A Unified Approach to Object Category Recognition

Dr. Rahul Sukthankar Intel Research and Carnegie Mellon

UCF Vision Class Guest Lecture Nov 13, 2008

Collaborators: L. Yang, R. Jin, F. Jurie Details in IEEE CVPR 2008 paper

Object Category Recognition

Carnegie Mellon

Standard Approach (adopted from text IR)

[Fei-Fei *et al.*, 2005]; [Sivic *et al.*, 2005]; and many others

Intel Research

Intel Research

Intel **Research**

Limitation (II):

Every SIFT feature forced into one cluster \rightarrow failure to capture partial similarity

Difficulty in deciding the number of clusters \rightarrow wrong choice leads to poor dictionaries

Intel Research

Rahul Sukthankar – 2008.11.13

Clustering is a special coding

Intel Research

- Clustering is a special coding
 - Two coding vectors are either identical or orthogonal
 - Two coding vectors differ by at most two bits
- More general coding
 - Error Correcting Output Code (ECOC)

- Clustering is a special coding
 - Two coding vectors are either identical or orthogonal
 - Two coding vectors differ by at most two bits
- Our approach: coding by thresholded projections

	P1	P2	P3	P4
\mathbf{x}_1				
\mathbf{x}_2				
\mathbf{x}_3				
\mathbf{x}_4				
\mathbf{x}_5				
\mathbf{x}_6				

- Clustering is a special coding
 - Two coding vectors are either identical or orthogonal
 - Two coding vectors differ by at most two bits
- Our approach: coding by thresholded projections

- Clustering is a special coding
 - Two coding vectors are either identical or orthogonal
 - Two coding vectors differ by at most two bits
- Our approach: coding by thresholded projections

- Clustering is a special coding
 - Two coding vectors are either identical or orthogonal
 - Two coding vectors differ by at most two bits
- Our approach: coding by thresholded projections

- Clustering is a special coding
 - Two coding vectors are either identical or orthogonal
 - Two coding vectors differ by at most two bits
- Our approach: coding by thresholded projections
 - Non-orthogonal codes chosen for maximal class separation
 - Key questions: how to select the projections P and thresholds b?

Anatomy of a Visual Bit

- Weakly-supervised learning of visual bits
- Applying visual bits to object category recognition

Intel Research

Carnegie Mellon

Intel Research

Intel Research

Intel Research

Rahul Sukthankar – 2008.11.13

Relevant Visual Bits Localize Concepts

Relevance of feature **x** to category *y*

$$\sum_{k=1}^{T} \alpha_k g_k(\mathbf{x}, y)$$

Rahul Sukthankar – 2008.11.13

Carnegie Mellon

Unified Approach

Intel Research

Unified Approach

Intel Research

• Given visual bit functions g(x, a) and weights α , how to measure if they are able to classify image $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ into cat. $(y_1, y_2, ..., y_{\kappa})$

• Given visual bit functions g(x, a) and weights α , how to measure if they are able to classify image X=($\mathbf{x}_1, ..., \mathbf{x}_n$) into cat. ($y_1, y_2, ..., y_K$)

Solution: consider all possibilities

$$f(\mathbf{x}_{3}, y_{1}) = \sum_{k=1}^{T} \alpha_{k} g_{k}(\mathbf{x}_{3}, y_{1})$$
$$f(\mathbf{x}_{3}, y_{2}) = \sum_{k=1}^{T} \alpha_{k} g_{k}(\mathbf{x}_{3}, y_{2})$$
$$f(\mathbf{x}_{3}, y_{3}) = \sum_{k=1}^{T} \alpha_{k} g_{k}(\mathbf{x}_{3}, y_{3})$$

Intel Research

• Given visual bit functions g(x, a) and weights α , how to measure if they are able to classify image X=($\mathbf{x}_1, ..., \mathbf{x}_n$) into cat. ($y_1, y_2, ..., y_K$)

Intel Research

Rahul Sukthankar – 2008.11.13

• Given visual bit functions g(x, a) and weights α , how to measure if they are able to classify image X=($\mathbf{x}_1, ..., \mathbf{x}_n$) into cat. ($y_1, y_2, ..., y_K$)

Loss function for image X
$$l(X, y_1) = \frac{n}{\sum_{j=1}^{n} e(\mathbf{x}_j, y_1)}$$

Carnegie Mellon

• Given visual bit functions g(x, a) and weights α , how to measure if they are able to classify image X=($\mathbf{x}_1, ..., \mathbf{x}_n$) into cat. ($y_1, y_2, ..., y_K$)

Rahul Sukthankar – 2008.11.13

Intel **Research**

Given a collection of training images

$$\mathcal{T} = \{(X_i, \mathbf{y}_i), i = 1, \dots, N\}$$

Find optimal visual bits and combination weights by solving N

$$\min_{g_{1:T},\alpha_{1:T}} \mathcal{L}(\alpha_{1:T},g_{1:T}) = \sum_{i=1}^{N} l(X_i,\mathbf{y}_i)$$

Overview of optimization algorithm (reminiscent of boosting)

- Iterative approach: learn one visual bit (g) and weight (α) at a time
- Employ bound optimization to decouple g and α

[details in paper and supplementary material]

Results on PASCAL 2006 (AUR with 100 training examples)

- Follows methodology from [Marszalek & Schmid, 2006]
- Baselines
 - Standard: K-means (k=1000) + SVM (χ^2 kernel)
 - Discriminative: Extremely Randomized Clustering Forests

Class	KM-SVM	ERCF	Our Method
sheep	0.551 ± 0.046	0.747 ± 0.017	0.842 ± 0.008
bus	0.618 ± 0.030	0.708 ± 0.024	0.930 ± 0.005
cat	0.697 ± 0.011	0.753 ± 0.015	0.759 ± 0.016
bicycle	0.750 ± 0.026	0.744 ± 0.021	0.782 ± 0.021
car	0.654 ± 0.043	0.731 ± 0.019	0.875 ± 0.007
COW	0.519 ± 0.026	0.751 ± 0.026	0.790 ± 0.017
dog	0.670 ± 0.011	0.706 ± 0.026	0.761 ± 0.012
horse	0.503 ± 0.016	0.712 ± 0.025	0.671 ± 0.009
motor	0.496 ± 0.017	0.733 ± 0.019	0.782 ± 0.013
person	0.551 ± 0.035	0.729 ± 0.015	0.722 ± 0.007

Conclusion

- Unify codebook construction + classifier training
 - Generate codebooks by iterative projection
 - Efficiently learn projection and weights together
- Impact on object category recognition
 - Learns better representations with limited training data
 - No parameters to tune

Intel Research

Rahul Sukthankar – 2008.11.13