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The amount of captured video is growing with the increased numbers of video cameras, especially
the increase of millions of surveillance cameras that operate 24 hours a day. Since video browsing
and retrieval is time consuming, most captured video is never watched or examined. Video
synopsis is an effective tool for browsing and indexing of such a video. It provides a short video
representation, while preserving the essential activities of the original video. The activity in the
video is condensed into a shorter period by simultaneously showing multiple activities, even when
they originally occurred at different times. The synopsis video is also an index into the original
video by pointing to the original time of each activity.
Video Synopsis can be applied to create a synopsis of an endless video streams, as generated
by webcams and by surveillance cameras. It can address queries like “Show in one minute the
synopsis of this camera broadcast during the past day”. This process includes two major phases:
(i) An online conversion of the endless video stream into a database of objects and activities
(rather than frames). (ii) A response phase, generating the video synopsis as a response to the
user’s query.

✦

Index Terms—video summary, video indexing, video surveillance

1 INTRODUCTION

Everyone is familiar with the time consuming activity involved
in sorting through a collection of raw video. This task is time
consuming since it is necessary to view the video in order to
determine if anything of interest has been recorded. While this
tedious task may be feasible in personal video collections, it
is impossible when endless video, as recorded by surveillance
cameras and webcams, is involved. It is reported, for example,
that only in London there are millions of surveillance cameras
covering the city streets, each camera records 24 hours a
day. Most surveillance video is therefore never watched or
examined. Video synopsis aims to take a step towards sorting
through video for summary and indexing, and is especially
beneficial for surveillance cameras and webcams.

The proposed video synopsis is a temporally compact
representation of video that enables video browsing and re-
trieval. This approach reduces the spatio-temporal redundancy
in video. As an example, consider the schematic video clip
represented as a space-time volume in Fig. 1. The video begins
with a person walking on the ground, and after a period of
inactivity a bird is flying in the sky. The inactive frames are
omitted in most video abstraction methods. Video synopsis is
substantially more compact, playing the person and the bird

This paper presents video-to-video transformations. The reader is encouraged
to view the video examples in http://www.vision.huji.ac.il/video-synopsis/.
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Fig. 1. The input video shows a walking person, and after
a period of inactivity displays a flying bird. A compact video
synopsis can be produced by playing the bird and the person
simultaneously.

simultaneously. This makes an optimal use of image regions
by shifting events from their original time intervals to other
time intervals when no other activities take place at these
spatial locations. Such manipulations relax the chronological
consistency of events, an approach used also in [27].

The basic temporal operations in the proposed video syn-
opsis are described in Fig. 2. Objects of interest are defined,
and are viewed as tubes in the space-time volume. A temporal
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(a) (b) (c)

Fig. 2. Schematic description of basic temporal rearrangement
of objects. Objects of interest are represented by “activity tubes”
in the space-time representation of the video. The upper parts
in this figure represent the original video, and the lower parts
represent the video synopsis.
(a) Two objects recorded at different times are shifted to the
same time interval in the shorter video synopsis.
(b) A single object moving during a long time is broken into
segments having a shorter duration, and those segments are
shifted in time and played simultaneously, creating a dynamic
stroboscopic effect.
(c) Intersection of objects does not disturb the synopsis when
object tubes are broken into segments.

shift is applied to each object, creating a shorter video syn-
opsis while avoiding collisions between objects and enabling
seamless stitching.

The video synopsis suggested in this paper is different from
previous video abstraction approaches (reviewed in Sec. 1.1)
in the following two properties: (i) The video synopsis is itself
a video, expressing the dynamics of the scene. (ii) To reduce
as much spatio-temporal redundancy as possible, the relative
timing between activities may change. The later property is
the main contribution of our method.

Video synopsis can make surveillance cameras and web-
cams more useful by giving the viewer the ability to view
summaries of the endless video, in addition to the live video
stream. To enable this, a synopsis server can analyze the
live video feed for interesting events, and record an object-
based description of the video. This description lists for each
webcam the interesting objects, their duration, location, and
their appearance. In a 3D space-time description of the video,
each object is represented by a “tube”.

A query that could be answered by the system may be
similar to “I would like to watch in one minute a synopsis
of the video from this camera captured during the last hour”,
or “I would like to watch in five minutes a synopsis of the last
week”, etc. Responding to such a query, the most interesting
events (“tubes”) are collected from the desired period, and are
assembled into a synopsis video of the desired length. The
synopsis video is an index into the original video as each
object includes a pointer to its original time.

While webcam video is endless, and the number of objects
is unbounded, the available data storage for each webcam

may be limited. To keep a finite object queue we propose
a procedure for removing objects from this queue when space
is exhausted. Removing objects from the queue should be
done according to similar importance criteria as done when
selecting objects for inclusion in the synopsis, allowing the
final optimization to examine fewer objects.

In Sec. 2 a region-based video synopsis is described, which
produces a synopsis video using optimizations on Markov
Random Fields [14]. The energy function in this case consists
of low-level costs that can be described by an MRF.

In Sec. 3 an object-based method for video synopsis is
presented. Moving objects are first detected and segmented
into space-time “tubes”. An energy function is defined on the
possible time shifts of these tubes, which encapsulates the
desired properties of the video synopsis. This energy function
will help to preserve most of the original activity of the video,
while avoiding collisions between different shifted activities
(tubes). Moving object detection is also done in other object-
based video summary methods [13], [10], [31]. However, these
methods use object detection to identify significant key frames,
and do not combine activities from different time intervals.

One of the effects of video synopsis is the display of
multiple dynamic appearances of a single object. This effect
is a generalization of the “stroboscopic” still pictures used
in traditional video synopsis of moving objects [11], [1]. A
synopsis can also be generated from a video captured by a
panning cameras. Stroboscopic and panoramic effects of video
synopsis are described in Sec. 3.4.

The special challenges in creating video synopsis for endless
video, such as the ones generated by a surveillance cameras,
are presented in Sec. 4. These challenges include handling
a varying background due to day-night differences, incorpo-
rating an object queue to handle a large amount of objects
(Sec. 4.2) and stitching the synopsis video onto a time-lapse
background, as described in Sec. 4.3. Examples for synopsis
of an endless video are given in Sec. 4.7. The application of
video synopsis for indexing is described in Sec. 5.1.

Since this work presents a video-to-video transformation,
the reader is encouraged to view the video examples in
http://www.vision.huji.ac.il/video-synopsis/.

1.1 Related Work on Video Abstraction
A video clip describes visual activities along time, and com-
pressing the time axis allows viewing a summary of such a
clip in a shorter time. Fast-forward, where several frames are
skipped between selected frames, is the most common tool
used for video summarization. A special case of fast-forward is
called “time lapse”, generating a video of very slow processes
like growth of flowers, etc. Since fast-forward may lose fast
activities during the dropped frames, methods for adaptive fast
forward have been developed [17], [23]. Such methods attempt
to skip frames in periods of low interest or lower activity, and
keep frames in periods of higher interest or higher activity.
A similar approach extracts from the video a collection of
short video sequences best representing its contents [30]. In
[16] different sources for user attention: sound, camera motion,
object motion, color, etc. are discussed. In [33] a survey of fast
video browsing is given.
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(a) (b)

Fig. 3. Comparison between “video montage” [12] and our
approach of “video synopsis”.
(a) A frame from a “video montage”. Two space-time regions
were shifted in both time and space and then stitched together.
Visual seams between the different regions are unavoidable.
(b) A frame from a “video synopsis”. Only temporal shifts were
applied, enabling a seamless stitching.

Many approaches to video summary eliminate the time axis,
and show a synopsis of the video using some key frames [13],
[35]. These key frames can be selected arbitrarily, or selected
according to some importance criteria. But key frame repre-
sentation loses the dynamic aspect of video. Comprehensive
surveys on video abstraction appear in [15], [18].

In both approaches above, entire frames are used as the
fundamental building blocks. A different methodology uses
mosaic images together with some meta-data for video in-
dexing [11], [24], [21]. In this case the static synopsis image
includes objects from different times.

Object-based approaches to video synopsis were first pre-
sented in [26], [12], [25], where moving objects are repre-
sented in the space-time domain. These papers introduced a
new concept: creating a synopsis video that combines activities
from different times (Fig 1). The current paper is a unification
and expansion of the approach described in [26], [25].

The underlying idea of the “Video Montage” paper [12] is
closely related to ours. In that work, a space-time approach
for video summarization is presented: Both the spatial and
temporal information in a video sequence are simultaneously
analyzed, and informative space-time portions of the input
videos are extracted. Following this analysis spatial as well
as temporal shifts are applied to objects to create a video
summary. The basic difference in our paper is the use of
only temporal transformations, keeping spatial locations intact.
This basic difference results in many differences of object
extraction and video composition. Our approach of allowing
only temporal transformations prevents the total loss of context
that occurs when both the spatial and temporal locations
are changes. In addition, maintaining the spatial locations of
objects allows the generation of seamless video, avoiding the
visually unpleasant seams that appear in the “video montage”.
These differences are visualized in Fig. 3.

Shifting video regions in time is also done in [29], but for an
opposite purpose. In that paper an infinite video is generated
from a short video clip by separating objects (video sprites)
from the background and rendering them at arbitrary video
locations to create an endless video.

2 SYNOPSIS BY ENERGY MINIMIZATION

Let N frames of an input video sequence be represented in a
3D space-time volume I(x, y, t), where (x, y) are the spatial
coordinates of the pixel, and 1 ≤ t ≤ N is the frame number.

The generated synopsis video S(x, y, t) should have the
following properties:

• The video synopsis S should be substantially shorter than
the original video I .

• Maximum “activity” (or interest) from the original video
should appear in the synopsis video.

• The dynamics of the objects should be preserved in the
synopsis video. For example, regular fast-forward may
fail to preserve the dynamics of fast objects.

• Visible seams and fragmented objects should be avoided.
The synopsis video S having the above properties is gener-

ated with a mapping M , assigning to every coordinate (x, y, t)
in the video synopsis S the coordinates of a source pixel from
the input video I . We focus in this paper on time shift of pixels,
keeping the spatial locations fixed. Thus, any synopsis pixel
S(x, y, t) can come from an input pixel I(x, y, M(x, y, t)).
The time shift M is obtained by minimization the following
cost function:

E(M) = Ea(M) + αEd(M), (1)

where Ea(M) (activity) indicates the loss in activity
and Ed(M) (discontinuity) indicates the discontinuity across
seams having a relative weight of α. The loss of activity will
be the number of active pixels in the input video I that do not
appear in the synopsis video S, or the weighted sum of their
activity measures in the continuous case.

The activity measure of each pixel can be represented by
the characteristic function indicating its difference from the
background:

χ(x, y, t) = ||I(x, y, t)−B(x, y, t)|| (2)

where I(x, y, t) is pixel in the input image and B(x, y, t)
is the respective pixel in the background image. To obtain
the background image we can use a temporal median over
the entire video. More sophisticated background construction
methods can also be used, such as described in [8].

Accordingly, the activity loss is given by:

Ea(M) =
∑

(x,y,t)∈I

χ(x, y, t)−
∑

(x,y,t)∈S

χ(x, y, M(x, y, t)).

(3)
The discontinuity cost Ed is defined as the sum of color

differences across seams between spatiotemporal neighbors in
the synopsis video and the corresponding neighbors in the
input video (A similar formulation can be found in [1]):

Ed(M) =
∑

(x,y,t)∈S

∑
i

‖ S( (x, y, t) + ei )− (4)

I( (x, y, M(x, y, t)) + ei ) ‖2

where ei are the six unit vectors representing the six spatio-
temporal neighbors: four spatial neighbors and two temporal
neighbors. A demonstration of the space-time operations that
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(a) (b)

Fig. 4. In this space-time representation of video, moving
objects create the “activity tubes”. The upper part represents
the original video I , while the lower part represents the video
synopsis S.
(a) The shorter video synopsis S is generated from the input
video I by including most active pixels together with their spatio-
temporal neighborhood. To assure smoothness, when pixel A in
S corresponds to pixel B in I , their “cross border” neighbors in
space as well as in time should be similar.
(b) An approximate solution can be obtained by restricting
consecutive synopsis pixels to come from consecutive input
pixels.

create a short video synopsis by minimizing the cost function
(1) is shown in Fig. 4.a.

2.1 Minimization of the Energy Function

Notice that the cost function E(M) (Eq. 1) corresponds to a
3D Markov random field (MRF) where each node corresponds
to a pixel in the 3D volume of the output movie, and can
be assigned any time value corresponding to an input frame.
The weights on the nodes are determined by the activity cost,
while the edges between nodes are determined according to
the discontinuity cost. The cost function can therefore be
minimized by algorithms like iterative graph-cuts [14].

The optimization of Eq. (1), allowing each pixel in the video
synopsis to come from any time, is a difficult problem. For
example, an input video of 3 minutes which is summarized
into a video synopsis of 5 seconds results in a graph of 225

nodes (5 seconds times 30 frames per second times image size
of 640 by 480), each having 5, 400 possible labels (3 Minutes
times 60 seconds times 30 frames per second).

It was shown in [2] that for cases of dynamic textures or
objects that move in horizontal path, 3D MRFs can be solved
efficiently by reducing the problem into a 1D problem. In this
work we address objects that move in a more general way,
and therefore we use different constraints. Consecutive pixels
in the synopsis video S are restricted to come from consecutive
pixels in the input video I . Under this restriction the 3D graph
is reduced to a 2D graph where each node corresponds to
a spatial location in the synopsis movie. The label of each

(a) (b)

Fig. 5. The activity in a surveillance video can be condensed
into a much shorter video synopsis. (a) A typical frame from the
original video taken in a shopping mall. (b) A frame from the
video synopsis.

node M(x, y) determines the frame number t in I shown in
the first frame of S, as illustrated in Fig. 4.b. A seam exists
between two neighboring locations (x1, y1) and (x2, y2) in S
if M(x1, y1) �= M(x2, y2), and the discontinuity cost Ed(M)
along the seam is a sum of the color differences at this spatial
location over all frames in S:

Ed(M) =
∑
x,y

∑
i

K∑
t=1

|| S((x, y, t) + ei)− (5)

I((x, y, M(x, y) + t) + ei) ||
2

where ei are now four unit vectors describing the four
spatial neighbors.

The number of labels for each node is N−K , where N and
K are the number of frames in the input and output videos
respectively. The activity loss for each pixel is:

Ea(M) =
∑
x,y

(
N∑

t=1

χ(x, y, t)−
K∑

t=1

χ(x, y, M(x, y) + t)).

Fig. 5 shows an original frame, and a frame from a synopsis
video that was obtained using this approximation.

To overcome the computational limitations of the region-
based approach, and to allow the use of higher-level cost
functions, an object-based approach for video synopsis is pro-
posed. This object-based approach is describe in the following
section, and will also be used for handling endless videos from
webcams and surveillance cameras.

3 OBJECT-BASED SYNOPSIS

The low-level approach for video synopsis as described earlier
is limited to satisfying local properties such as avoiding visible
seams. Higher level object-based properties can be incorpo-
rated when objects can be detected and tracked. For example,
avoiding the stroboscopic effect requires the detection and
tracking of each object in the volume. This section describes
an implementation of an object-based approach for video
synopsis. Several object-based video summary methods exist
in the literature (for example [13], [10], [31]), and they all
use the detected objects for the selection of significant frames.
Unlike these methods, we shift objects in time and create new
synopsis frames that never appeared in the input sequence in
order to make a better use of space and time.
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Fig. 6. Background images from a surveillance camera
at Stuttgart airport. The bottom images are at night, while
the top images are at daylight. Parked cars and parked
airplanes become part of the background. This figure is
best viewed in color.

3.1 Object Detection and Segmentation

In order to generate a useful synopsis, interesting objects
and activities (tubes) should be identified. In many cases the
indication of interest is simple: a moving object is interesting.
While we use object motion as an indication of interest in
many examples, exceptions must be noted. Some motions may
have little importance, like leaves on a tree or clouds in the sky.
People or other large animals in the scene may be important
even when they are not moving. While we do not address these
exceptions, it is possible to incorporate object recognition (e.g.
people detection [19], [22]), dynamic textures [9], or detection
of unusual activities [5], [34]. We will give a simple example
of video synopsis giving preferences to different classes of
objects.

As objects are represented by tubes in the space-time vol-
ume, we use interchangeably the words “objects” and “tubes”.

To enable segmentation of moving foreground objects we
start with background construction. In short video clips the
appearance of the background does not change, and it can
be built by using a temporal median over the entire clip. In
the case of surveillance cameras, the appearance of the back-
ground changes in time due to changes in lighting, changes
of background objects, etc. In this case the background for
each time can be computed using a temporal median over a
few minutes before and after each frame. We normally use
a median over four minutes. Other methods for background
construction are possible, even when using a shorter temporal
window [8], but we used the median due to its efficiency.
Fig. 6 shows several background images from a surveillance
video as they vary during the day.

We use a simplification of [32] to compute the space-time
tubes representing dynamic objects. Background subtraction is
combined together with min-cut to get a smooth segmentation
of foreground objects. As in [32], image gradients that coin-

cide with background gradients are attenuated, as they are less
likely to be related to motion boundaries. The resulting “tubes”
are connected components in the 3D space-time volume, and
their generation is briefly described bellow.

Let B be the current background image and let I be the
current image to be processed. Let V be the set of all pixels
in I, and let N be the set of all adjacent pixel pairs in I .
A labeling function f labels each pixel r in the image as
foreground (fr = 1) or background (fr = 0). A desirable
labeling f usually minimizes the Gibbs energy [6]:

E(f) =
∑
r∈V

E1(fr) + λ
∑

(r,s)∈N

E2(fr, fs), (6)

where E1(fr) is the unary-color term, E2(fr, fs) is the
pairwise-contrast term between adjacent pixels r and s, and λ
is a user defined weight.

As a pairwise-contrast term, we used the formula suggested
by [32]:

E2(fr, fs) = δ(fr − fs) · exp(−βdrs), (7)

where β = 2 < ‖(I(r) − I(s)‖2 >−1 is a weighting factor
(< · > is the expectation over the image samples), and drs are
the image gradients, attenuated by the background gradients,
and given by:

drs = ‖(I(r)− I(s)‖2 ·
1

1 +
(

‖B(r)−B(s)‖
K

)2

exp(
−z2

rs

σz
)

. (8)

In this equation, zrs measures the dissimilarity between the
foreground and the background:

zrs = max ‖I(r) −B(r)‖, ‖I(s)−B(s)‖, (9)

and K and σz are parameters, set to 5 and 10 respectively as
suggested by [32].

As for the unary-color term, let dr = ‖I(r) − B(r)‖ be
the color differences between the image I and the current
background B. The foreground (1) and background (0) costs
for a pixel r are set to:

E1(1) =

{
0 dr > k1

k1 − dr otherwise
,

E1(0) =

⎧⎨
⎩
∞ dr > k2

dr − k1 k2 > dr > k1

0 otherwise
,

(10)

where k1 and k2 are user defined thresholds. Empirically
k1 = 30/255 and k2 = 60/255 worked well in our examples.

We do not use a lower threshold with infinite weights, since
the later stages of our algorithm can robustly handle pixels
that are wrongly identified as foreground, but not the opposite.
For the same reason, we construct a mask of all foreground
pixels in the space-time volume, and apply a 3D morphological
dilation on this mask. As a result, each object is surrounded
by several pixels from the background. This fact will be used
later by the stitching algorithm.
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Fig. 7. Four extracted tubes shown “flattened” over the corre-
sponding backgrounds from Fig. 6. The left tubes correspond to
ground vehicles, while the right tubes correspond to airplanes
on the runway at the back. This figure is best viewed in color.

Fig. 8. Two extracted tubes from the “Billiard” scene.

Finally, the 3D mask is grouped into connected components,
denoted as “activity tubes”. Examples of extracted tubes are
shown in Fig. 7 and Fig. 8.

Each tube b is represented by its characteristic function

χb(x, y, t) =

{
||I(x, y, t)− B(x, y, t)|| t ∈ tb
0 otherwise

,

(11)
where B(x, y, t) is a pixel in the background image,

I(x, y, t) is the respective pixel in the input image, and tb

is the time interval in which this object exists.

3.2 Energy Between Tubes

In this section we define the energy of interaction between
tubes. This energy will later be used by the optimization stage,
creating a synopsis having maximum activity while avoiding
conflicts and overlap between objects. Let B be the set of all
activity tubes. Each tube b is defined over a finite time segment
in the original video stream tb = [tsb, t

e
b].

The synopsis video is generated based on a temporal map-
ping M , shifting objects b in time from its original time in the
input video into the time segment t̂b =

[
t̂sb, t̂

e
b

]
in the video

synopsis. M(b) = b̂ indicates the time shift of tube b into the
synopsis, and when b is not mapped to the output synopsis
M(b) = ∅. We define an optimal synopsis video as the one
that minimizes the following energy function:

E(M) =
∑
b∈B

Ea(b̂) +
∑

b,b′∈B

(αEt(b̂, b̂′) + βEc(b̂, b̂′)), (12)

where Ea is the activity cost, Et is the temporal consistency
cost, and Ec is the collision cost, all defined below. Weights α
and β are set by the user according to their relative importance
for a particular query. Reducing the weights of the collision
cost, for example, will result in a more dense video where
objects may overlap. Increasing this weight will result in
sparser video where objects do not overlap and less activity is
presented. An example for the different synopsis obtained by
varying β is given in Fig. 16.b.

Note that the object-based energy function in Eq. 12 is
different from the low-level energy function defined in Eq. 1.
After extracting the activity tubes the pixel based cost can be
replaced with object based cost. Specifically, the Stitching cost
in Eq. 1 is replaced by the Collision cost in Eq. 12 (described
next). This cost penalizes for stitching two different objects
together, even if their appearance is similar (e.g two people). In
addition, a “Temporal Consistency” cost is defined, penalizing
for the violation of the temporal relations between objects (or
tubes). Such features of the synopsis are harder to express in
terms of pixel-based costs.

3.2.1 Activity Cost

The activity cost favors synopsis movies with maximum
activity. It penalizes for objects that are not mapped to a
valid time in the synopsis. When a tube is excluded from the
synopsis, i.e M(b) = ∅, then

Ea(b̂) =
∑
x,y,t

χ
b̂
(x, y, t), (13)

where χb(x, y, t) is the characteristic function as defined
in Eq. (11). For each tube b, whose mapping b̂ = M(b) is
partially included in the final synopsis, we define the activity
cost similar to Eq. (13) but only pixels that were not entered
into the synopsis are added to the activity cost.

3.2.2 Collision Cost

For every two “shifted” tubes and every relative time shift
between them, we define the collision cost as the volume of
their space-time overlap weighted by their activity measures:

Ec(b̂, b̂′) =
∑

x,y,t∈t̂b∩ ˆt
b′

χ
b̂
(x, y, t)χ

b̂′
(x, y, t) (14)

Where t̂b ∩ t̂b′ is the time intersection of b and b′ in the
synopsis video. This expression will give a low penalty to pixel
whose color is similar to the background, but were added to an
activity tube in the morphological dilation process. Changing
the weight of the collision cost Ec changes the density of
objects in the synopsis video as shown in Fig. 16.b.
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3.2.3 Temporal Consistency Cost

The temporal consistency cost adds a bias towards preserv-
ing the chronological order of events. The preservation of
chronological order is more important for tubes that have a
strong interaction. For example - it would be preferred to
keep relative time of two people talking to each other, or
keep the chronological order of two events with a reasoning
relation. Yet, it is very difficult to detect such interactions.
Instead, the amount of interaction d(b, b′) between each pair
of tubes is estimated for their relative spatio-temporal distance
as described below:

if t̂b ∩ t̂b′ �= ∅ then
d(b, b′) = exp(−mint∈t̂b∩ ˆt

b′
{d(b, b′, t)}/σspace),

(15)

where d(b, b′, t) is the Euclidean distance between the pair
of closest active pixels from b and b′ in frame t and σspace

determines the extent of the space interaction between tubes.
If tubes b and b′ do not share a common time at the synopsis

video, and assuming that b is mapped to earlier time than b′,
their interaction diminishes exponentially with time:

d(b, b′) = exp(−(t̂sb′ − t̂eb)/σtime), (16)

where σtime is a parameter defining the extent of time in
which events still have temporal interaction.

The temporal consistency cost creates a preference for main-
taining the temporal relations between objects by penalizing
cases where these relations are violated:

Et(b̂, b̂′) = d(b, b′) ·

{
0 tsb′ − tsb = t̂sb′ − t̂sb
C otherwise

, (17)

where C is a constant penalty for events that do not preserve
temporal consistency.

3.3 Energy Minimization
Since the global energy function in Eq. (12) (and later in
Eq. (20)) is written as a sum of energy terms defined on
single tubes or pairs of tubes, it can be minimized by various
MRF-based techniques such as Belief Propagation or Graph
Cuts [14]. We used a simple greedy optimization which gave
good results. The optimization was applied in the space of
all possible temporal mappings M , including the special case
when a tube is not used at all in the synopsis video.

Each state describes the subset of tubes that are included in
the synopsis, and neighboring states are defined as states in
which a single activity tube is removed or changes its mapping
into the synopsis. As an initial state we used the state in which
all tubes are shifted to the beginning of the synopsis movie.
Also, in order to accelerate computation, we restricted the
temporal shifts of tubes to be in jumps of 10 frames.

3.4 Stroboscopic Panoramic Synopsis
When long tubes exist in the input video, no temporal re-
arrangement of the tubes can give a very short video, as the
duration of the synopsis video is bounded from below by the

Fig. 9. Video synopsis with the dynamic stroboscopic effect as
illustrated schematically in Fig. 2.b.
The video can be seen in http://www.vision.huji.ac.il/video-
synopsis.

duration of the longest tube that is shown in the synopsis.
There are a few options to overcome this limitation: One op-
tion is to display only partial activities (i.e - to allow displaying
sub-sections of a tube). Another option is to cut the long
activity tube into shorter sub-sections, and display several sub-
sections simultaneously. This results in a dynamic stroboscopic
effect - simultaneously displaying several appearances of the
same object. This effect is described schematically in Fig. 2.b
and an example appears in Fig. 9.

An example where the stroboscopic effect is very useful
is in the case of a panning video camera scanning a scene.
In this case, spatial redundancy can be eliminated by using
a panoramic mosaic. Yet, existing methods construct a single
panoramic image, in which the scene dynamics is lost. Dy-
namics has been represented by a static stroboscopic image
[11], [1], [4], where moving objects are displayed at several
locations along their paths.

A panoramic synopsis video can be created from a panning
camera by simultaneously displaying actions that took place at
different times in different regions of the scene. The duration
of a panoramic video is limited by the duration of time
each object is visible by the camera. In the special case
of a camera tracking an object, the time duration of the
tracked object equals to the time duration of the entire video.
Temporal compression can be achieved only by allowing the
Stroboscopic effect, as shown schematically in Fig. 10. An
example of a camera tracking a running leopard is shown in
Fig. 11.

Constructing the panoramic video synopsis is done in a sim-
ilar manner to the regular video synopsis, with a preliminary
stage of aligning all the frames to a reference frame.

3.5 Surveillance Applications
An interesting application for video synopsis may be the ac-
cess to stored surveillance videos. When it becomes necessary
to examine certain events in the video, it can be done much
faster with video synopsis. Two examples are given from real
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Fig. 11. In this example a video camera tracks a running leopard. The background of the synopsis video is a panoramic mosaic
of the background, and the foreground includes several dynamic copies of the running leopard moving simultaneously.

Fig. 10. A schematic diagram of panoramic video synopsis.
When the frames of a panning video are aligned, the obtained
space-time volume is titled according the motion of the camera.
The long tube in the center of the space-time volume represents
a tracked object, which is tracked by the panning camera. The
background of the panoramic video synopsis, whose space-
time volume is at the bottom, is a mosaic of the background.
The long input tube is broken into shorter segments that are
shifted into the space-time volume of the video synopsis. Each
output frame will show simultaneously several occurrences of
the tracked object.

surveillance cameras. Fig. 12 uses a video captured by a
camera watching a city street, with pedestrians occasionally
crossing the field of view. Many of them can be collected into
a very condensed synopsis.

4 SYNOPSIS OF ENDLESS VIDEO

As mentioned earlier, millions of webcams and surveillance
cameras are covering the world, capturing their field of view
24 hours a day. One of the problems in utilizing these cameras
is that they provide unedited raw data. A two hours feature
film, for example, is usually created from hundreds or even
thousands of hours of raw video footage. Without editing, most
of the webcam data is irrelevant. Also, viewing a camera in
another continent may be convenient only during hours of non-
activity because of time-zone differences.

In this section we attempt to make the webcam resource
more useful by giving the viewer the ability to view summaries
of the endless video, in addition to the live video stream

(a) (b)

(c)

Fig. 12. Video synopsis from street surveillance. (a) A typical
frame from the original video (22 seconds). (b) A frame from a
video synopsis movie (2 seconds) showing condensed activity.
(c) A frame from a shorter video synopsis (0.7 seconds), show-
ing an even more condensed activity.

provided by the camera. User’s query can be similar to “I
would like to watch in five minutes a synopsis of last week”.
To enable this, we describe a system that is based on the
object-based synopsis, but consists of additional components
that allows dealing with endless videos.

In this system, a server can view the live video feed,
analyze the video for interesting events, and record an object-
based description of the video. This description lists for each
camera the interesting objects, their duration, location, and
their appearance. In a 3D space-time description of the video,
each object is a “tube”.

A two phase process is proposed for synopsis of endless
video, as shown in Fig. 13:

1) Online Phase during video capture. This phase is done
in real time.

• Creating a background video by temporal median.
• Object (tube) detection and segmentation (Sec-

tion 3.1).
• Inserting detected objects into the object queue

(Section 4.2).
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Fig. 13. The two-phase process for creating a synopsis of an
endless video. The online phase is performed in real time during
video capture and recording. The response phase if performed
following a user query, and generates the video synopsis.

• Removing objects from the object queue when
reaching a space limit (Section 4.2).

2) Response Phase constructing a synopsis according to
a user query. This phase may take a few minutes,
depending on the amount of activity in the time period
of interest. This phase includes:

• Constructing a time lapse video of the changing
background (Section 4.4). Background changes are
usually caused by day-night differences, but can also
be a result of an object that starts (stops) moving.

• Selecting tubes that will be included in the synopsis
video and computing the optimal temporal arrange-
ment of these tubes (Section 3.2, Section 3.3).

• Stitching the tubes and the background into a co-
herent video (Section 4.6). This step should take
into account that activities from different times can
appear simultaneously, and on a background from
yet another time.

4.1 Removing Stationary Frames

Most surveillance cameras and webcams have long periods
with no activity. The frames corresponding to such time peri-
ods can be filtered out during the online phase. The original
time of the remaining frames is recorded together with each
frame. In our implementation we recorded frames according to
two criteria: (1) A global change in the scene, measured by the
sum of squared difference (SSD) between the incoming frame
and the last kept frame. This criterion tracked the lighting
changes expressed by a gradual illumination change in the
entire frame. (2) Existence of a moving object, measured by
the maximal SSD in small windows.

By assuming that moving objects with a very small duration
(e.g - less than a second) are not important, video activity can
be measured only once in every ten frames.

Fig. 14. The spatial distribution of activity in the airport scene
(intensity is log of activity value). The activity distribution of a
single tube is on the left, and the average over all tubes is on
the right. As expected, highest activity is on the car lanes and
on the runway. Potential collision of tubes is higher in regions
having a higher activity.

4.2 The Object Queue
One of the main challenges in handling endless videos is
developing a scheme to “forget” older objects when new
objects arrive. The naive scheme of throwing the oldest activity
is not good, as a user may wish to get a summary of a long
time duration which includes objects from the entire period.
Instead, we propose an alternative scheme that aims to estimate
the importance of each object to possible future queries, and
throw objects accordingly.

All detected objects, represented as tubes in the space-time
volume, are stored in a queue awaiting user queries. When an
object is inserted into the queue, its activity cost (Eq. (13))
is computed to accelerate the future construction of synopsis
videos. As the video generated by the webcam is endless, it is
likely that at some point the allocated space will be exhausted,
and objects will have to be removed from the queue.

When removing objects (tubes) from the queue, we prefer
to remove objects that are least likely to be included in a final
synopsis. In our examples we used three simple criteria that
can be computed efficiently: “importance” (activity), “collision
potential”, and “age”. But other options are possible, for
example when specific appearance or activity is of interest.

A possible measure for the importance of an object is the
sum of its characteristic function as defined in Eq. (13).

Since the collision cost can not be computed before re-
ceiving the user query, an estimate for the collision cost of
tubes is made using the spatial activity distribution in the
scene. This spatial activity is represented by an image which
is the sum of active pixels of all objects in each spatial
location, normalized to sum to one. A similar spatial activity
distribution is computed for each individual object (this time
unnormalized). The correlation between these two activity
distributions is used as a “potential collision” cost for this
object. An image showing the activity distribution in a scene
is shown in Fig. 14.

There are several possible approaches to address the removal
of older objects from the queue, taking into consideration the
desired distribution of objects in the synopsis. For example,
the user can be interested to focus on newer events but
leave some representation for old events in case they were
significant. Alternatively, the synopsis should have a uniform
representation of every time interval (e.g. in a synopsis of 24
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Fig. 15. Temporal distribution of activities, as measured by the
number of moving objects, at the airport scene over 29 hours.
There are 1,920 objects during this period.

hours a user may be interested to see object from each and
every hour if applicable).

In the first approach we can assume that the density of
objects in the queue should decrease exponentially with the
age of the objects. For example, if we divide the age axis
into discrete time intervals, the number of objects at the t’s
interval, Nt, should be proportional to

Nt = K
1

σ
e−

t

σ , (18)

where σ is the decay coefficient, and K is determined to
control the total number of objects in the queue. When an
object should be removed from the queue, the number of
objects in each time interval t is compared to Nt. Only objects
from time intervals t whose population exceeds Nt will be
evaluated using the activity cost and the potential collision.
The object with minimal activity and maximal collision will
be removed.

An example of temporal distribution of object arriving into
the queue appears in Fig. 15. Exponential decay of objects
in the queue will result in an age distribution which is
proportional to the arrival distribution multiplied by a decaying
exponential.

4.3 Synopsis Generation
The object queue can be accessed via queries such as “I
would like to have a one-minute synopsis of this camera
broadcast during the past day”. Given the desired period from
the input video, and the desired length of the synopsis, the
synopsis video is generated using four steps. (i) Generating a
background video. (ii) Once the background video is defined,
a consistency cost is computed for each object and for each
possible time in the synopsis. (iii) An energy minimization
step determines which tubes (space-time objects) appear in
the synopsis and at what time. (iv) The selected tubes are
combined with the background time-lapse to get the final syn-
opsis. These steps are described in this section. The reduction
of the original video to an object based representation enables
a fast response to queries.

After user query a second (smaller) object queue is gen-
erated, having only objects from the desired time period. To

enable fast optimization, the collision cost in Eq. (14) between
every two objects in the smaller queue is computed in advance.

4.4 Time Lapse Background
The background of the synopsis video is a time lapse back-
ground video, generated before adding activity tubes into the
synopsis. The background video has two tasks: (i) It should
represent the background changes over time (e.g. day-night
transitions, etc.). (ii) It should represent the background of the
activity tubes. These two goals are conflicting, as representing
the background of activity tubes will be done best when the
background video covers only active periods, ignoring, for
example, most night hours.

We address this trade-off by constructing two temporal
histograms. (i) A temporal activity histogram Ha of the video
stream. An example of such histogram is shown in Fig. 15. (ii)
A uniform temporal histogram Ht. We compute a third his-
togram by interpolating the two histograms λ·Ha+(1−λ)·Ht,
where λ is a weight given by the user. With λ = 0 the
background time lapse video will be uniform in time regardless
of the activities, while with λ = 1 the background time lapse
video will include the background only from active periods.
We usually use 0.25 < λ < 0.5.

Background frames are selected for the time-lapse back-
ground video according to the interpolated temporal histogram.
This selection is done such that the area of the histogram
between every two selected background frames is equal. More
frames are selected from active time durations, while not
totally neglecting inactive periods.

4.5 Consistency with Background
Since we do not assume accurate segmentation of moving
objects, we prefer to stitch tubes to background images having
a similar appearance. This tube to background consistency can
be taken into account by adding a new energy term Es(b). This
term will measure the cost of stitching an object to the time-
lapse background. Formally, let I

b̂
(x, y, t) be the color values

of the mapped tube b̂ and let Bout(x, y, t) be the color values
of the time lapse background. we set:

Es(b̂) =
∑

x,y∈σ(b̂),t∈t̂b∩tout

‖I
b̂
(x, y, t)−Bout(x, y, t)‖, (19)

where σ(b̂) is the set of pixels in the border of the mapped
activity tube b̂ and tout is the duration of the output synopsis.
This cost assumes that each tube is surrounded by pixels from
its original background (resulting from our morphological
dilation of the activity masks).

The background consistency term in Eq. (19) is added to
the energy function described in Eq. (12), giving:

E(M) =
∑

b∈B(Ea(b̂) + γEs(b̂))+

+
∑

b,b′∈B(αEt(b̂, b̂′) + βEc(b̂, b̂′)),
(20)

where α, β, γ are user selected weights that are query
dependent. The effect of changing the value of β can be seen
in Fig. 16.
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4.6 Stitching the Synopsis Video
The stitching of tubes from different time periods poses a
challenge to existing methods (such as [1], [20]). Stitching
all the tubes at once may result in a blending of colors from
different objects, which is an undesired effect. It is better
to preserve the sharp transitions between different objects,
while eliminating the seams only between the objects and
the background. An accurate segmentation of the objects may
solve this problem, but an accurate segmentation is unrealistic.
Instead, the boundaries of each tube consist of background
pixels due to the morphological dilation we apply when
generating the activity tubes.

The α-Poisson Image Blending, proposed by [28] may be
a good solution for the stitching between objects, but not as
good as the Poisson Editing [20] for stitching the objects to the
background. The suggest approach is to use the observation
the all objects have a similar background (up to illumination
changes), and stitch each tube independently to the time lapse
background. Any blending method is possible, and in our
experiments we used a modification of Poisson editing: We
add a regularization that preserves the original appearance of
the objects even if they were stitched to background images
with a different lighting conditions (e.g - people seen during
the day, stitched on top of an evening-time background).

Let Ω be an image domain with boundary ∂Ω. Let f, b be
the foreground object (tube) and background (time lapse) pixel
colors, and let s be the unknown values of the stitched object
over the interior of Ω. The result of the Poisson blending with
regularization is given by:

mins

∑
Ω

[
(Δs−Δf)2 + λ(s− f).2

]
, such that s∂Ω = b∂Ω,

where λ is the weight of the regularization term. In [3] it was
shown that gradient domain stitching can be very efficient.

After stitching each tube to the background, overlapping
tubes are blended together by letting each pixel be a weighted
average of the corresponding pixels from the stitched activity
tubes b̂, with weights proportional to the activity measures
χ

b̂
(x, y, t). Alternatively, transparency can be avoided by

taking the pixel with maximal activity measure instead of the
weighted average.

It may be possible to use depth ordering when “object tubes”
are combined, where closer tubes will occlude further tubes.
A simple “ground plane” heuristic can be used, assumes that
an object whose vertical image position is lower is also closer.
Other depth ordering methods include [7]. The frequency of
object occlusion cases depends on the relative weights of the
collision cost (that prevent such cases) in respect to other costs.

4.7 Examples
We tested video synopsis on a few video streams captured off
the Internet. As the frame rate is not constant over the Internet,
and frames drop periodically, whenever we use a temporal
neighborhood we do not count the number of frames, but we
use the absolute times of each frame.

Fig. 16, and Fig. 18 are from cameras stationed outdoors,
while Fig. 17 is from a camera stationed indoors with constant

(a)

(b)

Fig. 16. Top: Three frames from a video captured over 24 hours
at Stuttgart airport.
(a) A frame from a 20 second synopsis of this period.
(b) Reducing the “collision penalty” in the cost function increases
substantially the density of objects, allowing more overlap be-
tween objects.

lighting. In most examples the main “interest” of each tube has
been the number of moving pixels in it.

Fig. 16.a-b show the effect of the choice of collision cost
of the density of objects in the video synopsis. Fig. 18 shows
shape based preferences. In Fig. 18.a the regular cost function
was used, and the large objects (moving cars) were preferred.
In Fig. 18.b small, dark, objects were preferred, showing a
completely different pedestrian activity.

5 APPLICATIONS FOR VIDEO SYNOPSIS

The proposed video synopsis is a general framework that can
be adopted for multiple applications. Some variants of this
framework are described in this section.
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Fig. 17. Top: Three frames from a video captured over 9 hours
in a Billiard club. Bottom: A frame from a short synopsis of this
period. Notice the multiple players per table at the synopsis.

5.1 Video Indexing

Video synopsis can be used for video indexing, providing the
user with efficient and intuitive links for accessing actions in
videos. This is possible since every object includes the time
of its appearance in the original video.

For indexing applications the original video frames should
be stored together with the object based queue. Once a video
synopsis is generated, and an object from the synopsis is
selected, the time associated with this object takes the viewer
directly to the desired location in the original video.

An object can be selected by clicking on the area where
it appears in the video synopsis with a mouse. For ease of
object selection, playback options of pause and slow for-
ward/backward can bring the synopsis video to the desired
temporal position. The selected synopsis frame can be divided
to regions, each region relates to a single active object in this
frame. Selecting a region in the displayed synopsis frame will
index into the desired time at the original video where the
selected object appears.

5.2 Customized Energy Functions

In most cases not all objects are of interest. A traffic surveil-
lance camera may be interested only in cars, while other
applications may prefer pedestrians. Filtering of objects can
be done in several places. Objects can be filtered out before
entering to the queue, and in this case it will never be possible
to retrieve them. Alternatively, objects can be filtered only
at the query stage. In this case the queue will include all
objects, and different queries can extract different objects from
the queue. It is also possible to create a customized energy
function for each application.

An simple example of customization is shown in Fig. 18.b,
where only small, dark, objects were selected from the queue.

(a)

(b)

Fig. 18. Top: Three frames from a video captured overnight in
St. Petersburg. The street had little activity.
(a) A frame from a short synopsis of this video. Cars that passed
during different hours are shown simultaneously.
(b) Selecting only small, dark, objects creates a new synopsis
video - now with people rather than with cars.

While the original synopsis includes mostly cars, the new syn-
opsis includes mostly pedestrians. Another example appears in
Fig. 19, where the energy function included the element of a
“phase transition” (Sec. 5.5), when a moving objects stops and
becomes part of the background.

5.3 Synopsis Specification
There are a few different possibilities for letting the users
specify the features of a requested video synopsis.
(a) Users can specify the desired duration of the video syn-
opsis and the penalty for object collisions. In this case, the
optimization stage will maximize the number of objects that
will be included in the synopsis under the specified constraints.
(b) Users can specify the desired duration of the video synopsis
and the percentage of objects that must be included in the syn-
opsis. The optimization stage will generate a video synopsis
having minimum collisions under the specified constraints.
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(c) Users can specify the percentage objects that must be
included in the synopsis, and the penalty for object collision.
The optimization stage will minimize the duration of the
synopsis under the specified constraints.

We have implemented option (a), where the duration of the
video synopsis was determined by the user as a hard constraint.
Surveillance video may prefer options (b) or (c), requiring that
most objects will be included in the synopsis.

5.4 Object Based Fast-Forward

Fast-forward is the most common tool used for video summa-
rization, and is always applied to entire frames. For example,
“time lapse” videos display in a short time slow processes
like the growth of flowers, etc. Some current methods suggest
an adaptive fast-forward [17], [23] but are still limited to the
framework of entire frames. With video synopsis each object
can have its own “fast forward” based on its importance, or
based on its original velocity. Slow objects may be accelerated,
but not fast objects.

Object fast forward can be done in a simple manner, e.g.
bringing all moving objects to a uniform velocity. Alterna-
tively, the speedup of slow objects can be determined during
the optimization stage, giving some penalty to a speed up of
objects. Adding object-based fast-forward to the optimization
stage can further improve the temporal compression rate of the
synopsis video, at the expense of increasing the complexity of
the optimization.

5.5 Foreground-Background Phase Transitions

Phase transitions occur when a moving object becomes station-
ary and merges with the background, or when a stationary ob-
ject starts moving. Examples are cars being parked or getting
out of parking. In most cases phase transitions are significant
events, and we detect and mark each phase transition for use
in the query stage.

We can find phase transitions by looking for background
changes that correspond to beginning and ending of tubes.
These transitions are important as they explain the changes
in the background. Fig. 19.a shows a synopsis where objects
that correspond to phase transitions are preferred. Mostly cars
involved in parking are shown. In contrast, in Fig. 19.b objects
that do not correspond to phase transitions are preferred. Only
passing cars and pedestrians are shown.

Since phase transitions correspond to changes in the back-
ground, the stitching of phase transitions into the background
should be given special attention. Two effects may occur in
the synopsis video when phase transitions are not inserted
into the background at the right time. (i) Background objects
will appear and disappear with no reason, causing a flick-
ering effect. (ii) Moving objects will disappear when they
stop moving, rather than become part of the background. To
minimize such effects in the video synopsis, phase transitions
should be inserted into the time lapse background at a time
that corresponds to their original time.

(a)

(b)

Fig. 19. Top: Three frames taken over five hours from a
webcam watching a quiet parking lot.
(a) A frame from a short synopsis of this period. A high score
was given to phase transitions (e.g. moving objects that stop
and become background). The video synopsis includes mostly
cars involved in parking.
(b) Objects without phase transitions are preferred. Only passing
cars and pedestrians are shown in this synopsis.

6 CONCLUDING REMARKS

Video synopsis has been proposed as an approach for con-
densing the activity in a video into a very short time period.
This condensed representation can enable efficient access to
activities in video sequences, and enable effective indexing
into the video.

Two approaches were presented for video synopsis: one
approach uses low-level graph optimization, where each pixel
in the synopsis video is a node in this graph. This approach
has the benefit of obtaining the synopsis video directly from
the input video, but the complexity of the solution may be very
high. An object-based approach detects and segments moving
objects, and performs the optimization on the detected objects.
The object-based approach is much faster, and enables the use
of object based constraints.
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The activity in the resulting video synopsis is much more
condensed than the activity in any ordinary video, and viewing
such a synopsis may seem awkward to the non experienced
viewer. But when the goal is to observe much information in
a short time, video synopsis delivers this goal.

6.1 Computational Costs

Creating a video synopsis of an endless video stream has two
major phases as shown in Fig. 13; an online phase and a query
phase.

The online phase runs in parallel to video capture and
recording, and is independent of any query. In this phase
moving objects are detected and tracked, and are entered as
meta-data into the object queue. Only frames with detected
changes, caused by motion or by illumination, are further
processed for extracting moving objects. The complexity of
our object extraction is governed by the the min-cut process,
and is running at 10 fps (on a 3GHz PC) for frames of
size 320× 240. Since most surveillance videos include many
frames with no activity that are automatically skipped, our
implementation of this phase requires less than an hour to
process a one hour video. Alternatively, hardware solutions for
detection and tracking of moving objects are provided by most
surveillance companies (”VMD”), and can be used instead.
Since the first phase happens in parallel to video capture, it
does not delay the response to a user query.

The response phase starts after a user presents a query
to the system, specifying the period of interest (POI) in the
input video, and the length of the synopsis video. In this
phase all objects in the POI are selected, and packed into the
synopsis range by optimizing the target cost. This includes
computing the cost function (Eq. 20), and determining the
temporal rearrangement of objects to minimize this cost. The
most expensive element in the cost function is the collision
cost (Eq. 14), which is computed for every relative time shift
between each pair of objects. Given K objects and T time
steps, a naive computation of the collision cost includes T ∗K2

computations of correlation between objects. Longer POI
results with more objects (a larger K), and a longer synopsis
video results with a larger T . The computation complexity can
be significantly reduced by (i) using coarser time intervals (e.g.
every 10 frames); (ii) Using reduced image resolution; and (iii)
Using bounding boxes for each object in each frame to avoid
the computation for pairs of objects (and time shifts) with no
overlap. Cost computation took 65 seconds on the 334,000
frames of the parking scene (24 hours), having 262 objects,
for a synopsis of length 450 frames. On the airport scene,
with 100,000 frames covering 30 hours, cost function for 500
objects was computed in 80 seconds.

Given the computed elements of the cost function, the
optimal temporal arrangement is computed. Given K objects
and T time steps, there are T K possible arrangements. Greedy
optimization converged to good results in the Parking example
after 59 seconds, and for Airport example after 290 seconds
(4.8 minutes).

The second phase is accelerated by removing in advance
from the object queue objects that have a very small likelihood

to be selected for a synopsis. For example older or smaller
objects may be considered as less interesting. Such objects
can be removed as long as other objects with higher interest
are available (Sec. 4.2). This stage, for example, decreased the
number of objects from 1917 to 500 in the Airport scene.

6.2 Limitations and Failures

Video synopsis is less applicable in several cases, some of
which are listed bellow:
(a) Video with already dense activity: All locations are active
all the time. An example is a camera in a busy train station.
(b) Edited video like a feature movie. The intentions of the
movie creator may be destroyed by changing the chronological
order of events.

The object-based approach depends on object segmentation
and tracking. While this task is relatively easy in the case of
a static camera, or even a rotating camera, it may be more
difficult in the case of a moving camera constantly changing
its viewing direction.

In some cases the video synopsis is very condensed with
objects and events, making it difficult for a user to search for
any particular object. Making video synopsis that is easier to
view is a topic for future studies.
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