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Abstract

The world is covered with millions of webcams, many
transmit everything in their field of view over the Internet
24 hours a day. A web search finds public webcams in air-
ports, intersections, classrooms, parks, shops, ski resorts,
and more. Even more private surveillance cameras cover
many private and public facilities. Webcams are an endless
resource, but most of the video broadcast will be of little
interest due to lack of activity.
We propose to generate a short video that will be a syn-

opsis of an endless video streams, generated by webcams
or surveillance cameras. We would like to address queries
like “I would like to watch in one minute the highlights
of this camera broadcast during the past day”. The pro-
cess includes two major phases: (i) An online conversion
of the video stream into a database of objects and activities
(rather than frames). (ii) A response phase, generating the
video synopsis as a response to the user’s query.
To include maximum information in a short synopsis we

simultaneously show activities that may have happened at
different times. The synopsis video can also be used as an
index into the original video stream.

1. Introduction

Millions of webcams and surveillance cameras are cov-
ering the world, capturing their field of view 24 hours a day.
It is reported that in the UK alone there are 4.2 million se-
curity cameras covering city streets. Many webcams even
transmit their video publicly over the Internet for everyone
to watch. Several web sites try to index webcams by loca-
tion or by functionality, and there is still much to be done in
order to better organize this endless resource.
One of the problems in utilizing webcams is that they

provide unedited raw data. A two hours feature film, for ex-
ample, is usually created from hundreds or even thousands
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of hours of raw video footage. Without editing, most of the
webcam data is irrelevant. Also, a viewer in one continent is
likely to reach a webcam in another continent during hours
of non-activity because of time-zone differences.
Our work tries to make the webcam resource more use-

ful by giving the viewer the ability to view summaries of
the endless video, in addition to the live video stream pro-
vided by the camera. To enable this, a server can view the
live video feed, analyze the video for interesting events, and
record an object-based description of the video. This de-
scription lists for each webcam the interesting objects, their
duration, location, and their appearance. In a 3D space-
time description of the video, each object is a “tube”. In
this paper we assume that moving objects are interesting, as
well as phase transitions when a moving object turns into
background and vice versa. Other criteria, e.g. using object
recognition, can also be used to define objects of interest
more accurately.
A query that could be answered by the system may be

similar to “I would like to watch in one minute a synop-
sis of the video from this webcam broadcast during the last
hour”, or “I would like to watch in five minutes a synopsis
of last week”, etc. Responding to such a query, the most
interesting events (“tubes”) are collected from the desired
period, and are assembled into a synopsis video of the de-
sired length. To include as many activities as possible in
the short video synopsis, objects may be displayed concur-
rently, even if they originally occurred at different times.
The synopsis video can serve as an index into the original
video by keeping a pointer to the original time for each ob-
ject.
While webcam video is endless, and the number of ob-

jects is unbounded, the available data storage for each we-
bcam may be limited. To keep a finite object queue we
propose a procedure for removing objects from this queue
when space is exhausted.

1.1. Related Work

A video clip describes visual activities along time, and
compressing the time axis allows viewing a summary of
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Figure 1. The input video stream has a baby and a child at two
different times. A video synopsis can show the two objects simul-
taneously in a shorter video. We refer to the space-time location
of an object as a tube.

such a clip in a shorter time. Fast-forward, where several
frames are skipped between selected frames, is the most
common tool used for video summarization. A special case
of fast-forward is called “time lapse”, generating a video
of very slow processes like growth of flowers, etc. Since
fast-forward may lose fast activities during the dropped
frames, methods for adaptive fast forward have been devel-
oped [14, 20, 6]. Such methods attempt to skip frames in
periods of low interest or lower activity, and keep frames in
periods of higher interest or higher activity. A similar ap-
proach extracts from the video a collection of short video
sequences best representing its contents [24].
Many approaches to video summary eliminate com-

pletely the time axis, and show a synopsis of the video by
selecting a few key frames [10, 28]. These key frames can
be selected arbitrarily, or selected according to some im-
portance criteria. But key frame representation loses the
dynamic aspect of video. Comprehensive surveys on video
abstraction appear in [13, 15].
In both approaches above entire frames are used as

the fundamental building blocks, and each frame is either
shown completely or not shown at all. A different method-
ology uses mosaic images together with some meta-data for
video indexing [8, 21, 18]. In this case the static synopsis
image includes objects from different times.
Object-based approaches to video synopsis were first

presented in [22, 9], where moving objects are represented
in the space-time domain. Both papers introduce a new con-
cept: creating a synopsis that combines objects that may
have appeared at different times (See Fig 1). Our approach
is most similar to the approach in [22], with the major dif-
ference that we address an infinite video stream rather than
a short video clip.
In [23] infinite video is generated from a short video

clip. While having a different goal, objects (video sprites)
are separated from the background and rendered at arbitrary
video locations to create novel videos.

1.2. Proposed Approach to Webcam Synopsis

A two phase process is proposed for webcam synopsis

1. Online Phase during video capture. This phase is done
in real time.

• Object (tube) detection in space time (Section 2).
• Inserting detected tubes into the object queue
(Section 4).

• Removing tubes from the object queue when
reaching a space limit (Section 4).

2. Response Phase building a synopsis according to a
user query. This phase may take a few minutes, de-
pending on the activity in the time period of interest.

• Construction of time lapse video of the changing
background (Section 5.1). Background changes
can be caused, for example, by day-night differ-
ences.

• Selection of tubes that will appear in the synop-
sis and their corresponding times (Section 3, Sec-
tion 5.3).

• Stitching the tubes and the background into a co-
herent video (Section 5.4). This step should take
into account that activities from different times
can appear simultaneously, and on a background
from yet another time.

Since this work presents a video-to-video transforma-
tion, readers are encouraged to view the video examples in
http://www.vision.huji.ac.il/webcam.

2. Computing Activity Tubes

In order to generate a useful synopsis, interesting objects
and activities (tubes) should be identified. In many cases,
the indication of interest is simple: a moving object is in-
teresting. While we use object motion as an indication of
interest, exceptionsmust be noted. Some motions may have
little importance, like leaves on a tree or clouds in the sky.
People or other large animals in the scene may be important
even when they are not moving. While we do not address
these exceptions, it is possible to incorporate object recog-
nition (e.g. people detection [16, 19]), dynamic textures [7],
or detection of unusual activity [2, 27].
As objects are represented by tubes in the space-time

volume, we use interchangeably the words “objects” and
“tubes”.
We used a simplification of [25] to compute the space-

time tubes representing dynamic objects. The resulting
tubes are connected components in the 3D space-time vol-
ume, and their generation is briefly described in the follow-
ing subsections.



Figure 2. Four background images from a webcam at Stuttgart air-
port. The bottom images are at night, while the top images are
at daylight. Notice that parked cars and parked airplanes become
part of the background. This figure is best viewed in color.

2.1. Background Construction

The appearance of the background changes in time due
to changes in lighting, changes of background objects, etc.
To compute the background image for each time, we use a
temporal median over a few minutes before and after each
frame. We normally use a median over four minutes. Other
methods for background construction are possible, even
when using a shorter temporal window [5], but we used the
median due to efficiency considerations.
Fig. 2 shows several background images as they vary

during the day.

2.2. Moving Objects Extraction using Min-Cut

For extracting moving objects we follow [25] using
background subtraction together with min-cut to get a
smooth segmentation of foreground objects. In [25], im-
age gradients that coincide with background gradients are
attenuated, as they are less likely to be related to motion
boundaries.
Let B be the current background image and let I be the

current image to be processed. Let V be the set of all pixels
in I, and let N be the set of all adjacent pixel pairs in I .
A labeling function f labels each pixel r in the image as
foreground (fr = 1) or background (fr = 0). A desirable
labeling f usually minimizes the Gibbs energy [3]:

E(f) =
∑
r∈V

E1(fr) + λ
∑

(r,s)∈N

E2(fr, fs), (1)

whereE1(fr) is the color term,E2(fr, fs) is the contrast
term between adjacent pixels r and s, and λ is a user defined

Figure 3. Four extracted tubes shown “flattened” over the corre-
sponding backgrounds from Fig. 2. The left tubes correspond to
ground vehicles, while the right tubes correspond to airplanes on
the runway at the back. This figure is best viewed in color.

weight. As a contrast term, we used the same term as [25]
(Its description is omitted due to lack of space).
As for the color term, let dr = ‖I(r)−B(r)‖ be the color

differences between the image I and the current background
B. The foreground (1) and background (0) costs for a pixel
r are set to:

E1(1) =
{

0 dr > k1

k1 − dr otherwise
,

E1(0) =

⎧⎨
⎩

∞ dr > k2

dr − k1 k2 > dr > k1

0 otherwise
,

(2)

where k1 and k2 are user defined thresholds. Empirically
k1 = 30/255 and k2 = 60/255 worked well in our exam-
ples.
We do not use a lower threshold with infinite weights,

since the later stages of our algorithm can robustly handle
pixels that are wrongly identified as foreground, but not the
opposite. For the same reason, we construct a mask of all
foreground pixels in the space-time volume, and apply a 3D
morphological dilation on this mask.
Finally, the 3D mask is grouped into connected compo-

nents, denoted as “activity tubes”. Examples of extracted
tubes are shown in Fig. 3.
Each tube b is represented by its characteristic function

χb(x, y, t) =
{ ||I(x, y, t) − B(x, y, t)|| t ∈ tb

0 otherwise
,

(3)



where B(x, y, t) is a pixel in the background image,
I(x, y, t) is the respective pixel in the input image, and tb is
the time interval in which this object exists.

2.3. Foreground-Background Phase Transitions

Tubes that abruptly begin or end in the middle of a frame
represent phase transitions: A moving object that became
stationary and has been merged with the background, or a
stationary object that started moving. Examples are cars
being parked or getting out of parking. In most cases phase
transitions are significant events, and we detect and mark
each phase transition for use in the query stage.
We can find phase transitions by looking for background

changes that correspond to beginning and ending of tubes.
Fig. 8 shows a synopsis where objects with frames transi-
tions have higher preferences.

3. Energy Between Tubes

In this section we define the energy of interaction be-
tween tubes. This energy will later be used by the opti-
mization stage, creating a synopsis having maximum activ-
ity while avoiding conflicts between objects. The activity
tubes are stored in the object queue B. Each tube b is de-
fined over a finite time segment in the original video stream
tb = [tsb, t

e
b].

The synopsis video is generated based on a temporal
mapping M , shifting objects b in time from the original
video into the time segment t̂b =

[
t̂sb, t̂

e
b

]
in the video syn-

opsis. M(b) = b̂ indicates the time shift of tube b into the
synopsis, and when b is not mapped to the output synop-
sis M(b) = ∅. Optimal synopsis video will minimize the
following energy function:

E(M) =
∑
b∈B

Ea(b̂)+
∑

b,b′∈B

(αEt(b̂, b̂′)+βEc(b̂, b̂′)), (4)

where Ea is the activity cost, Et is the temporal consis-
tency cost, and Ec is the collision cost, all defined below.
Weights α and β are set by the user according to their rela-
tive importance for a particular query. Reducing the weights
of the collision cost, for example, will result in a more dense
video where objects may overlap. Increasing this weight
will result in sparser video where objects do not overlap and
less activity is presented.

3.1. Activity Cost

The activity cost favors synopsis movies with maximum
activity. It penalizes for objects that are not mapped to a
valid time in the synopsis. When a tube is excluded from
the synopsis, i.eM(b) = ∅, then

Ea(b̂) =
∑
x,y,t

χb̂(x, y, t), (5)

where χb(x, y, t) is the characteristic function as defined
in Eq. (3). For each tube b, whose mapping b̂ = M(b) is
partially included in the final synopsis, we define the ac-
tivity cost similar to Eq. (5) but only pixels that were not
entered into the synopsis are used.

3.2. Collision Cost

For every two “shifted” tubes and every relative time
shift between them, we define the collision cost as the vol-
ume of their space-time overlap weighted by their activity
measures:

Ec(b̂, b̂′) =
∑

x,y,t∈t̂b∩ ˆtb′

χb̂(x, y, t)χb̂′(x, y, t) (6)

Where t̂b ∩ t̂b′ is the time intersection of b and b′ in the
synopsis video.

3.3. Temporal Consistency Cost

The temporal consistency cost adds a bias towards pre-
serving the chronological order of events. The preservation
of chronological order is more important for tubes that have
a strong interaction. Therefore, the temporal consistency
cost is weighted by the spatio-temporal interaction of each
pair of tubes, d(b, b′), defined below.

if t̂b ∩ t̂b′ �= ∅ then
d(b, b′) = exp(−mint∈t̂b∩ ˆtb′

{d(b, b′, t)}/σspace),
(7)

where d(b, b′, t) is the Euclidean distance between the
pair of closest active pixels from b and b′ in frame t and
σspace determines the extent of the space interaction be-
tween tubes.
If tubes b and b′ do not share a common time at the

synopsis video, and assuming that b is mapped to earlier
time than b′, their interaction diminishes exponentially with
time:

d(b, b′) = exp(−(t̂sb′ − t̂eb)/σtime), (8)

where σtime is a parameter defining the extent of time in
which events are still considered as having temporal inter-
action.
The temporal consistency cost creates a preference for

maintaining the temporal relations between objects by pe-
nalizing cases where these relations are violated:

Et(b̂, b̂′) = d(b, b′) ·
{

0 tsb′ − tsb = t̂sb′ − t̂sb
C otherwise

, (9)



Figure 4. The activity distribution in the airport scene (intensity is
log of activity value). The activity distribution of a single tube is
on the left, and the average over all tubes is on the right. As ex-
pected, highest activity is on the auto lanes and the runway. Poten-
tial collision of tubes is higher in regions having a higher activity.

where C is a constant penalty for events that do not pre-
serve temporal consistency.

4. The Object Queue

All detected objects, represented as tubes in the space-
time volume, are stored in a queue awaiting user queries.
When an object is inserted into the queue, its activity cost
(Eq. (5)) is computed to accelerate the future construction
of synopsis videos. As the video generated by the webcam
is endless, it is likely that at some point the allocated space
will be exhausted, and objects will have to be removed from
the queue.
When removing objects (tubes) from the queue, we pre-

fer to remove objects that are least likely to be included in
a final synopsis according to three simple criteria that can
be computed efficiently: “importance” (activity), “collision
potential”, and “age”.
A possible measure for the importance of an object is the

sum of its characteristic function as defined in Eq. (5).
Since the collision cost can not be computed before re-

ceiving the user query, an estimate for the collision cost
of tubes is made using the spatial activity distribution in
the scene. This spatial activity is represented by an image
which is the sum of active pixels of all objects in each spa-
tial location, normalized to sum to one. A similar spatial
activity distribution is computed for each individual object
(this time unnormalized). The correlation between these
two activity distributions is used as a “potential collision”
cost for this object. An image showing the activity distribu-
tion in a scene is shown in Fig. 4.
A possible approach to address the removal of older ob-

jects is to assume that the density of objects in the queue
should decrease exponentially with the age of the objects.
For example, if we divide the age axis into discrete time in-
tervals, the number of objects at the t’s interval, Nt, should
be proportional to

Nt = K
1
σ

e−
t
σ , (10)

where σ is the decay coefficient, and K is determined to
control the total number of objects in the queue. When an
object should be removed from the queue, the number of
objects in each time interval t is compared to Nt. Only
objects from time intervals t whose population exceeds Nt

will be evaluated using the activity cost and the potential
collision. The object with minimal activity and maximal
collision will be removed.

5. Synopsis Generation

The object queue can be accessed via queries such as “I
would like to have a one-minute synopsis of this camera
broadcast during the past day”. Given the desired period
from the input video, and the desired length of the synopsis,
the synopsis video is generated using four steps. (i) Gener-
ating a background video. (ii) Once the background video is
defined, a consistency cost is computed for each object and
for each possible time in the synopsis. (iii) An energy min-
imization step determines which tubes (space-time objects)
appear in the synopsis and at what time. (iv) The selected
tubes are combined with the background time-lapse to get
the final synopsis. These steps are described in this section.
The reduction of the original video to an object based rep-
resentation enables a fast response to queries.
After user query a second (smaller) object queue is gen-

erated, having only objects from the desired time period. To
enable fast optimization, the collision cost (Eq (6)) between
every two objects in the smaller queue is computed.

5.1. Time Lapse Background

The basis for the synopsis video is a time lapse back-
ground video, generated before adding activity tubes into
the synopsis. The background video has two tasks: (i) It
should represent the background changes over time (e.g.
day-night transitions, etc.). (ii) It should represent the back-
ground for the activity tubes. These two goals are conflict-
ing, as representing the background of activity tubes will
be done best when the background video covers only active
periods, ignoring, for example, most night hours.
We address this trade-off by constructing two tempo-

ral histograms. (i) A temporal activity histogram Ha of
the video stream. (ii) A uniform temporal histogram Ht.
We compute a third histogram by interpolating the two his-
tograms λ · Ha + (1 − λ) · Ht, where λ is a weight given
by the user. With λ = 0 the background time lapse video
will be uniform in time regardless of the activities, while
with λ = 1 the background time lapse video will include
the background only from active periods. We usually use
0.25 < λ < 0.5.
Background frames are selected for the time-lapse back-

ground video according to the interpolated temporal his-
togram. This selection is done such that the area of the



histogram between every two selected background frames
is equal. More frames are selected from active time dura-
tions, while not totally neglecting inactive periods.

5.2. Consistency with Background

Since we do not assume accurate segmentation of mov-
ing objects, we prefer to stitch tubes to background images
having a similar appearance. This tube-background consis-
tency can be taken into account by adding a new energy
term Eb(M). This term will measure the cost of stitch-
ing this object to the time-lapsed background. Formally,
let Ib̂(x, y, t) be the color values of the mapped tube b̂ and
letBout(x, y, t) be the color values of the time lapsed back-
ground. we set:

Es(b̂) =
∑

x,y∈σ(b̂),t∈t̂b∩tout

‖Ib̂(x, y, t) − Bout(x, y, t)‖,

(11)
where σ(b̂) is the set of pixels in the border of the

mapped activity tube b̂ and tout is the duration of the output
synopsis. This cost assumes that each tube is surrounded
by pixels from its original background (resulting from our
morphological dilation of the activity masks).

5.3. Energy Minimization

To crate the final synopsis video we look for a temporal
mapping M that minimizes the energy in Eq. (4) together
with the background consistency term in Eq. (11), giving

E(M) =
∑

b∈B(Ea(b̂) + γEs(b̂))+
+

∑
b,b′∈B(αEt(b̂, b̂′) + βEc(b̂, b̂′)),

(12)

where α, β, γ are user selected weights that are query de-
pendent. Since the global energy function (12) is written as
a sum of energy terms defined on singles or pairs of tubes,
it can be minimized by various MRF-based techniques such
as [26, 12]. In our implementation we used the simpler sim-
ulated annealing method [11] which gave good results. The
simulated annealing works in the space of all possible tem-
poral mappingsM , including the special case when a tube
is not used at all in the synopsis video.
Each state describes the subset of tubes that are included

in the synopsis, and neighboring states are defined as states
in which a single activity tube is removed or changes its
mapping into the synopsis. As an initial state we used the
state in which all tubes are shifted to the beginning of the
synopsis movie.
In order to make the solution feasible, we restricted the

temporal shifts of tubes to be in jumps of 10 frames.

5.4. Stitching the Synopsis Video

The stitching of tubes from different time periods poses
a challenge to existing methods such as [1]. Stitching all
the tubes at once results in a blending of colors from dif-
ferent backgrounds. Therefore, we take a slightly different
approach: Each tube is stitched independently to the time
lapse background. Any blending method is possible and
in our experiments we used Poisson editing [17]. Over-
lapping tubes are blended together by letting each pixel
be a weighted average of the corresponding pixels from
the stitched blobs b̂, with weights proportional to the activ-
ity measures χb̂(x, y, t). Alternatively transparency can be
avoided by taking the pixel with maximal activity measure
instead of the weighted average. It may be possible to use
depth ordering when “object tubes” are combined, where
closer tubes will occlude further tubes. A simple “ground
plane” heuristic assumes that an object whose vertical im-
age position is lower is also closer. Other depth ordering
methods include [4]. The frequency of object occlusion
cases depends on the relative weights of the collision cost
(that prevent such cases) in respect to other costs.

6. Examples

We have applied the webcam synopsis to a few video
streams captured off the Internet. As the frame rate is not
constant over the Internet, and frames drop periodically,
whenever we use a temporal neighborhood we do not count
the number of frames, but we use the absolute times of each
frame.
Fig. 5, and Fig. 7 are from cameras stationed outdoors,

while Fig. 6 is from a camera stationed indoors with con-
stant lighting. In all these examples the main “interest” in
each tube has been the number of moving pixels in it.
Fig. 8 shows the use of phase transitions for “interest”.

Important tubes are those that terminate with the object join-
ing the background, or tubes of background objects that
started moving. In the street case, parking cars or cars
pulling out of parking are more likely to be shown in the
synopsis.

7. Concluding Remarks

A method to create a short video that is a synopsis of an
endless video stream has been presented. The method in-
cludes two phases. In the input phase the video stream is
analyzed and objects of interest are detected and segmented
from their background. While we presented an object in-
terest function that is based on motion, any other approach
for object detection, recognition, and segmentation can be
used for the generation of the “tubes” - the 3D space-time
representation of each object. This phase is carried out in
real time.



Figure 5. Top: Three images taken over two days from a webcam
at the (quiet) Stuttgart airport Bottom: A frame from a 1 minute
synopsis of this period.

Figure 6. Top: Three images taken over two days from a webcam
in a “French Billiard” club (no pockets, one player) Bottom: A
frame from a 1 minute synopsis of this period. Notice the multiple
players per table at the synopsis.

Queue management is necessary to bridge the gap be-
tween an infinite video and a finite storage. Several
methodologies were described for determining which ob-
jects should be removed from the queue once it becomes
full. But other methodologies are possible, and even a ran-
dom selection of objects for removal from the queue may

Figure 7. Top: Three images taken overnight from a webcam in
St. Petersburg Bottom: A frame from a 1 minute synopsis of this
period. While this street is very busy during the day, it is practi-
cally deserted during the night. The video synopsis brings together
many cars that passed this street during different times.

Figure 8. Top: Three images taken over several hours from a web-
cam watching a very quiet street Bottom: A frame from a 1 minute
synopsis of this period. In this synopsis we have given a high
score to phase transitions (e.g. moving objects that stop and be-
come background), so the video synopsis includes mostly cars be-
ing parked or pulling out of parking.

work fine.
The Second phase occurs after the user’s query is given.

A subset of the queue is extracted based on the target period



of interest, and the object tubes are arranged (by temporal
shifts) to generate the optimal video synopsis. This stage
delivers the video synopsis to the user, and currently it take
a few minutes to compute.
Some very interesting aspects concern periodicity in

background. The most obvious periods that can be easily
detected are the day-night periods. In most cases when a
few days are covered by a single synopsis, the time-lapse
background may cover only a single day, while the activi-
ties will come from all days. This should be an option given
to the user specifying the query.
While the examples in this paper address only station-

ary cameras, video synopsis can also be used with moving
cameras. As in prior work that addressed video summary
for moving cameras, this can be done together with meth-
ods to compute camera motion and object tracking.
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