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Abstract

Both detection and tracking people are challenging
problems, especially in complex real world scenes that com-
monly involve multiple people, complicated occlusions, and
cluttered or even moving backgrounds. People detectors
have been shown to be able to locate pedestrians even in
complex street scenes, but false positives have remained
frequent. The identification of particular individuals has
remained challenging as well. On the other hand, tracking
methods are able to find a particular individual in image se-
quences, but are severely challenged by real-world scenar-
ios such as crowded street scenes. In this paper, we combine
the advantages of both detection and tracking in a single
framework. The approximate articulation of each person is
detected in every frame based on local features that model
the appearance of individual body parts. Prior knowledge
on possible articulations and temporal coherency within a
walking cycle are modeled using a hierarchical Gaussian
process latent variable model (hGPLVM). We show how the
combination of these results improves hypotheses for posi-
tion and articulation of each person in several subsequent
frames. We present experimental results that demonstrate
how this allows to detect and track multiple people in clut-
tered scenes with reoccurring occlusions.

1. Introduction
This paper addresses the challenging problem of detec-

tion and tracking of multiple people in cluttered scenes us-
ing a monocular, potentially moving camera. This is an im-
portant problem with a wide range of applications such as
video indexing or surveillance of airports and train stations.
Probably the most fundamental difficulty in detection and
tracking many people in cluttered scenes is that many peo-
ple will be partially and also fully occluded for longer pe-
riods of times. Consequently, both the detection of people
in individual frames as well as the data-association between
people detections in different frames are highly challeng-
ing and ambiguous. To address this, we exploit temporal

Figure 1. Examples of detection and tracking of specific persons
in image sequences of crowded street scenes.

coherency, extract people-tracklets from a small number of
consecutive frames and from those tracklets build models
of the individual people. As any single person might be de-
tectable only for a small number of frames the extraction of
people-tracklets has to be highly robust. At the same time
the extracted model of the individual has to be discrimina-
tive enough in order to enable tracking and data-association
across long periods of partial and full occlusions.

To achieve reliable extraction of people-tracklets as well
as data-association across long periods of occlusion, the
proposed approach combines recent advances in people de-
tection with the power of dynamical models for tracking.
Rather than to simply determine the position and scale of
a person as is common for state-of-the-art people detectors
[3, 16], we also extract the position and articulation of the
limbs. This allows us to use a more powerful dynamical
model that extends people detection to the problem of re-
liably extracting people-tracklets – people detections con-
sistent over a small number of frames. In particular, we
use a hierarchical Gaussian process latent variable model
(hGPLVM) [14] to model the dynamics of the individual
limbs. As we will show in the experiments this enables
us to detect people more reliably than it would be possible
from single frames alone. We combine this with a hidden
Markov model (HMM) that allows to extend the people-
tracklets, which cover only a small number of frames at a
time, to possibly longer people-tracks. These people-tracks
identify individuals over longer sequences of consecutive
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frames when that is appropriate, such as between major oc-
clusion events. Tracking people over even longer periods
of time is then achieved by associating people-tracks across
potentially long periods of occlusion using both the dynami-
cal model and an extracted appearance model, which allows
identifying specific individuals throughout the sequence.

The first contribution of this paper is the extension of
a state-of-the-art people detector [16] with a limb-based
structure model. Sec. 2 shows that this novel detector
outperforms two state-of-the-art detectors on a challenging
dataset. The novel detector has two important properties
that make it particularly suited for the detection and track-
ing of multiple people in crowded scenes: First, it allows
to detect people in the presence of significant partial oc-
clusions, and second, the output of the detector includes the
positions of individual limbs, which are used as input for the
dynamical model at the next stage. The second contribution
of the paper is to integrate the people detection model us-
ing a dynamical limb-model to enable reliable detection of
people-tracklets over small number of consecutive frames,
which further improves the detection performance. To our
knowledge, this is also the first application of the hGPLVM
dynamical model to a complex vision problem. The ex-
tracted people-tracklets are then used to generate a detailed
appearance model of each person on the fly. The third con-
tribution is to link short people-tracklets to longer tracks of
the various individuals in the scene. In this, we take advan-
tage of the articulated people detector, which allows us to do
filtering using a HMM model with a simple discrete state
space. This is in contrast to typical tracking approaches
that need to perform stochastic search in high-dimensional,
continuous spaces [5], which is well known to suffer from
many problems [4, 22]. Note that while a precise recovery
of the full articulation is not the main focus of this paper,
we can still quite accurately recover the articulation even in
complex scenes. The final contribution of the paper is to
associate people-tracks in scenes with multiple people and
over periods of long occlusions. In particular, the learned
appearance model allows us to identify and track individu-
als even through complex occlusions without requiring any
manual initialization or manual intervention at any stage of
the process.

1.1. Related work

Tracking by detection has been a focus of recent work
[18, 8, 27, 1]. This research has been facilitated by the im-
pressive advances in people detection methods [24, 3, 16].
Approaches most related to what is proposed in this paper
include the work by Leibe et al. [15], who have extended
[16] to enable detection and trajectory estimation in com-
plex traffic scenes. This approach, however, has not been
shown be able to handle complex and long occlusions as
we focus on here. Ramanan et al. [19] propose a two-stage

approach that first builds a model of the appearance of in-
dividual people, and then tracks them by detecting those
models in each frame. Their approach uses only very sim-
ple limb detectors based on finding parallel lines of contrast
in the image. Here, we use more refined limb detectors that
are learned, yet generic enough to detect peoples’ limbs in
a wide variety of situations. Wu and Nevatia [27] propose
an approach for detecting and tracking partially occluded
people using an assembly of body parts. All of these ap-
proaches explicitly or implicitly assume that humans are ei-
ther only partially occluded or fully occluded only for short
periods of time. In this sense this paper pushes the state-of-
art by addressing the important and frequent problem of sig-
nificant and long-term occlusions for crowded scenes with
many people.

A review of the literature on people tracking is well
beyond the scope of this paper, and hence we will only
mention a few examples of related work here. Many ap-
proaches, even to this date, are based on silhouettes (e.g.
[5]) and perform tracking using stochastic search in high-
dimensional spaces. While using silhouettes may be ap-
propriate for tracking a single person, silhouette extraction
becomes unreliable because of complex backgrounds, oc-
clusions, and moving cameras. Moreover, stochastic search
in these high-dimensional spaces is notoriously difficult. To
work around these problems, a number of recent tracking
approaches turned to feature-based detectors for matching
tracking hypotheses, discriminative components, strong dy-
namical models, or alternative methods for exploring the
search space [4, 23, 7, 22]. Fossati et al. [7], for exam-
ple, perform tracking aided by detection, even in 3D, but
need to find a ground plane and only track single individu-
als without substantial occlusions. Sminchisescu et al. [22]
combine discriminative prediction of the body state from
densely sampled features with a dynamical model. Their
method focuses on the accurate recovery of the articulation
of the single person, whereas we focus on the robust detec-
tion and tracking of multiple people in scenes with complex,
long-term occlusions. Sigal and Black [21], for example,
integrate occlusion reasoning into a 2D articulated tracking
model. Their model only deals with self-occlusions, how-
ever. This paper instead focuses on occlusions between dif-
ferent people as well as on people being occluded by the
environment. In that, this paper is also related to multiple-
people blob-tracking methods, such as [11], but we do not
need to assume a static camera and allow for low viewpoints
(also in contrast to [15]) from which people can fully oc-
clude each other.

2. Pedestrian Detector
Before introducing temporal constraints into the detec-

tion process, we first propose a novel part-based object de-
tection model that is capable of detecting pedestrians in sin-



Figure 2. Graphical model structure describing the relation be-
tween articulation, parts, and features.

gle images of real-world scenes. The model is inspired by
the pictorial structures model proposed by [6, 10], but uses
more powerful part representations and detection, and as we
will show outperforms recent pedestrian detectors [3, 20].

2.1. Part-based model for pedestrian detection

Following the general pictorial structures idea, an object
is represented as a joint configuration of its parts. In such
a model the problem of locating an object from a specific
class in a test image is formulated as search for the modes
of the posterior probability distribution p(L|E) of the object
configuration L given the image evidence E and (implicit)
class-dependent model parameters θ.

In our model, the configuration is described as L =
{xo,x1, . . . ,xN}, where xo is the position of the object
center and its scale, and xi is the position and scale of part
i. The image evidence, which here is defined as a set of
local features observed in the test image, will be denoted
as E = {eapp

k , epos
k |k = 1, . . . ,K}, where eapp

k is an ap-
pearance descriptor, and epos

k is the position and scale of the
local image feature with index k. We will denote the com-
bination of position, scale, and appearance of a local feature
as ek = (eapp

k , epos
k ).

An important component of the pictorial structures
model is an implicit model of a-priori knowledge about
possible object configurations, which must be expressive
enough to capture all important dependencies between
parts. Part positions are mutually dependent in general,
which can make inference difficult. But for particular object
categories, such as walking people, we can introduce aux-
iliary state variables that represent the articulation state or
an aspect of the object, such as different phases in the walk-
ing cycle of a person [12], and make the parts conditionally
independent. If the articulation state is observed, the model
becomes a star model (or tree model in general) and effi-
cient algorithms based on dynamic programming [6] can
be used for inference. If we are not interested in knowing
the articulation state, but only the object and limb positions,
then articulation state a can be marginalized out:

p(L|E) =
∑

a

p(L|a,E)p(a). (1)

From decomposing p(L|a,E) ∝ p(E|L, a)p(L|a), as-
suming that the configuration likelihood can be ap-
proximated with product of individual part likelihoods

Figure 3. Examples of images from our training set.

[6] p(E|L, a) ≈
∏

i p(E|xi, a), and assuming uniform
p(xi|a), it follows that

p(L|a,E) ≈ p(xo)
∏

i

p(xi|a,E)p(xi|xo, a). (2)

If we assume that a particular image feature ek belongs to
part i of an object instance in the image with probability α,
then it holds that

p(xi|a,E) = c0 + c1

∑
ek

p(xi|a, ek) + O(α2), (3)

where c0 and c1 depend only on the image features E [26].
If α is sufficiently small, which is true for street scenes in
which a particular person usually represents only a small
portion of the image, we obtain

p(L|a,E) ≈
∏

i

p(xi|xo, a)

[
β +

∑
ek

p(xi|a, ek)

]
, (4)

where β can be seen as a regularizer for the evidence ob-
tained from the individual image features, and we have ad-
ditionally assumed uniform p(xo).

As is common in models based on local feature represen-
tations, we introduce an object-specific codebook denoted
as C = {cj |j = 1, . . . , J}. The part posterior with respect
to a single image feature is computed by marginalization
over the codebook entries:

p(xi|a, ek) =
∑
cj

p(xi|a, cj , e
pos
k )p(cj |eapp

k ). (5)

p(cj |eapp
k ) is discrete distribution over codebooks based

on a Gaussian similarity measure, and p(xi|a, cj , e
pos
k ) is

learned from training data (see below). The structure of the
dependencies between the variables in the model is shown
in Fig. 2.

2.2. Model training

In all presented experiments we use shape context fea-
ture descriptors [2] and the Hessian-Laplace interest point
operator [17] as detector. The object-specific codebook is
constructed by clustering local features extracted from the
set of training images.

For each codebook cluster cj we also compute its oc-
currence distribution, which corresponds to a set of jointly



Figure 4. Person hypothesis with corresponding probabilities of
foot, upper leg, and torso.

Figure 5. Example detections at equal error rate of our detec-
tor (top), 4D-ISM (middle) and HOG (bottom) on the “TUD-
Pedestrians” dataset.

observed relative position and scale of the cluster with re-
spect to the part centers computed for each occurrence of
the cluster in the training set. This allows us to compute
p(xi|a, cj , e

pos
k ).

In order to compute the occurrence distributions we man-
ually annotated each person along with its parts in all train-
ing images. Fig. 3 shows several images from our training
set. From the same manual annotation we also learn a Gaus-
sian distribution of the position of each part relative to the
object center, p(xi|xo, a). While the position components
are learned, the scale component is taken to be relatively
broad and chosen empirically. This appears to be sufficient
for pedestrians, particularly since we are not differentiating
between left and right legs at the detection stage.

2.3. Inference and Results

In the first step of inference we accumulate p(xi|a, ek)
in a 3 dimensional array of discretized image positions and
scales. After that Eq. (4) can be maximized efficiently us-
ing the generalized distance transform [6]. This is possible
since part dependencies have a tree (star-) structure, appear-
ance components are computed separately for each part, and
p(xi|xo, a) is Gaussian. Fig. 4 visualizes

∑
ek

p(xi|a, ek)
in the region of a person hypothesis for different limbs.

In the following we evaluate the novel detector on a
challenging dataset of 250 images of street scenes con-
taining 311 side-view pedestrians with significant variation
in clothing and articulation, which we denote as “TUD-

Pedestrians” 1. Fig. 7(a) shows the comparison of our de-
tector with two state of the art detectors. Using the same
training set as [20] our detector outperforms the 4D-ISM
approach [20] as well as the HOG-detector [3]. Increasing
the size of the training set further improves performance
significantly.

Fig. 5 shows sample detections of the 3 methods on test
images. The 4D-ISM detector is specifically designed to
detect people in cluttered scenes with partial occlusions. Its
drawback is that it tends to produce hypotheses even when
little image evidence is available (image 3 and 4), which re-
sults in increased number of false positives. The HOG de-
tector seems to have difficulties with the high variety in ar-
ticulations and appearance present in out dataset. However,
we should note that it is a multi-view detector designed to
solve a more general problem than we consider here.

In addition to the high precision of our detector, we ob-
serve an improved scale estimation of the hypotheses as can
be seen on the leftmost image of Fig. 5. We attribute this to
the fact that the influence of imprecise scale-estimates of the
local feature detector are reduced using local object parts.

3. Detection of Tracks in Image Sequences
The person detector just described provides hypotheses

for position, scale, and body articulation in single frames
based on the detection of individual body parts or limbs.
To further improve the detection performance in image se-
quences several authors have proposed to incorporate tem-
poral consistency among subsequent frames, typically us-
ing a simple motion model based on position and velocity
of the person. In contrast, we propose to use a more expres-
sive kinematic limb model thereby leveraging the articu-
lated tracking literature (e.g. [5, 4, 21, 23, 19, 22]). Clearly,
the expressiveness and the robustness of the kinematic limb
model are crucial as it has to be powerful enough to reduce
the number of false positives significantly, and at the same
time robust enough to enable people detection in crowded
scenes.

Given the image evidence E = [E1, E2, . . . , Em]T in
a sequence of m subsequent frames, we would like to re-
cover the positions Xo∗ = [xo∗

1 ,xo∗
2 , . . . ,xo∗

m ]T of the per-
son as well as the configurations of the limbs in each frame
Y∗ = [y∗1,y

∗
2, . . . ,y

∗
m]T with y∗j denoting the recovered

limb orientations in the j-th frame. Assuming independence
of the detections in each frame, the posterior factorizes as:

p(Y∗,Xo∗|E) ∝ p(Y∗)p(Xo∗)p(E|Y∗,Xo∗) (6)

∝ p(Y∗)p(Xo∗)
m∏

j=1

p(Ej |y∗j ,xo∗
j ).

p(Ej |y∗j ,xo∗
j ) is the likelihood of the image evidence Ej ,

1Available at www.mis.informatik.tu-darmstadt.de.



and is given by the detection model described in the previ-
ous section. p(Xo∗) corresponds to a prior of human body
speed, which we model as a broad Gaussian. Probably the
most interesting term is p(Y∗), which denotes the prior over
the kinematic limb-motions, and in general is difficult to es-
timate reliably due to the high dimensionality of the pose
space. Instead of modelling the pose dynamics directly in
an high-dimensional space, several authors [23, 25, 22] have
argued and shown that a low-dimensional representation is
sufficient to approximate the dynamics. In the following we
use a Gaussian process latent variable model (GPLVM) to
obtain such a low-dimensional representation and discuss
how it can be used to obtain reliable people detections in
image sequences.

3.1. Gaussian process latent variable model

Let Y = [y1,y2, . . . ,ym]T be a sequence of D-
dimensional observations (here describing the relative joint
angles of body limbs). GPLVMs model the D-dimensional
observation space as the output of D Gaussian processes
with an input space of dimensionality q, where q < D.
Each observation yi is associated with a q-dimensional la-
tent point zi. The likelihood of the observation sequence Y
given the latent sequence Z = [z1, z2, . . . , zm]T and model
parameters θ is given by [13]:

p(Y|Z, θ) =
D∏

i=1

N (Y:,i|0,Kz), (7)

where Y:,i is the vector of values of feature i across all ob-
servations, and Kz is the covariance matrix with elements
given by a covariance function k(zi, zj). In this paper we
use a squared exponential covariance function augmented
by Gaussian white noise. For a given Y we can find the
positions of the latent points Z along with the model pa-
rameters θ by maximizing their likelihood from Eq. (7).

In addition to the low-dimensional latent representation
of the data, GPLVMs provide a probabilistic mapping from
the latent space to the observation space. One possibility to
define a dynamic model in the latent space is to place a suit-
able prior on the elements of Z. Such a prior can be given by
a Gaussian process with time as input variable [14]. Given
the sequence of points in time, T = [t1, t2, . . . , tm]T at
which the observations Y were made, the prior over Z is
given by

p(Z|T) =
q∏

i=1

N (Z:,i|0,KT) (8)

where KT is the covariance matrix of the time points. The
covariance function in the time space can again be taken
as squared exponential, which ensures smoothness of the
trajectories.

We now combine this prior with the likelihood from
Eq. (7), and maximize w.r.t. Z and θ. Fig. 6 shows the 2

dimensional latent space obtained by applying this model
to 11 walking sequences of different subjects, each contain-
ing one complete walking cycle. Walking cycles in each
sequence are manually aligned so that we can interpret the
frame number in each sequence as phase of the walking cy-
cle. This hierarchical approach to GPLVM dynamics has
several advantages over the auto-regressive prior proposed
in [25]. In particular, it allows us to evaluate the likelihood
of a sequence of poses, even if the poses occurred at un-
equally spaced time intervals. This arises, e.g., when the
subject was occluded or not detected for several frames.
Additionally, for a given pose the model allows us to hy-
pothesize both successive and previous poses, which we use
to produce good initial hypotheses for the whole image se-
quence from a few good detections.

3.2. Reconstruction of poses in short sequence

Given limb likelihoods and the hGPLVM prior, we can
maximize Eq. (6) to find the best pose sequence. This is
equivalent to jointly solving the inverse kinematics in each
frame of the sequence under soft constraints given by limb
likelihoods and similar to [9], except that in our case hints
about limb positions are provided by detector instead of be-
ing manually given by the user. If we denote the training
observations, their latent representation and model parame-
ters by M = [Y,T,Z,θ], the probability of the unknown
pose sequence Y∗, its latent representation Z∗, and the per-
son positions Xo∗ is given by

p(Y∗,Xo∗,Z∗|M, E,T∗) ∝ (9)
p(E|Y∗,Xo∗)p(Y∗|Z∗,M)p(Z∗|T∗,M)p(Xo∗).

The first term is the detection likelihood from single-frame
detections (see Eq. (6)). The second term is given by

p(Y∗|Z∗,M) =
D∏

i=1

p(Y∗
:,i|Z∗,Y:,i,Z), (10)

where p(Y∗
:,i|Z∗,Y:,i,Z) is a Gaussian process prediction

of the pose sequence given a sequence of latent positions.
The third term is given by the dynamics prior on the latent
space:

p(Z∗|T∗,M) =
q∏

i=1

p(Z∗:,i|T∗,Z:,i,T). (11)

In our formulation, detecting people in a series of m
frames therefore corresponds to finding pose sequences Y∗

and people positions Xo∗ that maximize Eq. (9). We use the
following strategy to efficiently obtain such maxima: Each
hypothesis obtained from the people detector from Sec. 2
contains an estimate of the person’s position xo, limbs’ po-
sitions xi and articulation a. From these parameters we can



Figure 6. Representation of articulations in the latent space.

directly estimate both the limb-orientations y, and position
in the walking cycle t. Using those parameters and propa-
gating them to neighboring frames using the kinematic limb
model has proven to yield good initializations for optimiza-
tion. In the experiments described below we use a sufficient
but small number of detections in each frame to obtain ini-
tialization values for Y∗, T∗, and Xo∗, and then use a con-
jugate gradient method to find local maxima of Eq. (9). The
gradients of the second, third, and fourth term in Eq. (9)
can be computed analytically, while we use a finite differ-
ence approximation for gradient of p(E|Y∗,Xo∗). As the
experiments show, this enables us to efficiently obtain peo-
ple detections in image sequences.

Quantitatively, Fig. 7(b) shows how the extracted track-
lets lead to increased precision and recall compared to the
detector alone (note that the recall does not reach 1 in either
case due to the use of non-maxima suppression.)

3.3. Optimal track selection based on overlapping
tracklets

The optimization procedure just described is suited to re-
liably detect people in short frame sequences. We found that
in order to reconstruct tracks of people over longer periods
of time, it is more reliable to merge hypotheses from dif-
ferent short tracklets rather than increasing the length of the
tracklets itself. First, we compute overlapping fixed-length
tracklets (m = 6) starting at every frame of the sequence.
As tracklet optimization relies on good initialization, the
use of overlapping sequences ensures that each strong de-
tection is used multiple times for initialization.

We then exploit that every frame is overlapped by sev-
eral different tracklets (including ones with different start-
ing frames), which provide competing hypotheses that ex-
plain the same image evidence. In principle it would be
possible to choose the best sequence of hypotheses using
their joint posterior (i.e., an extension of Eq. (9)). This is,
however, computationally prohibitive since the large state-
space of all possible combinations of hypotheses cannot be
searched efficiently without making simplifying assump-
tions. Instead, we select hypotheses using pairwise relations
between them by introducing a first-order Markov assump-
tion on the hypothesis sequence.

Let the length of the complete image sequence be equal
to M . We denote the set of all hypotheses obtained from

individual tracklets in frame j by hj = [hj
1, . . . , h

j
nj

].
We will call the track given by a set of hypotheses H =
[h1

j1
, . . . , hM

jM
] optimal if it maximizes the joint sequence

probability according to the hidden Markov model:

p(H) = pimg(h1
j1)

M∏
k=2

pimg(hk
jk

)ptrans(hk
jk

, hk−1
jk−1

). (12)

In this expression pimg(hk
jk

) is computed using the people
detection model from Sec. 2. The transition probability is
ptrans is given by

ptrans(hk
jk

, hk−1
jk−1

) = pdynamic(hk
jk

, hk−1
jk−1

) ·

papp(hk
jk

, hk−1
jk−1

), (13)

where pdynamic(·, ·) is our dynamical model consisting of
Gaussian position dynamics and the GPLVM articulation
dynamics, and papp(·, ·) is computed using an appearance
model of the hypothesis, which can be based on color his-
tograms of person parts, oriented edge features, or any other
appearance description. We use color histograms extracted
from the detected parts, and use the Bhattacharyya distance
to model the appearance compatibility.

The optimal sequence can be efficiently found by max-
imizing Eq. (12) using the Viterbi algorithm. If a given
image sequence contains only one person that is never oc-
cluded, the proposed approach is able to reconstruct its track
from the individual tracklets.

For the case of more complex image sequences we have
adopted the following strategy that has proven to be quite
effective (see Sec. 4 for results): Let i be the number of the
current frame in the sequence (in the beginning i = 1). We
proceed by iteratively computing the optimal track starting
with i. At the nth iteration of the Viterbi algorithm, we com-
pute the transition probabilities between the hypotheses of
the optimal track at frame i + n and each of the hypotheses
in the frame i + n + 1. If the person either walks out of
the image or becomes heavily occluded, all of the transition
probabilities will be low, which means that we can end the
track. In that case all its hypotheses are removed from the
sets of hypotheses hj , j = i, . . . , i + n. We then repeat
the procedure again starting from frame i until hi becomes
empty. In this case we set i = i + 1 and repeat the pro-
cess. As a result of this iterative computation we obtain a
set of tracks with hypotheses that are consistent in both mo-
tion and articulation. To connect such tracks across long-
term occlusions we again use the appearance of the person
as well as a coarse motion model to decide if two tracks
correspond to the same person. The appearance model is
the same as used for modeling the appearance of individual
hypotheses. For the motion model we only require tracks
to have consistent movement direction (i.e. left or right).
In practice, we found that even such a simplistic method is



(a) (b)
Figure 7. Comparison of our pedestrian detector with 4D-ISM
[20] and HOG [3] on (a) the “TUD-Pedestrians” and (b) “TUD-
Campus” datasets. Numbers in parenthesis indicate number of
training images.

Dataset HOG 4D-ISM single-frame tracklets
TUD-Ped 0.53 - 0.28 0.68 0.81 0.84 - -

TUD-Camp 0.22 - 0.6 0.71 0.7 0.75 0.82 0.85

Table 1. Recall of 4D-ISM, HOG, and our detectors at precision
equal to 0.9 and at equal error rate on “TUD-Pedestrians” and
“TUD-Campus” datasets.

sufficient since only few possible tracks are available after
the initial detection stage.

4. Experiments

We evaluate our approach both quantitatively and quali-
tatively. In the first experiment, we compare the detection
performance of the single-frame person detector proposed
in Sec. 2 with the tracklet-based detector. Tracklet-based
detections are obtained by first detecting tracklets in the im-
age sequence as described in Sec. 3.2, grouping together
hypotheses from all tracklets corresponding to a particular
image of the sequence, and performing non-maxima sup-
pression on this set of hypotheses. In this process the score
of a hypothesis is set to score of the corresponding tracklet,
which is given by Eq. 9.

The comparison of both detectors is done on a sequence
with multiple full and partial occlusions. Fig. 9 shows sev-
eral example images from the sequence. Note that in such
cluttered sequences ground truth annotation is difficult as it
is unclear how to decide when a partially or fully occluded
person should be included. In order to have a fair evaluation
for the single-frame person detector we decided to annotate
people when they are at least 50% visible. The quantitative
comparison of the single-frame detector and the tracklet-
based detector is given in Fig. 7. The tracklet-based detector
improves the precision considerably. Fig. 8 shows sample
detections. As can be seen, the single-frame detector ob-
tains false positives on the background (images 1, 2, and 3),
whereas the tracklet-based detector can successfully filter
those false-positives. At the same time the tracklet-based
detector is capable of detecting several partially occluded
people (e.g. in image 2 and 4) that cannot be detected in a
single frame alone.

Figure 8. Examples of detector hypotheses (top row) and tracklet
hypotheses (bottom row) at equal error rate on the “TUD-Campus”
dataset.

In the second experiment we evaluate the tracks pro-
duced by our system on the sequence from the first exper-
iment and an additional sequence with significantly larger
number of people. Example snapshots from the resulting
tracks are shown in figures 9 and 10 respectively. Clearly,
in any single frame a significant number of people is de-
tected and their limb-configuration is correctly inferred. In-
terestingly, we obtain tracks for nearly all people in these
sequences, and in particular in sequence 1 we obtain tracks
for all people even though some of them become fully oc-
cluded over significant time intervals. Quite importantly, on
this sequence we can also differentiate between hypotheses
of two people walking side by side, with one person occlud-
ing the other most of the time. The complete videos of both
sequences can be found in the supplementary material.

5. Conclusion
This paper proposed a novel method capable of detect-

ing and tracking people in cluttered real-world scenes with
many people and changing backgrounds. For this the paper
extended a state-of-the-art pedestrian detector to an artic-
ulation and limb-based detection approach, which outper-
forms the state-of-the-art on single frame person detection.
A dynamic limb-model based on a hierarchical Gaussian
process latent variable model is used to further improve
people-detection by people-tracklet detection in image se-
quences. Those tracklets are then used to enable people-
tracking in complex scenes with many people and long-term
occlusions.

In the future we will extend the proposed approach using
a 3D limb model to allow people-detection from arbitrary
viewpoints and across multiple cameras.
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Figure 9. Detection and tracking on “TUD-Campus” dataset (see supplementary material).

Figure 10. Detection and tracking on “TUD-Crossing” dataset (see supplementary material).
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