: Dynamic data, as opposed to static data, can chaveyethe course of
time e.g., blogs, Web pages, etc. As the datametified, clustering must be updated
accordingly. Adata streamis a kind of dynamic data that is transient inunat and
cannot be stored on a disk. Examples include né&tywackets received by a router and
stock market, retail chain, or credit card transacstreams. Characteristics of the data
streams include their high volume and potentiatpaunded size, sequential access and
dynamically evolving nature. This imposes additiomaquirements to traditional
clustering algorithms to rapidly process and sunmearthe massive amount of
continuously arriving data. It also requires theligbto adapt to changes in the data
distribution, the ability to detect emerging clustand distinguish them from outliers in
the data, and the ability to merge old clustersdiscard expired ones. All of these
requirements make data stream clustering a significhallenge since they are expected
to be single-pass algorithms [Guha et al., 200BBLause of the high-speed processing
requirements, many of the data stream clusterintpods [Guha et al., 2003a, Aggarwal
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et al., 2003, Cao et al., 2006, Hore et al., 20@®b]extensions of simple algorithms such
as K-means, K-medoid, fuzzy c-means or densitybakestering, modified to work in a
data stream environment setting.

Graph Data: Several objects, such as chemical compounds, preteictures, etc. can
be represented most naturally as graphs. Manyeointitial efforts in graph clustering
have focused on extracting graph features to a#i®isting clustering algorithms to be
applied to the graph feature vectors [Tsuda & Ktfif)6]. The features can be extracted
based on patterns such as frequent subgraphsesh@dths, cycles, and tree-based
patterns. With the emergence of kernel learningreghhave been growing efforts to
develop kernel functions that are more suited fapp-based data [Kashima et al., 2003].
One way to determine the similarity between graighisy aligning their corresponding
adjacency matrix representations [Umeyama, 1988].

Relational Data: Another area that has attracted considerable Bttage clustering
relational (network) data. Unlike the clusteringgrph data, where the objective is to
partition a collection of graphs into disjoint gpsy the task here is to partition a large
graph (i.e., network) into cohesive subgraphs basedheir link structure and node
attributes. The problem becomes even more compticahen the links (which represent
relations between objects) are allowed to haverdevgypes. One of the key issues is to
define an appropriate clustering criterion for tielaal data. A general probabilistic
model for relational data was first proposed ingKa et al., 2001], where different
related entities are modeled distributions condém on each other. Newman's
modularity function [Newman & Girvan, 2004, NewmaR006] is a widely-used
criterion for finding community structures in netiks, but the measure considers only
the link structure and ignores attribute similasti A spectral relaxation to Newman and
Girvan’s objective function [Newman & Girvan, 200#r network graph clustering is
presented in [White & Smyth, 2005]. Since real reks are often dynamic, another
issue is to model the evolutionary behavior of meks, taking into account changes in
the group membership and other characteristic feafl..Backstrom et al., 2006].

5. Summary

Organizing data into sensible groupings arisesraliyuin many scientific fields. It is,
therefore, not surprising to see the continued [aojiy of data clustering. It is important
to remember that cluster analysis is an exploratogl; the output of clustering
algorithms only suggest hypotheses. While numeustering algorithms have been
published and new ones continue to appear, theme single clustering algorithm that
has been shown to dominate other algorithms acatisapplication domains. Most
algorithms, including the simple K-means, are adibls algorithms. As new
applications have emerged, it has become incregsohepr that the task of seeking the
best clustering principle might indeed be futiles &1 example, consider the application
domain of enterprise knowledge management. Givenséime set of document corpus,
different user groups (e.g., legal, marketing, ngamaent, etc) may be interested in
generating partitions of documents based on tlesipective needs. A clustering method
that satisfies the needs for one group may vidlageneeds of another. As mentioned
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earlier "clustering is in the eye of the beholdesb indeed data clustering must involve
the user or application needs.

Clustering has numerous success stories in datiys@aln spite of this, machine
learning and pattern recognition communities needddress a number of issues to
improve our understanding of data clustering. Belsva list of problems and research
directions that are worth focusing in this regard.

(a) There needs to be a suite of benchmark datid @vound truth) available for the
research community to test and evaluate clustemeghods. The benchmark should
include data sets from various domains (documemsges, time series, customer
transactions, biological sequences, social netwatc3. Benchmark should also include
both static and dynamic data (the latter would $eful in analyzing clusters that change
over time), quantitative and/or qualitative atttis) linked and non-linked objects, etc.
Though the idea of providing a benchmark data isnew (e.g., UCI ML and KDD
repository), current benchmarks are limited to $nsédtic data sets.

(b) We need to achieve a tighter integration betwekistering algorithm and the

application needs. For example, some applicatioag require generating only a few

cohesive clusters (less cohesive clusters can rad), while others may require the
best partition of the entire data. In most appiaa, it may not necessarily be the best
clustering algorithm that really matters. Ratheérisimore crucial to choose the right
feature extraction method that identifies the ulyileg clustering structure of the data.

(c) Regardless of the principle (or objective), indastering methods are eventually cast
into combinatorial optimization problems that aimfind the partitioning of data that
optimizes the objective. As a result, computatioisslue becomes critical when the
application inviolves large scale data. For instarimding the global optimal solution for
K-means is NP hard. Hence, it is important to cleodsistering principles that lead to
computationally efficient solutions.

(d) A fundamental issue related to clustering s stability or consistency. A good
clustering principle should result in a data pemiing that is stable with respect to
perturbations in the data. We need to develop @ligg methods that lead to stable
solutions.

(e) Choosing clustering principles according tairtlsatisfiability of the stated axioms.
Despite Kleinberg’s impossibility theorem, sevestildies have shown that it can be
overcome by relaxing some of the axioms. Thus,beane way to evaluate a clustering
principle is to determine to what degree it saisthe axioms.

() Given the inherent difficulty of clustering, ihakes more sense to develop semi-
supervised clustering techniques in which the kdhelata and (user specified) pairwise
constraints can be used to decide both (i) dataeseptation and (ii) appropriate
objective function for data clustering.
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