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Abstract

We introduce a novel local image descriptor designed
for dense wide-baseline matching purposes. We feed our
descriptors to a graph-cuts based dense depth map esti-
mation algorithm and this yields better wide-baseline per-
formance than the commonly used correlation windows for
which the size is hard to tune. As a result, unlike compet-
ing techniques that require many high-resolution images to
produce good reconstructions, our descriptor can compute
them from pairs of low-quality images such as the ones cap-
tured by video streams.

Our descriptor is inspired from earlier ones such as SIFT
and GLOH but can be computed much faster for our pur-
poses. Unlike SURF which can also be computed ef ciently  n. A i
at every pixel, it does not introduce artifacts that degrade Figure 1. Depth maps for view-based synthedisp row: Two
the matching performance. 800 600 calibrated images we use as infttom row: On the

Our approach was tested with ground truth laser left, the depth map computed using DAISY and on the righttluep
scanned depth maps as well as on a wide variety of im-map computed using normalized-cross correlation, whiaklidco
age pairs of different resolutions and we show that good not handlg the large perspective and contrast change hetivee
reconstructions are achieved even with only two low quality "V I"Putimages.
images.

erators [25] to enforce spatial consistency. The drawback
of using small image patches is that reliable image infor-
mation can only be obtained where the image texture is of

Though dense shot-baseline stereo matching is well un-suf cient quality. Furthermore, the matching becomes very
derstood [7, 22], its wide baseline counterpart is, by con- sensitive to illumination changes and repetitive patterns
trast, much more challenging due to large perspective dis-  An alternative to performing dense wide-baseline match-
tortions and increased occluded areas. It is neverthelessng is to rst match a few feature points, triangulate them,
worth addressing because it can yield more accurate deptland then locally rectify the images. This approach, how-
estimates while requiring fewer images to reconstruct aever, potentially is not without problems. If some matches
complete scene. are wrong and are not detected as such, gross reconstruc-

Large correlation windows are not appropriate for wide- tion errors will occur. Furthermore, image recti cation in
baseline matching because they are not robust to perspeahe triangles may not be suf cient if the scene within can-
tive distortions and tend to straddle areas of differentli®ep  not be treated as locally planar.

or partial occlusions. Thus, most researchers favor sim- \\e instead, advocate replacing correlation windows
ple pixel differencing [21, 5, 14] or correlation over very ith local region descriptors, which lets us take advantage
small windows [24]. They then rely on optimization tech-  of powerful global optimization schemes such as graph-cuts
niques such as graph-cuts [14] or PDE based diffusion op-to force spatial consistency. Existing local region descri
This work was supported in part by funds of the European Cammi  {OrS such as SIFT [17] or GLOH [19] _have been designed
sion under the 1ST-project 034307 DYVINE (Dynamic Visualtiverks). for robustness to perspective and lighting changes and have

1. Introduction




proved successful for sparse wide-baseline matching. How-from being completely solved due to many sources of er-
ever, they are much more computationally demanding thanrors such as perspective distortion, occlusions, and rtextu
simple correlation. Thus, for dense wide-baseline match-less areas. Most state-of-the-art methods rely on rstagisin
ing purposes, local region descriptors have so far only beenlocal measures to estimate the similarity of pixels across
used to match a few seed points [29] or to provide con- images and then on imposing global shape constraints us-
straints on the reconstruction [25]. ing dynamic programming [3], level sets [9], space carv-

We, therefore, introduce a new descriptor that retainsing [15], graph-cuts [21, 6, 14], PDE [1, 25], or EM [24].
the robustness of SIFT and GLOH and can be computedin this paper, we do not focus on the method used to im-
quickly at every single image pixel. Its shape is closely re- pose the global constraints and use a standard one [6]. In-
lated to that of [28], which has been shown to be optimal stead, we concentrate on the similarity measure all these
for sparse matching but is not designed for ef ciency. We algorithms rely on.

use our descriptor for dense matching and view-based syn- .
In a short baseline setup, reconstructed surfaces are often

thesis using stereo-pairs which have too large a baseline fo S )
g P 9 assumed near fronto-parallel, so the similarity betwegn pi

standard correlation-based techniques to work, as shown ineIS can be measured by cross-correlating sauare windows
Fig. 1. For example, on a standard laptop, it takes about 5 y 9sda '

. , . This is less prone to errors compared to pixel differencing
seconds to perform the computations using our descriptor R S -
and allows normalization against illumination changes.

over all the pixels of a 800600 image, whereas it takes
over 250 seconds using SIFT. Furthermore, it gives better In a wide-baseline setup, however, large correlation win-
results than SIFT, SURF, NCC and pixel differencing as will dows are especially affected by perspective distortioms an
be shown using laser scanner data as a reference. occlusions. Thus, wide-baseline methods [1, 14, 25, 24]
To be specic, SIFT and GLOH owe much of their tend to rely on very small correlation windows or revert to
strength to the use of gradient orientation histogramsglwvhi  point-wise similarity measures, which loose the discrim-
are relatively robust to distortions. The more recent SURF inative power larger windows could provide. This loss
descriptor [4] approximates them by using integral images can be compensated by using multiple [2, 25] or high-
to compute the histograms bins. This method is compu-resolution [25] images. The latter is particularly effeeti
tationally effective with respect to computing the descrip because areas that appear uniform at a small scale are often
tor's value at every pixel but does away with SIFT's spatial quite textured when imaged at a larger one. However, even
weighting scheme. All gradients contribute equally totthei then, lighting changes remain dif cult to handle. For exam-
respective bins, which results in damaging artifacts when ple, [25] shows results either for wide baseline withouttig
used for dense computation. The key insight of this paper ischanges, or with light changes but under a shorter baseline.
that computational ef ciency can be achieved without per-

formance loss by convolving orientation maps to compute As we shall see, our feature descriptor reduces the need

the bin values. This lets us match relatively large patches]cor h|gh_er-resolut|0n images _and achieve comparable re-
sults using fewer number of images. It does so by con-

— 31 31 — at an acceptable computational cost and im- dering | : ich hil L tabl d
prove robustness in unoccluded areas over techniques that o o' Ng 'arge Image patches while remaining stable under

use smaller patches. Using large areas requires to handlgerspectwe distortions. Earlier approaches to this jerobl

occlusion boundaries properly though and we address thisrelied on warping the correlation windows [8]. However the

issue by using different masks at each location and select"arps were estimated from a rst reconstruction optain_ed
the best one by using an EM framework. This is inspired by using class_lcal yvmd_ows, which is usually not practical in
the earlier works of [11, 13, 12] where multiple or adaptive W'de. basel!ng_3|tuat|ons. By. contrast, our method does not
correlation windows are used. require an initial reconstruction.

After discussing related work in Sec. 2, we introduce our  Local image descriptors have already been used in dense
new local descriptor and present an ef cient way to com- matching, though in a more traditional way, to match only
pute it in Sec. 3. In Sec. 4 we detail our EM framework sparse pixels that are feature points [27, 17]. In [25, 29],
to handle occlusions. Finally, in Sec. 5, we present densethese matched points are used as anchors for computing the
reconstruction results, compare our algorithm'sresults w  full reconstruction. [29] propagates the disparities @ th
those of [24] and give ground truth comparison results with matched feature points to their neighbors, while [25] uses
other descriptors including SIFT, SURF, NCC and pixel dif- them to initialize an iterative estimation of the depth maps

ferencing with increasing baseline. . .
To summarize, local descriptors have already proved

2. Related Work their worth for dense wide baseline matching, but only in

a limited way. This is due in part to their high computa-

Even though multi-view 3—-D surface reconstruction has tional cost and in past their sensitivity to occlusions. The
been investigated for many decades [22, 7], it is still far technique we propose addresses both issues.



3. Our Local Descriptor

In this section, we briey describe SIFT [17] and
GLOH [19] and then introduce our DAISY descriptor. We
discuss both its relationship with them and its greaterceffe
tiveness for dense computations. The shape of DAISY is
similar to that of [28], but it is designed for computational
ef ciency.

3.1. SIFT and GLOH

SIFT and GLOH before PCA dimensionality reduction, _ rectony _
are 3-D histograms in which two dimensions correspond to Figure 2. The DAISY descriptor. Each circle represents &@reg
image spatial dimensions and the additional dimension towhere .the radius is proportlona}l to the standard dewatqirthe
the image gradient direction. They are computed over local $2ussian kemels and the "+ sign represents the locatidresev.
regions, usually centered on feature points but SometimeﬁWe sample the convolved orientation maps center being d pixe
’ o]

. o cation where we compute the descriptor. By overlappirg th
also densely sampled for object recognition tasks [10, 16]. regions we achieve smooth transitions between the regiothaa

Each pixel belonging to the local region contributes 10 yeqgree of rotational robustness. The radii of the outeoregare

the histogram depending on its location in the local region, jncreased to have an equal sampling of the rotational axishws
and on the orientation and the norm of the image gradient atnecessary for robustness against rotation.

its location: As depicted by Fig. 3(a), when an image gradi-

ent vector computed at a pixel location is integrated to the o' Y
3D histogram, its contribution is spread oZer 2 2 = 8 nel whereas the weighting scheme of SIFT and GLOH cor-

bins to avoid boundary effects. More precisely, each bin is responds to a triangular shaped kernel since the weights are

incremented by the value of the gradient norm multiplied linear. ltis algo r(_elated Wi_th ten_sorvoting in [18] i_fweniki
by a weight inversely proportional to the distances between©f each(ljocatlon in our_orlekntanoln ma;}ps asa votm_ghcompo-
the pixel location and the bin boundaries, and also to thenenthan olur allggre_ga::on Zrne ast evo(tjmg welg_”t?].
distance between the pixel location and the one of the key- 1 1€ nalvalues in these descriptors and ours will there-
point. As a result, each bin contains a weighted sum of thefore not be exactly equal; nevertheless, our descriptor cap

norms of the image gradients around its center, where thetl,Jres a very similar behavior. Mor'eover, this gives new in-
weights roughly depend on the distance to the bin center. S19Nts on what makes SIFT work: The Gaussian convolu-
tion simultaneously removes some noise, and gives some

3.2. Replacing Weighted Sums by Convolutions invariance to traqslation t_o the cpmputed valu_es. This. is
also better than integral image-like computations of his-
In our descriptor, we replace the weighted sums of gra- tograms [20] in which all the gradient vectors contribute
dient norms by convolutions of the original image with sev- the same: We can very ef ciently reduce the in uence of
eral oriented derivatives of Gaussian Iters. We will see gradient norms from distant locations.
that this gives the same kind of invariance as the SIFT  Our primary motivation here is to reduce the compu-
and GLOH histogram building, but much faster for dense- tational requirements, since convolutions can be imple-

The weights are slightly different: We use a Gaussian ker-

matching purposes. More speci cally, we compute the mented very ef ciently especially when using Gaussian |-
. ters, which are separable. Moreover, we can compute the
G =G Q@ 1) orientation maps for different sizes at low cost: Convolu-
° @o tion with large Gaussian kernel can indeed be obtained from
several consecutive convolutions with smaller kernels. In
convolutionswher& is a Gaussian kernad,is the ori- deed if we have already computéd,* we can ef ciently

entation of the derivative and the operatgi” is such that computeG,2 with , > 1 by convolvingG,,
(a)* = max(a;0). We refer to the convolution resui,

as convolved orientation mapsAs we will detail below, G2=3G @ ' -G G @ " -G Gt
we will build our descriptor by reading the values in the ~° > @o ' @o °
convolved orientation maps. We will refer to the oriented ~~~ p —
derivatives of the imag&, = Z)* asorientation maps with = 2 1

Tq make the link with SIF_T and_ GLOH, notice _that each 3.3. The DAISY Descriptor
location of the convolved orientation maps contains a value
very similar to what a bin in SIFT or GLOH contains: a We now give a more formal de nition of oUDAISYde-
weighted sum computed over an area of gradient norms.scriptor. For a given inputimage, we rst compute eight ori-
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Figure 3. Relationship between SIFT and DAISY. (a) SIFT is-® distogram computed over a local area where each pixetitoca
contributes to bins depending on its location and the aaitéant of its image gradient, the importance of the contidsubeing proportional
to the norm of the gradient. Each gradient vector is spreaddv 2 2 bins to avoid boundary effects, and its contribution to daiahis
weighted by the distances between the pixel location andiitheoundaries. (b) DAISY computes similar values but in asgeway. Each
gradient vector also contributes to several of the elemattse description vector, but the sum of the weighted cbuatidns is computed
by convolution for better computation times. We rst compurientation maps from the original images, which are thevalved to
obtain the convolved orientation ma@s,' . The values of th& ,' correspond to the values in the SIFT bins, and will be useditid b
DAISY. By chaining the convolutions, th8 ,' can be obtained very ef ciently.

entation mapsG, one for each quantized direction, where Image Size DAISY SIFT
G(u; V) equals the image gradient at locati@n v) for di- 800x600 5 252
rectiono if it is bigger than zero, else it is equal to zero. 1024x768 10 432
The reason for this is to preserve the polarity of the in- 1290x960 13 651
tensity change. Each orientation map is then convolved Table 1. Computation Time Comparison (in seconds)

several times with Gaussian kernels of differentalues
to obtain convolved orientation maps for different sized h D(Uo;Vo) =

regions. As mentioned in the previous section, this can ﬁ>1(uo;vo);
bg done.ef ciently by computmg thesg convolut|on§ recur- ﬁ>1(|1(uo; VoR1): ﬁ>1(|N (Uo; Vo R1)):
sively. Fig. 3(b) summarizes the required computations. B (1(UoiVo R2): 1B (In (Uo:Vo: R2)):

As depicted by Fig. 2, at each pixel location, DAISY 2 VIRT0 Y0 RIS T UN RO Y0 R2ID g
consists of a vector made of values from the convolved ori- B>, (I1(uo;vo;Ra));  ;R”, (In (Uo; Vo; R3)) ;

entation maps located on concentric circles centered on the

location, and where the amount of Gaussian smoothing iswherel; (u; v; R) is the location with distand& from (u; v)

proportional to the radius of the circles. in the direction given by when the directions are quantized
Leth (u;v) be the vector made of the values at location into N values. In the experiments presented in this paper,

(u;v) in the orientation maps after convolution by a Gaus- we useN = 8 directions withR; =2:5, R, = 3R, R3 =

sian kernel of standard deviation 6R, and =255 ,=3 4, 3=5 4. Thus, our
N descriptoris made &+8 3 8 =200 values, extracted
h (uv)= Gi(uv); i Gg(uv) (2) from 25 locations and 8 orientations.

We use a circular grid instead of SIFT's regular one since

whereG,, G,, andGg denote the -convolved orienta- it has been shown to have better localization propertiels [19
tion maps. We normalize these vectors to unit norm, and de-|, that sense, our descriptor is closer to GLOH before PCA
note the normalized vectors By (u;v). The normalization  than to SIFT. Also, the descriptor is naturally resistambto
is performed in each histogram independently to be able totational perturbations as well by the use of isotropic Gaus-
represent the pixels near occlusions as correct as passiblesian kernels with a circular grid. The overlapping regions
If we were to normalize the descriptor as a whole, then the ensure a smooth changing descriptor along the rotation axis
descriptors of the same point that is close to an occlusiongnd by increasing the overlap, we can further increase the
would be very different in two images. robustness up to a certain point.

The full DAISY descriptor D(uo;Vo) for location One advantage of the circular design and using symmet-
(up; Vo) is then de ned as a concatenationfbfiectors, and  ric kernels is that the descriptor can be computed in any
can be written with a slight abuse of notation as: orientation simply by rotating the sampling grid withou¢th



need to recompute convolved orientation maps. The his-
tograms will then also need to be shifted circularly but the LR N
total operation can be implemented very ef ciently and the S e
overhead is insigni cant. )

4. From Descriptor to Depth Map

We assume that we are given at leastalibrated gray-
scale images and we compute the dense depth map of the .
scene with respect to a particular viewpoint which can ei- (b)
ther be equal to one of the input view points or it can be a
completely different virtual position. Figure 4. Binary masks for occlusion handling: We use binary

To perform dense matching, we use DAISY to measure masks over the descriptors to estimate location simiterigven
similarities across images which we feed to the graph-cut-near occlusion boundaries. In this gure, a black disk witlifdte
based reconstruction method of [6]. To properly handle circumference corrt_esponds to “on” and a white disks tq “oftl)
occlusions, we incorporate an occlusion map, which is the e use the occlusion map to de ne the masks; and in (b) pre-
counterpart of the visibility maps in other reconstructadn de ned masks makes it easy to enfqrce §pat|al coherencecand t

. . . speed-up the convergence of EM estimation.
gorithms [14]. The reconstruction and occlusion map are _ i o
estimated by EM and a quick formalization is given below. l0cations obtained by projecting the 3-D poiiit ( de ned

We exploit the occlusion map to de nkinary masks !oy Iocgtlonx and its depttZ(x) in the virtual view) onto
over our descriptors, which we use to avoid integrating oc- 'Mmaget. , _ _ _
cluded parts in the similarity estimation. We introduce-pre _However, simply using the Euclidean distance

de ned masks that enforce the spatial coherence of the oc-KPi(M)  Dj(M)k is not robust to partial occlu-
clusion map, and show they allow for proper handling of SIONS: Even for a good match, parts of the two descriptors
occlusions. Di(M) and D;(M) can be very different when the

projection ofM is near an occluding boundary.
4.1. Formalization We, therefore, introduce binary masig , (x)g such
as the ones depicted in Fig. 4, that take into account only
Given a set oN calibrated images of the scene, we de- the visible parts when computing the distances between de-
note their descriptors as Hy1.n. We estimate the dense  scriptors. Since the descriptor is built from 25 locations,
depth mag for a given viewpoint by maximizing: these binary masks are also de ned as 25 length vectors.
_ A ey . In order for the masks to depend on the current estimate
= PZ;0jDun)/ pD1n | Z0)P(Z:0)  (3) of the occlusion mag, we tried three different strategies:
where we also introduced an occlusion map t&rthat the simplest one depicted by Fig. 4(a) consists in threshold
will be exploited below to estimate the similarities betwee ing the current estimate of the occlusion n@at the loca-
image locations. As in [6], we assume some smoothnesdgions used by the descriptor to obtain a single binary mask
on the depth map, and also on our occlusion map using aM n, (X). The two other strategies use the prede ned masks

Laplacian distribution. depicted by Fig. 4(b) that have a high spatial coherence. In
For the data driven posterior, we also assume indepenthe second strategy, each mask has a different probability
dence between pixel locations: which favors masks having large visible areas with similar
v depth values: 1 1
Di1njZ;0)= Din(x) Z;0 4 M iZ:0)= = Vy+ - 5
P(D1:n j Z;0) P 1:n (X) 4 PM m()jZi0) = & Vn + 57 ()

) ) ) ) wherevy, is the average visible pixel number, (Z) is
Eachternp (D 1:n(x) j Z; 0) of EQ. 4is estimated using  the depth variance within the mask region, ahis the sum
our descriptor. Because the descriptor considers relative of gl mask probabilities. The last strategy is a more rddica

large regions, we introduce binary masks computed fromersion of the second strategy, where we only use the most
the occlusion maj®, as explained in the next section, to probable mask instead of a mixture.

avoid including occluded parts into our similarity score. From a probabilistic point of view, that simply
) . means we consider the following integration to compute
4.2. Using Masks over the Descriptor P(D1:n(x)jZ; 0):
Without occlusion-handling the(D 1.n () j Z; O) term D 1:n(X)jZ;0) =
of Eq. 4 would depend on distances of the fd«; (M ) m P(D1n(X)jZ;O;M (X)) p(M m (x)jZ;0) :

D; (M )k, whereD;(M) andD; (M) are the descriptors at (6)
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Figure 5. Comparing against ground truBirst row. In our tests, we match the left-most image against each otieafther ve.Second
row. The laser-scan depth-map we use as a reference and ve degib-computed from the rst and third images. From left tdtjgve
used DAISY, SIFT, SURF, NCC and Pixel Differencehird row. On theleft, we plot the corresponding distributions of deviationsriro
the laser-scan data, expressed as a fraction of the scepls-chnge. On theght, we summarize these distributions for the ve stereo
pairs of increasing baseline. Each group of bars represgras where the baseline increases gradually from lefgtat riwithin groups,
individual bars correspond to DAISY, SIFT, SURF, NCC, ankPDifference in that order. Within the bars, the bottomdblalenotes the
percentage of correctly computed depths where the erreshiid is set to b&% of the scene's depth range, the middle bl&&k, and the
top onel0%. In all cases DAISY does better than the others and the widebaseline, the most signi cant the difference.

In the rst and third strategy, we use only one mask
whereas in the second strategy, Eq. 6 is a mixture computed
from several masks.

The mask probabilities are re-estimated at each step of
the EM algorithm. In our experiments, using prede ned
masks resulted in more acceptable reconstructions and the
last strategy, which always resulted in a much faster cenver
gence towards a satisfying solution, was selected. These
good performances over the other strategies can be ex-
plained by the fact that the chosen masks enforce the spatial
consistency when comparing the descriptors.

Finally, following [6], the termp(D1:.n(X) j Z;O) of
Eq. 4istakento beap(D(D1.n(X) j Z;0);0; n) where
D is computed as

v Figure 6. Low resolution and slightly blurry image$op: Two

u 2 ; )
Ues M k1 pklix D X (x input 640 480 images taken by a webcaBottom: On the left,
2(N 2)!)(\I X P X 'rl, (x) ! (x) . reconstruction obtained using DAISY and on the right usi@N
N 25 M lal ’
i=1 j=i+1 k=1 g=1 .

7) reference. We used DAISY, SIFT, SURF, NCC and pixel
whereM [ is thek™ element ofM |, andD-[k](M ) thek® differencing to densely compute matching scores. They
histograr® in D;(M) ' are then all handled similarly, as described in Section 4, to

' ' produce depth magsThe gure's second row shows that
5. Results DAISY produces fewer artifacts than the other descriptors

To compare DAISY against that of other descrlptors, we 10cclusions are handled in the same way in all cases, as destiag

used the images _[26, 23] of Fig. 5 and an_aSSOCiated depthpe beginning of Section 4. The only difference is that we olouse binary
map obtained using a laser scanner, which we treat as anasks to modify matching scores for descriptors other thars.
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Figure 7. Using low-resolution versions of the Brusselsges[24]. (a,b,c) Three 76810 versions of the original 2048.360 images.
(d,e) The depth-map computed using images (a) and (b) seba perspective of image (c) and the corresponding re-sgizéd image.
Note that the locations where there are people in one imag@ainin the other are correctly marked as occlusions. (ftg depth-map
and synthetic image generated using all three images. RNatéte previously occluded areas are now lled and that tapfe have been
erased from the synthetic image.

for a speci c pair. The graph on the third row shows that
this is in fact true for all pairs we tested and, the wider the
baseline, the more signi cant the difference.

In Fig. 6, we tested DAISY with somewhat blurry, low
resolution 640 480 webcam images like the ones that can
be obtained from video streams and DAISY again performs
much better than correlation. SIFT produces a visually sim-
ilar result but takes about 50 times longer to compute.

To compare our method to one of the best current tech-
niques [24], we ran our algorithm on two sets of image pairs
that were used in that paper, the Rathaus sequence of Fig. 8
and the Brussels sequence of Fig. 7. But instead of using
the original 3072 2048 images, whose resolution is high
enough for apparently blank areas to exhibit usable texture
we used 768512 images in which this is not true. DAISY
nevertheless achieved visually similar results.

Fig. 7 also highlights the effectiveness of our occlusion
handling. When using only two images, the parts of the
church that are hidden by people in one image and not in the
other are correctly detected as occluded. When using three :
images, the algorithm returns an almost full depth map that (e) )
lets us erase the people in the synthetic images we producerigure 8. Results on low-resolution versions of the Rathaus

In Fig. 9 we show more stereo pair results with a base- ages [25]. (a,b,c) Three input images of size 76812 instead of
line large enough for standard correlation-based tectesiqu the 3072 2048 versions that were used in [24]. (d) Depth map
to fail and with substantial occlusions and lighting chasige computed using all three images (e) A fourth image not used fo
whereas we can compute reliable depth maps which we carfeconstruction. (f) Image synthesized using the depth mepre
use to synthesize realistic new views, as would be seen fronimage texture in (a). Note how similar itis to (e). The holes a
a different perspective. To validate our approach, for each caused by the fact that a lot of the texture in (e) is not vésibl(a)
image pair, we use the perspective from a third image and
compare that image with the one we synthesize.

The experiments suggest that although pixel differencing o
6. Conclusion correlation is good for short baseline stereo, wide baselin
requires a more advanced measure for comparison. We pro-

In this paper, we introduced DAISY a new local de- pose to use DAISY for this purpose, as it is very ef cient
scriptor, which is inspired from earlier ones such as SIFT and it produces good reconstructions. Another advantage
and GLOH but can be computed much more ef ciently for of our method is that we can use small images for comput-
dense matching purposes. Speed increase comes from réng reconstructions. This is important as it means that we
placing weighted sums used by the earlier descriptors bycan use our algorithm to process video streams which are
sums of convolutions, which can be computed very quickly. generally at most 640480 in size.



Figure 9. Depth maps and resynthesized images. In eachhrewst two images are the inputs to our stereo-matcher. Tird bne is
not used to compute the depth but only to validate the quafithe fourth one, which is synthesized from the rst two wgsihe DAISY
depth map shown in fth position. The nal image is the deptlapncomputed using normalized cross-correlation. The dedwareas
are overlaid in red in the synthetic images. Note that in #se dlow, the two input images were lit differently which $lity degrades the
performance but nevertheless allows credible resynthesis
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