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Probabilistic Modeling of Scene Dynamics for
Applications in Visual Surveillance

Imran Saleemi, Khurram Shafique, and Mubarak Shah

Abstract—We propose a novel method to model and learn the scene activity, observed by a static camera. The proposed model is
very general and can be applied for solution of a variety of problems. The motion patterns of objects in the scene are modeled in
the form of a multivariate non-parametric probability density function of spatio-temporal variables (object locations and transition times
between them). Kernel Density Estimation is used to learn this model in a completely unsupervised fashion. Learning is accomplished
by observing the trajectories of objects by a static camera over extended periods of time. It encodes the probabilistic nature of the
behavior of moving objects in the scene and is useful for activity analysis applications, such as persistent tracking and anomalous
motion detection. In addition, the model also captures salient scene features, such as, the areas of occlusion and most likely paths.
Once the model is learned, we use a unified Markov Chain Monte-Carlo (MCMC) based framework for generating the most likely paths
in the scene, improving foreground detection, persistent labelling of objects during tracking and deciding whether a given trajectory
represents an anomaly to the observed motion patterns. Experiments with real world videos are reported which validate the proposed
approach.

Index Terms—Vision and Scene Understanding, Machine Learning, Tracking, Markov Processes, Nonparametric statistics, Kernel
Density Estimation, Metropolis Hastings, Markov Chain Monte Carlo.

✦

1 INTRODUCTION

1.1 Problem Description

RECENTLY, there is a major effort underway in the vi-
sion community to develop fully automated surveil-

lance and monitoring systems [1], [2]. Such systems have
the advantage of providing continuous 24 hour active
warning capabilities and are especially useful in the ar-
eas of law enforcement, national defence, border control
and airport security. The current systems are efficient
and robust in their handling of common issues, such
as illumination changes, shadows, short-term occlusions,
weather conditions, and noise in the imaging process
[3]. However, most of the current systems have short
or no memory in terms of the observables in the scene.
Due to this memory-less behavior, these systems lack the
capability of learning the environment parameters and
intelligent reasoning based on these parameters. Such
learning, prior modeling, and reasoning is an important
characteristic of all cognitive systems that increases the
adaptability and thus the practicality of such systems. A
number of studies have provided strong psychophysical
evidence of the importance of prior knowledge and
context for scene understanding in humans, such as,
handling long term occlusions, detection of anomalous
behavior, and even improving the existing low-level
vision tasks of object detection and tracking [4], [5].

Recent works in the area of scene modeling are limited
to the detection of entry and exit points and finding the
likely paths in the scene [6], [7], [8], [9]. We argue that
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over the period of its operation, an intelligent tracking
system should be able to model the scene from its
observables and be able to improve its performance
based on this prior model. The high-level knowledge
necessary to make such inferences derives from domain
knowledge, past experiences, as well as scene geometry,
learned traffic and target behavior patterns in the area,
etc. For example, consider a scene that contains bushes
that only allow partial or no observation while the
targets pass behind them. Most existing systems only
detect the target when it comes out of the bushes and are
unable to link the observations of the target before and
after the long term occlusion. Given that this behavior
of targets disappearing and appearing after a certain
interval at a certain place is consistently observed, an
intelligent system should be able to infer the correlation
between these observations and to use it to correctly
identify the targets at reappearance. We believe that the
identification, modeling and analysis of target behavior
in the scene is the key to achieving autonomous intel-
ligent decision making capabilities. The work presented
here is a step forward in this direction. Specifically, we
present a framework to automatically learn a probabilis-
tic model of the traffic patterns in a scene. We show
that the proposed model can be applied towards various
visual surveillance applications that include, behavior
prediction, detection of anomalous patterns in the scene,
improvement of foreground detection, and persistent
tracking.

1.2 Proposed Approach
In this paper, we present a novel framework to learn traf-
fic patterns in the form of a multivariate non-parametric
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probability density function of spatio-temporal variables
that include the locations of objects detected in the
scene and their transition times from one location to
another. The model is learned in a fully unsupervised
fashion by observing the trajectories of objects by a
static camera over extended periods of time. The model
also captures salient scene features, such as, the usually
adapted paths, frequently visited areas, occlusion areas,
entry/exit points, etc.

We learn the scene model by using the observations
of tracks over a long period of time. These tracks may
have errors due to clutter and may also be broken
due to short term and long term occlusions, however
by observing enough tracks, one can get a fairly good
understanding of the scene and infer above described
scene properties and salient features. We assume that
the tracks of the moving objects are available for training
(We use KNIGHT system for generating these tracks [3]).
Two scenes and the observed tracks are shown in Fig. 1.
We use these tracks in a training phase to discover the
correlation in the observations by learning the motion
pattern model in the form of a multivariate probability
density function (pdf) of spatio-temporal parameters
(i.e., the joint probability density of pairs of observations
of an object occurring within certain time intervals,
(x, y, x′, y′, Δt)). Instead of imposing assumptions about
the form of this pdf, we estimate the pdf using kernel
density estimators. Each track on the image lattice can
then be seen as a random walk where the probabilities of
transition at each state of the walk is given by the learned
spatio-temporal kernel density estimate. Once the model
is learned, we use a unified Markov Chain Monte-Carlo
(MCMC) sampling based scheme to generate the most
likely paths in the scene, to decide whether a given path
is an anomaly to the learned model, and to estimate
the probability density of the next state of the random
walk based on its previous states. The predictions based
on the model are then used to improve the detection
of foreground objects as well as to persistently track
targets through short-term and long-term occlusions. We
show quantitatively that the proposed system improves
both the precision and recall of the foreground detection
and can handle long term occlusions that cannot be
handled using constant dynamics models commonly
used in the literature. We also show that the proposed
algorithm can handle occlusions that were not observed
during training. The examples of these type of occlusions
include vehicles parked in the scene after training, or a
bug sitting on the camera lens.

2 RELATED WORK

Trajectory and path modeling is an important step
in various applications, many of which are crucial to
surveillance and monitoring systems. Such models can
be used to filter tracking algorithms, generate likely
paths, find locations of sources and sinks in the scene,
and detect anomalous tracks, etc. This kind of modeling

(a) (b)

Fig. 1. Two scenes used for the testing of proposed
framework, with some of the tracks observed by the
tracker during training.

can be directly used as a feedback to the initial stages
of the tracking algorithm, and applied to solve short
and long term occlusions. In recent years, a number of
different methods and features for trajectory and path
modeling of traffic in the scene have been proposed.
These methods differ by their choice of features, models,
learning algorithms, applications, and training data. A
detailed review of these models is presented in [10]. We
now describe some of these methods.

Neural Network based approaches for learning of
typical paths and trajectory modeling are proposed in
[11], [12], [13]. Other than the computational complexity
and lack of adaptability of Neural Networks, a major
disadvantage of these methods is their inability to handle
incomplete and partial trajectories. Fernyhough et al.
[14] use the spatial model presented in [15] as a basis
for a learning algorithm that can automatically learn
object paths by accumulating the traces of targets. Koller-
Meier et al. [16] use a node-based model to represent
the average of trajectory clusters. A similar technique is
suggested by Lou et al. [17]. Although both methods
successfully identify the mean of common trajectory
patterns, no explicit information is derived regarding
the distribution of trajectories around the mean. A hi-
erarchical clustering of trajectories is proposed in [18],
[19], where trajectories are represented as a sequence of
states in a quantized 6D space for trajectory classification
and the method is based on a co-occurrence matrix that
assumes that all trajectory sequences are equally long.
However, this assumption is usually not true in real
sequences.

Detection of sources and sinks in a scene as a pre-step
allows robust tracking. In [20], a Hidden Markov Model
based scheme of learning sources and sinks is presented,
where all sequences are two-state long. The knowledge
of sources and sinks is used to correct and stitch tracks
in a closed-loop manner. Another HMM-based approach
is to model trajectories as transitions between states
representing Gaussian distributions on the 2D image
plane [21], [22]. Galata et al. [23] propose a mechanism
that automatically acquires stochastic models of any
behavior. Unlike HMMs, the proposed variable length
markov model can capture dependencies that may have
a variable time scale.
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Another body of work for modeling motion patterns
in a scene lies in the literature of multi-camera tracking
[9], [24], [25], where the objective is to use these models
to solve for hand-off between cameras. The motion
patterns are modeled only between the field of views
of cameras. These models can be seen as special cases
of the proposed model, which is richer in the sense
that it captures the motion pattern both in visible and
occluded regions. This richness of the proposed model
allows it to handle dynamic occlusions, such as person to
person occlusions as well as occlusions that occur after
the model is learned. Tekalp[26] uses Bayesian networks
for tracking and occlusion reasoning across calibrated
cameras with overlapping views, where sparse motion
estimation and appearance are used as features. Tieu et
al.[6] infer the topology of a network of non-overlapping
cameras by computing the statistical dependence be-
tween observations in different cameras.

Another interesting piece of work in this area is by
Ellis et al.[7] who determined the topology of a cam-
era network by using a two stage algorithm. First the
entry and exit zones of each camera are determined
using an Expectation-Minimization technique to cluster
the start and end points of object tracks. The links
between these zones across cameras are then found
using the co-occurrence of entry and exit events. The
proposed method assumes that correct correspondences
will cluster in the feature space (location and time) while
the wrong correspondences will generally be scattered
across the feature space. Stauffer [8] proposes an im-
proved linking method that tests the hypothesis that the
correlation between exit and entry events is similar to the
expected correlation when there are no valid transitions.
This allows the algorithm to handle the cases where exit-
entrance events may be correlated, but the correlation is
not due to valid object transitions. Both of these methods
assume a fixed set of entry and exit locations after
initial training and hence cannot deal with newly formed
occlusions without retraining of the model.

Hoiem et. al. [27] take a step forward in image and
scene understanding and proposed improvement in ob-
ject recognition by modeling the correlation between ob-
jects, surface geometry and camera viewpoints. Rosales
et al. [28] estimate motion trajectories using Extended
Kalman Filter to enable improved tracking before, dur-
ing and after occlusions. Kaucic et al. [29] present a mod-
ular framework that handles tracking through occlusions
and the blind regions between cameras by the initial-
ization, tracking and linking of high-confidence smaller
track sections. Wang et al. [30] propose measures for
similarity between tracks that take into account spatial
distribution, velocity, and object size. The trajectories are
then clustered based on object type and its spatial and
velocity distributions. Perera et. al. [31] present a method
to reliably link track segments during the linking stage.
Splitting and merging of tracks is handled to achieve
multi-object tracking through occlusion. Recently, Hu et
al. [32] have presented an algorithm for learning motion

patterns where foreground pixels are first clustered us-
ing fuzzy K-means algorithm and trajectories are then
hierarchically clustered based on the results of previous
step. Trajectory clustering is performed in two layers
for spatial and temporal based clustering. Each pattern
of clustered trajectories is then assumed to be a link
in a chain of gaussian distributions, the parameters for
which are estimated using features of each clustered
trajectory. Results of experiments on anomaly detection
and behavior prediction are reported.

As opposed to explicitly modeling trajectories or
smaller sections of trajectories of objects in the scene, we
propose modeling of joint distribution of initial and final
locations of every possible transition and the transition
times. Our approach is original in the following ways:

• We propose a novel motion model that not only learns the
scene semantics but also the behavior of traffic through
arbitrary paths. This learning is not limited like other
approaches that work best with well defined paths like
roads and walkways.

• The learning is accomplished using a joint five dimen-
sional model unlike pixel-wise models and mixture or
chain models. The proposed model represents the joint
probability of a transition from any point in the image
to any other point, and the time taken to complete that
transition.

• The temporal dimension of traffic patterns is explicitly
modeled, and is included in the feature vector, thus
enabling us to distinguish patterns of activity that cor-
respond to the same trajectory cluster but have high
deviation in the temporal dimension. This is a more
generalized method as compared to modeling pixel-wise
velocities.

• Instead of fitting parametric models to the data, we
propose the idea of learning tracks information using
Kernel Density Estimation. It allows for a richer model
and the density retained at each point in the feature space
accurately reflects the training data.

• Rather than exhaustively searching for predictions in the
feature space based on their probabilities, we propose
to use stochastic methods to sample from the learned
distribution and use it as prediction with a computed
probability. Sampling is thus used as the process propa-
gation function in our state estimation framework.

• Unlike most of the previous work reported in this section,
which is targeted towards one or two similar applications,
we apply the proposed probabilistic framework to solve a
variety of problems that are commonly encountered in
surveillance and scene analysis.

3 PROBABILISTIC TRAFFIC MODEL

We now propose a model that learns traffic patterns as
joint probability of the initial and final locations, and
duration of object transitions and describe our method
of learning and sampling from the distribution. In this
section, we discuss the feature to be learned and explain
how it is computed. The sampling process and its use in
the state estimation framework is also explained.
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3.1 Learning the Transition Distribution using KDE

We use the surveillance and monitoring system,
KNIGHT[3] to collect tracking data. This data consists
of time stamps and object labels with locations of their
centroid for each frame of video. KNIGHT assigns a
unique label to each object present in the scene and
attempts to persistently track the object using a joint
motion and appearance model. A frame of video may
contain multiple objects. Given this data, we associate an
observation vector O(x, y, t, l) with each detected object.
In this vector, x and y are the spatial coordinates of the
object centroid on image lattice, t is the time instant at
which O is observed (accurate to a millisecond) and l is
the label for object in O as per tracking. We seek to build
a five dimensional estimate of the transition probability
density function p (X, Y, τ), where X and Y are the initial
and final states representing the object centroid locations
in 2d image coordinates and τ is the time taken to make
the transition from X to Y in milliseconds.

In the proposed work, the analysis is performed on a
feature space where the n transitions are represented by
zi ∈ R5, i = {1, 2, . . . , n}. The vector z consists of a pair
of 2d locations of the centroid of object before and after
transition, and time taken to execute the transition. Any
two observations Oi and Oj in frames i and j respec-
tively, comprise a feature point Z(xi, yi, xj , yj , tj − ti) for
the probability estimate if they satisfy the following:

• 0 < tj − ti = τ < T , thus the implicit assumption
is that Oi and Oj are uncorrelated if occurring
simultaneously or beyond a time interval of T . For
our experiments, we chose T = 5000ms.

• li = lj , both Oi and Oj are the observations of the
same object as per the tracker’s labelling.

• If lj /∈ Lk, where Lk is the set of all objects (labels) in
frame k, then all labels in frame k make valid data
points with lj provided 0 < τ < T .

Kernel Density Estimation ([33], [34]) is used to esti-
mate the pdf p (X,Y, τ) non-parametrically. Suppose we
have a sample consisting of n, d dimensional, data points
z1, z2, . . . , zn from a multi-variate distribution p(z) , then
an estimate p̂(z) of the density at z can be computed
using

p̂(z) =
1
n
|H|− 1

2

n∑
i=1

K(H− 1
2 (z − zi)), (1)

where the d variate kernel K(z) is a bounded function
satisfying

∫
K(z)dz = 1, K(z) = K(-z),

∫
zK(z)dz = 0,∫

zzTK(z)dz = Id and H is the symmetric positive
definite d×d bandwidth matrix. The multivariate kernel
K(z) can be generated from a product of symmetric
univariate kernel Ku, i.e.,

K(z) =
d∏

j=1

Ku(z{j}). (2)

The selection of the kernel bandwidth H is the single
most important criterion in kernel density estimation.
Asymptotically, the selected bandwidth H does not affect

the estimate but in practice sample sizes are limited.
Theoretically, the ideal or optimal H that balances the
bias and variance globally can be computed by minimiz-
ing the mean-squared error, MSE{p̂H(z)} = E{[p̂H(z)−
pH(z)]2}, where p̂ is the estimated density, p is the true
density, and the subscript H indicates the use of the
bandwidth H in computing the density. However, the
true density p is not known in practice. Instead, various
heuristic approaches have been proposed for finding H
(See [35] for a survey of these approaches). We use the
Rule of Thumb method [36], which is a fast standard
deviation based method that uses the Asymptotic Mean
Integrated Squared error (AMISE) criterion,

AMISE{H} =
1
n

R(K)|H|− 1
2 +

∫
R5

[(KH∗p)(z)−p(z)]2dz,

(3)
where R(K) =

∫
R5 K(z)2dz and ∗ is the convolution

operator. The data-driven bandwidth selector is then,
H = arg minH

̂AMISE{H}. To reduce the complex-
ity, H is assumed to be a diagonal matrix, i.e., H =
diag[h2

1, h
2
2, . . . , h

2
d]. We use a product of univariate Gaus-

sian kernels to generate K(z), i.e.,

Ku(z{j}) =
1

hj

√
2π

exp

(
−

z2
{j}

2hj
2

)
, (4)

where, hj is the jth non-zero element of H, and Ku

is centered at z{j}. It is emphasized here, that using a
Gaussian kernel does not make any assumption on the
scatter of data in the feature space. The kernel function
only defines the effective region in 5d space in which
each data point will have an influence while computing
the probability estimate. Each time a pair of observations
satisfying the described criteria are available during
training, the observed feature z is added to the sample.
p(X,Y, τ) then gives the probability of a transition from
point X to point Y in τ milliseconds.

(a) (b) (c) (d)

Fig. 2. These maps represent the marginal probability
of any object, (a) reaching each point in the image, and
(b) starting from each point in the image, in any arbitrary
duration of time for the scene in Fig. 1a. (c) and (d) show
similar maps for the scene in Fig. 1b.

Fig. 2 illustrates the maps of p(X, Y, τ) marginalized
over 2d vectors X and Y , i.e., Fig. 2a represents the
probability of an object reaching a point in the map from

any location, i.e.,
∫

X

∫
τ

p(X, Y, τ) dτdX . It is important

to note that the areas with higher densities (brighter
colors) cannot be labelled as entry or exit points. The
intensity at a point in the image only illustrates the
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marginal probability that an observed state transition
has, of starting or ending at that point. The dominant
points in the maps only mean that a higher number
of object observations were made at these points. For
example, in practice, this could possibly mean that these
areas are places where people stand or sit while ex-
hibiting nominal motion but significant enough to be
noticed by the tracker. Similarly, each point in Fig. 2b
represents the probability of an object starting from that
particular point and ending anywhere in the image,

i.e.,
∫

Y

∫
τ

p(X, Y, τ) dτdY . Notice that the similarity in

the two maps manifests a correlation between incoming
and outgoing object transitions at the same locations. It
should also be pointed out that since p(X,Y, τ) is a high
dimensional space, the probabilities from a particular
location to another location in a specific interval can be
very low and a high dynamic range is required to display
these maps correctly. So the dark blue regions in these
maps are not necessarily absolutely zero. Many dark
blue regions in these maps will have relatively higher
probabilities of transition, if the pdf is marginalized over
specific time intervals or a specific starting or ending
point, as discussed later. Figures 2c and 2d show similar
maps for the scene in Figure 1b.

The probability density function p(X, Y, τ) now repre-
sents the distribution of transitions from any point X in
the scene to any other point Y given the time taken to
complete the transition as τ . Our next step is to be able
to predict the next state of an object, given the current
state and an approximate time duration of the jump. This
is achieved by sampling the marginal of this distribution
function as described in the following subsection.

3.2 Construction of Predicted Trajectories

The learned model can be used to find a likely next state
given the current state of an object. The motivation is
that we want to construct a likely trajectory from the
current object position onwards, which would act as
the predicted behavior of the object. Instead of finding
the probabilities of transitions to different locations, we
use the learned distribution as a generative model and
sample feature points from the model to construct a
sequence of tracks based on the training observations.

Once the distribution has been learned, each track Ω
can be viewed as a Markov process, Ψk : Ω −→ I , on the
image lattice I , where k ∈ {1, 2, . . .}. By marginalizing
out τ or integrating p(X, Y, τ) over an appropriate value
of τ , and factoring by p(X), the learned distribution can
then be seen as the transition probability model, i.e.,
p̂ (Xt+1|Xt), where Xt is the current state and Xt+1 is
the next state. Fig. 3 illustrates the marginal probability
of reaching any state Y in the image starting from state
X = G, in any arbitrary duration of time, and can be
written as

∫
τ

p(X = G,Y, τ) dτ . The relatively bright
spots further away show the possible states that a series
of transitions can lead to. These correspond to higher
values of τ , the time dimension of the distribution, for

which the probability of transition from G is obviously
low. These maps do not represent the whole scene, but
just small regions of it.

Fig. 3. Regions of maps that represent the probability of
reaching any state in the image from the state G.

To compute a next state given the current state, we
propose sampling from the learned transition distri-
bution. Instead of sampling only one prediction, we
propose sampling multiple distinct future states from
the distribution so that the multi-modal nature of the
learned density is fully utilized.

In real world scenarios, the assumption that tracks are
first order Markov processes is not usually valid. It can
however be noted that in our scene traffic model, the
choice of different values of τ (the time duration required
to complete a transition), can be used to achieve higher
order Markov chains. Furthermore, while dealing with
applications such as track filtering, anomaly detection
and tracking through occlusions, it must be noted that
sampling high probability future states is not always
enough, for example in human traffic scenarios where
it is possible for people to take the less travelled but
possible paths, which we do not want to ignore in our
algorithm. So instead of only one prediction for next
location, multiple distinct future states are sampled from
the distribution. The track is initialized with any location

Initialize X0; set i = 0.
Repeat,

Let τ be the time elapsed between Xi−1 and Xi.
Repeat for each sample uk

i−1, where k ∈ {1, 2, . . . , N},
- Let Ý ∼ q(.|θi−1, τ), q being the Gaussian distribution
N (θi−1, Σ), where θi−1 is the mean and covariance
matrix, Σ = diag[τ2, τ2].

- Let r ∼ U(0, 1).
- Let p̂(Ý ) =

∫
X

∫
τ

p(X, Y = Ý , τ) dτdX and p̂(uk
i−1) =∫

X

∫
τ

p(X,Y = uk
i−1, τ) dτdX .

- Compute α(uk
i−1, Ý , τ) =

min
(

1,
p̂(Ý )q(uk

i−1|Ý ,τ)

p̂(uk
i−1)q(Ý |uk

i−1,τ)

)
.

- If r ≤ α(uk
i−1, Ý , τ), set uk

i = Ý , otherwise, set uk
i =

uk
i−1.

Set Xi =
∑N

m=1 um
i wm

i , where wm
i is the weight

associated with um
i .

Set i = i + 1.

Fig. 4. Metropolis Hastings Sampling. See section 6 for
details about the choice of q, the proposal density.

and the representative future states are initially chosen
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with uniform distribution in neighborhood of the current
state with equal weights. At any given step the weighted
mean of all these will give the next candidate state. The
transitions of this random walk will not always be the
most likely ones but rather possible ones, that are in
accordance with the training data. A sample set contain-
ing N future states is sampled from the distribution to
represent P (X0) using the algorithm described in Fig. 4.
These samples can be written as,

{(
uk,−

0 , wk,−
0

)}
, where

uk,−
0 ∼ N (X0, Σ), wk,−

0 = 1
N , N is the number of possible

future states, Σ = diag[τ2
max, τ2

max], and k = {1, . . . , N}.
τmax is the maximum possible time, which we seek to
sample transitions from. The value of τmax is set to
the average duration in which a person takes a step.
This will correspond to maximum time allowed for a
sampled transition to occur. The symbols ‘−’ and ‘+’
indicate the representation of the state before and after
the measurement has arrived respectively. Since only N
states are used to represent the whole distribution given
X0 as starting state, weights w1,...,k are normalized such
that

∑
i

wk,+
i = 1, thus wk,−

0 = 1
N , initially. At each

step i, we have the representation of the probability
density function P (Xi|X0, . . . , Xi−1) in the form of a set
of future states

{(
uk,−

i , wk,−
i

)}
, where uk,−

i = f
(
uk,+

i−1

)
,

and wk,−
i = wk,+

i−1, f is a function that samples from
state transition distribution according to the conditional
probability P (.|uk,+

i−1) using the Metropolis-Hastings al-
gorithm, which is described in detail in Fig. 4. Given
this representation of P (Xi|X0, . . . , Xi−1), we update it
to

{(
uk,+

i , wk,+
i

)}
as, uk,+

i = uk,−
i and,

wk,+
i = wk,−

i

∫ τmax

0

p
(
Xi−1, u

k,−
i , τ

)
dτ. (5)

An estimate of Xi is now given by the weighted
mean of all the sampled future states as, Xi =∑N

m=1 um,+
i wm,+

i , where Xi serves as the distribution’s
prediction until the measurement from the tracker ar-
rives which is denoted by ωi (omega, not to be confused
with wi, which is the weight of a particular sample). The
update step then involves the computation of the final
estimate of the object’s new location, θi as a weighted
mean of Xi and ωi as,

θi =
Xip(Xi|θi−1) + ωip(ωi|θi−1)

p(Xi|θi−1) + p(ωi|θi−1)
, (6)

where the probabilities of transition from the previous
state estimate θi−1 to the new potential states Xi and ωi,
serve as the weights.

After update, the weights are normalized again so that∑
i wk,+

i = 1 and their variance σ2
w is calculated. If σ2

w >
σ2

th, a predefined maximum threshold, then a new set of
samples is constructed by drawing (sampling) without
replacement from the distribution using θi as current
position. The probability of the sample being drawn is
assigned as the initial weights. Thus the predicted states
with relatively lower weights are discarded and others

are retained to represent the next state. This process is
continued to propagate the trajectory.

The choice of τmax depends on desired maximum
duration between two consecutive points on a track.
Assuming first order Markov process in a human traffic
environment, τmax corresponds to the average time taken
by a person to take one step. For most of the experiments
reported in this paper, the value of τmax was chosen
to be the inverse of the frame rate of the tracker. The
importance of this value is illustrated in Fig. 5. Different
values of τ can be used to specify the time interval
in transition from X to Y. Fig. 5a, 5b and 5c depict
the marginal probabilities of an object starting from G
shown by a ∗, and reaching any state in the image in 0-
1.5, 1.5-3 and 3-5 seconds respectively. These maps can

be represented mathematically as
1500∫
0

p(X = G,Y, τ)dτ ,

3000∫
1500

p(X = G, Y, τ)dτ , and
5000∫
3000

p(X = G, Y, τ)dτ . The

maps show the paths that objects usually follow in these
areas. So the time dimension of the learned distribution
encodes additional information that is vital to solving
short-term occlusions using the distribution as described
in Section 4.4. Notice that the modes or the areas of
dominant probability in general are not equidistant from
G. Furthermore, the locations of these modes and their
distances from G can be different for different choices of
G depending on the usual speeds of objects in that area,
which is in contrast to tracking using Gaussian or other
symmetric distributions as process noise functions.

We now have a mechanism of sampling from the
distribution that enables us to predict object behavior
in space and time, which is then used for likely (typi-
cal) path generation, anomaly detection, and persistent
tracking of objects through occlusions as described in the
next section. The learned transition probabilities are also
used to improve Foreground detection.

4 APPLICATIONS OF PROPOSED MODEL

It is important that motion patterns of objects be mod-
eled in a way that enables solution of multiple problems
that are encountered in scene analysis and surveillance.
We now describe some of these problems and application
of the state estimation framework for their solution.

4.1 Generating Likely Paths

An important aspect of modeling traffic patterns is gen-
eration of likely paths. Given the current location of an
object, such a simulated path amounts to a prediction
of future behavior of the object. We seek to sample
from the learned model of transition patterns to generate
behavior predictions. We expect that only a few number
of paths should adequately reflect observations of trajec-
tories through walkways and roads, etc. The sampling
method is used as described in section 3.2 except that
there are no measurements available which translates

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



7

(a) (b) (c)

Fig. 5. Marginal probability maps of the learned pdf at
different time intervals. The maps represent the probabil-
ity of reaching any state in the image from the state G
(shown by white ∗ in first and black ∗ in second row) in (a)
0-1.5 seconds, (b) 1.5-3 seconds (c) 3-5 seconds. Each
row shows a different starting state in the image. These
maps show only small regions of the actual scene.

to acceptance of the weighted mean of all samples at
each step as the next state. More specifically, equation 6
transforms to θi = Xi. For our experiments we start by
manually choosing X0 as the initial state in a region
of significant traffic. The trajectory is propagated by
accepting predicted states as next states. The chain is
stopped whenever σ2

w > σ2
th, that is, there is a need to

resample candidate predictions or when the Metropolis-
Hastings algorithm chain fails to move for more than a
specified number of iterations, e.g., we used a maximum
of 200 iterations for this purpose.

4.2 Improvement of Foreground Detection

The intensity difference of objects from the background
has been a widely used criterion for object detection,
but it can be noted that temporal persistence is also an
intrinsic property of the foreground objects, i.e. unless an
object exits from the scene or becomes occluded, it has to
either stay at the same place or move to a location within
the spatial vicinity of the current observation. Since our
proposed transition model incorporates the probabilities
of movement of objects from one location to another, it
can be used to improve the foreground models. We now
present the formulation for this application. It should be
noted however that this method alone cannot be used
to model the foreground. Instead it needs to be used
in conjunction with an appearance based model like
mixture of Gaussians [19]. We seek to find the likelihood
of a pixel u belonging to the foreground at time instant
t. Let u be a random variable which is true if and
only if the pixel u is a foreground pixel. Also, let Λ
be the feature set used to model the background (for
example, color/gray scale in appearance based model),
and Φ = {φ1, φ2, . . . φQ} be the set of pixels detected as
foreground at time instant t − 1, where Q is the total
number of the foreground pixels in the previous frame.

Then according to Bayes rule,

P (u = true|Λ, Φ) ∝ P (Λ, Φ|u = true)P (u = true). (7)

Assuming independence of appearance Λ and the fore-
ground history Φ, we may write,

P (u = true|Λ, Φ) ∝ P (Λ|u = true)P (Φ|u = true)P (u = true).
(8)

Here we use the framework of aggregating expert opin-
ions [37] to combine the decisions from different features.
Specifically, we consider logarithmic opinion pooling
[38], i.e.,

P (Λ, Φ|u = true) ∝ P (Φ|u = true)βP (Λ|u = true)1−β .
(9)

The weight β represents the expert’s reliability. We chose
β = Q

Q+Qa
, where Q is the number of pixels classified

as foreground in the previous frame, while Qa is the
number of foreground pixels detected in the last frame
using only appearance based model.

Fig. 6. Foreground Modeling: Each column shows an
example of improvement on foreground probability esti-
mation. (Row 1) original images, (Row 2) probability maps
using only the mixture of Gaussians method and, (Row
3) foreground probability maps using proposed model in
conjunction with the mixture of Gaussians model. Rows 4
and 5 show foreground masks obtained using the maps
in rows 2 and 3 respectively.

The KNIGHT object detection and tracking system
([3]) is used to extract appearance based likelihood,
P (Λ|u = true). KNIGHT performs background subtrac-
tion at multiple levels using statistical models of gradi-
ent and color data. Specifically, a mixture of Gaussians
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model is used with 4 Gaussians per pixel. The learned
pdf p(X, Y, τ) is used to estimate the remaining terms as
follows:

P (Φ|u = true) =
Q∑

j=1

p(φj , u, Δt), (10)

and the marginal (prior) of u being a foreground pixel
is,

P (u = true) =
∫

X

∫
τ

p(X, Y = u, τ)dτdX. (11)

The value of Δt represents the length of time between
two consecutive frames. It should be pointed out here
that although not all previous foreground pixels should
contribute significantly to the pixel u, the value of Δt
is typically small enough to inhibit contributions from
far away pixels. In other words, only the pixels in Φ,
spatially close to u, chip in substantial values to the sum.

Fig. 6 shows the results of the proposed foreground
model. It can be seen that the number of false positives
has decreased and the true silhouettes are much more
pronounced. The scheme presents a simple and effec-
tive way of reducing errors and improving background
subtraction. Many of the commonly encountered false
detections like motion of static background objects are
removed using this approach. More experiments and a
quantitative analysis are reported in Section 5.

4.3 Anomaly Detection

If tracking data used to model the state transition dis-
tribution spans sufficiently large periods of time, it is
obvious that a sampling algorithm will not be able
to sample a track that is anomalous considering the
usual patterns of activity and motion in that scene. This
observation forms the basis of our anomaly detection
algorithm. The anomaly detection algorithm generates
its own predictions for future states using the method
described in section 3.2 without using the current ob-
servation of the tracker. It then compares the actual
measurements of objects with the predicted tracks and
computes a difference measure between them. Let the
set of predicted states of an object be Θ and the actual
measurements as observed by the tracking algorithm be
Ω. Using the framework as described earlier, we can
compute Θ = {θ1, θ2, . . . , θi+1}, which is the predicted
or estimated state. Notice that at step i, we have a
prediction for location at step i + 1. Then the observed
track described by Ω = {ω1, ω2, . . . , ωi} is labelled as
anomalous if, di > dth, where,

di =
1

n + 1

i∑
j=i−n

(
(ωj − θj)

T Σ−1
Θ (ωj − θj)

) 1
2
, (12)

where ΣΘ is covariance matrix of x and y coordinates of
all the potential (candidate) next states, n is the number
of previous states included in calculation of Mahalanobis
distance, and dth is a predefined maximum difference
between observed and predicted tracks. Furthermore,
the plot of unnormalized distances between observed

anomalous and predicted trajectories versus the number
of states, n, is sublinear with respect to n.

This proposed approach is sufficient to find a sequence
of transitions significantly different than the predictions
from the state transition distribution, and can easily
identify an anomalous event in terms of motion patterns.
Using this formulation trajectories that are spatially inco-
herent, or temporally inconsistent with normal behavior
can be identified, e.g., presence of objects in unusual ar-
eas or significant speed variation respectively. Increasing
the value of n (Eq. 12) helps detect suspicious behavior
where activity is not necessarily unusual in either spatial
or temporal domains but the object has been in view
for a long time and error (distance between actual and
predicted paths) has accumulated and crossed the dth

barrier. Hence, this approach is able to handle several
different kinds of anomalous behavior.

4.4 Persistent Tracking through Occlusions

Finally, we present application of the proposed scene
model for persistent tracking through occlusions and
completion of the missing tracks. Persistent tracking
requires modeling of spatio-temporal and appearance
properties of the targets. Traditionally, parametric mo-
tion models such as, constant velocity or constant accel-
eration, are used to enforce spatio-temporal constraints.
These models usually fail when the paths adapted by
objects are arbitrary. The proposed model of learning
traffic parameters is able to handle these shortcomings
when occlusions are not permanently present in the
scene and the patterns of motion through these oc-
clusions have previously been learned, e.g., person to
person occlusions, large objects like vehicles that hide
smaller moving objects from view. We use the proposed
distribution to describe a solution to these problems.

Let p̂(Y |X) =
∫

τ
p(X,Y,τ)dτ∫

τ

∫
Y

p(X,Y,τ)dY dτ
and Ω be an observed

track. A sample set containing N samples is generated
from the learned pdf to represent p̂(X0) where X0 is
the initial location of the track. These samples are rep-
resented as

{(
uk,−

0 , wk,−
0

)}
, where uk,−

0 ∼ N (X0, Σ),
N represents Gaussian distribution with mean X0 and
covariance matrix, Σ = diag[τ2, τ2], and k = {1, . . . , N}.
For the initial set of samples, the weight is assigned

as, wk,−
0 =

∫
X

P̂(uk,−
0 |X)dX

Pγ(Γ=uk,−
0 ) , where, Γ is a random vari-

able that represents Gaussian distribution in the neigh-
borhood of X0. The symbols ‘−’ and ‘+’ indicate the
representation of the state before and after availability
of the measurement respectively. Since only N samples
are used to represent the whole distribution, weights
w{1,...,k} are normalized such that

∑
i wk,+

i = 1. At
each step i, a representation of the probability density
function p̂ (Xi|ω0, ω1, . . . , ωi−1) is retained in the form
of weighted candidate samples

{(
uk,−

i , wk,−
i

)}
, where

uk,−
i = f

(
uk,+

i−1

)
and wk,−

i = wk,+
i−1. f is a function that

samples from the state transition distribution according
to the conditional probability P̂ (.|uk,+

i−1) and the smooth-
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ness of motion constraint using the Metropolis-Hastings
algorithm, which is described in detail in Fig. 4.

At any time, we want to be able to find correspon-
dences between successive instances of objects. This task
proves to be very difficult when the color and shape
distributions of objects are very similar or when the
objects are in very close proximity of each other, includ-
ing in person to person occlusion scenarios. However,
in the proposed model, a hierarchical use of transition
density enables our scheme to assign larger weights
to more likely paths. Assume now that the observed
measurements of m objects at time instant i are given
by Ω =

{
ω1

i , ω2
i , . . . , ωm

i

}
, and the predicted states of

previously observed s objects are Θ =
{
θ1

i , θ2
i , . . . , θs

i

}
respectively. We must find the mapping function from
the set {Ωk

i }, 1 ≤ k ≤ m to the set {Θl
i}, 1 ≤ l ≤ s. To

establish this mapping function, we use the graph based
algorithm proposed in [39]. The weights of the edges
corresponding to the mapping Θl

i and Ωk
i are given by

the Mahalanobis distance between the estimated posi-
tion θl

i and the observed position ωk
i , for each l and

k. Once the correspondences are established, for each
object, given the representation of p̂ (θi|θ0, . . . , θi−1), and
the corresponding new observation ωi, we update it to{(

uk,+
i , wk,+

i

)}
as uk,+

i = uk,−
i and,

wk,+
i = wk,−

i

N∑
k=1

P̂
(
ωi|uk,−

i

)
=

i∏
j=0

N∑
k=1

P̂
(
ωj |uk,−

j

)
.

(13)
The product of old weight with the sum of probabilities
of reaching ωi from each sample state uk,−

i for all k,
translates into a product of transition probabilities for all
jumps taken by an object. This results into assignment
of larger weights for higher probability tracks and in
the next time step, this weight helps establish corre-
spondences such that the probability of an object’s track
is maximized. Once updated, candidate locations are
re-sampled as described in section 3.2. This approach
enables simultaneous solution of short-term, and person
to person occlusions, as well as persistent labeling.

5 RESULTS

In this section, we present our experimental results.
The collected tracking data is derived from two video
sequences taken at the scenes shown in Fig. 1. Some fig-
ures related to these datasets and their density estimates
are summarized in Fig. 7. The video sequences were
acquired by static cameras, and the scenes consist of
high human traffic with occlusions and both commonly
and sparingly used paths. Initial tracking is done using
the algorithm in [3]. As can be seen in Fig. 1, there
are numerous entry and exit points in the scenes and
multiple paths can be chosen between different pairs
of entry and exit points. This section is organized into
subsections showing results for each of the applications.

Sequence Scene 1 Scene 2
Resolution 360 x 240 320 x 240
Duration 3 days (approx.) 6 hr 20 min
Observations 3.9 million 253,697
Samples 936,739 66,498
Learning Time 194 hrs (approx.) 13 hrs (approx.)

Fig. 7. Datasets: Observations list the number of times
any object was detected and feature samples are the
number of 5d features computed and added to the density
estimate (regardless of resampling). Learning Time is the
time taken to compute the samples and generate their
kernel density estimate.

Fig. 8. Examples of likely paths generated by the proposed
algorithm using Metropolis-Hastings sampling. Tracks are initial-
ized from random locations selected manually.

5.1 Likely Paths Generation

As described in Section 4.1, starting at random initial
states in the image, sampling from the distribution gives
possible paths that are usually followed by the traffic.
Fig. 8 shows some of these random walks. It should be
noted that no observations from the tracking algorithm
have been used in this experiment. The likely paths
generated are purely simulated based on the learned
distribution. It can however be seen in Fig. 8 that some
tracks are not very smooth and loop at some locations.
But we want to point out here that it is not our purpose
to generate smooth paths, rather a depiction of actual
tracking scenarios. A comparison of Fig. 8 with figure 1b,
that shows actual observed tracks used during training,
proves the similarity of both and validates the proposed
model and sampling method.

5.2 Foreground Detection

A scheme for improving detection of foreground objects
using the proposed model was described in section 4.2.
Fig. 9 presents the results of that scheme. The top row
of columns (a) and (b) show images that represent the
results of the object detection algorithm of [3]. It can
be seen in these images that parts of trees, garbage
dump, and grass have been detected as objects due to
nominal motion owing of wind. The false detections
are shown by red bounding boxes. On the other hand,
during the training phase, there were very few object
detections in these areas, thus giving low probability of
object presence at these locations. The bottom row of
columns (a) and (b) show the results after mis-detections
have been removed using the combination of appearance
and proposed motion model. The scheme has removed
these false positives owing to their low probability of
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(a) (b) (c) (d)

Fig. 9. Foreground Modeling Results: Columns (a) and
(b) show results of object detection . The images in top
row are without and bottom row are with using the pro-
posed model. Green and red bounding boxes show true
and false detections respectively. (c) and (d) show results
of blob tracking. Red tracks are original broken tracks and
black ones are after improved foreground modeling.

transition or existence or both. Columns (c) and (d) show
tracks from the tracking algorithm of [3] which are bro-
ken in different places because of a significant number
of false negatives in foreground detection. Again these
missed detections were corrected after incorporating the
motion based foreground model.
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Fig. 10. Foreground Modeling Results: (a) Number of
foreground pixels detected by the mixture of Gaussians
method, the logarithmic pooling method, and the ground
truth. The pixel-level foreground detection recall and pre-
cision using the mixture of Gaussians approach only,
and the proposed formulation are shown in (b) and (c)
respectively.

For a quantitative analysis of the foreground modeling
scheme, we manually segmented a 500 frames video
sequence into foreground and background regions. The
first 200 frames were used to initialize the mixture of
Gaussians based background model. Foreground was
estimated on the rest of the frames using, i) mixture
of Gaussians model, and ii) the proposed logarithmic
pooling of appearance and motion models. Pixel level
precision and recall were computed for both cases. The
results of this experiment are shown in Fig. 10. It can
be seen from the plots that both the precision and
recall of the combined model are consistently better than
mixture of Gaussians approach alone. The number of
false positives for the combined model was reduced by
79.65% on average. The average reduction in the number
of false negatives was 58.27%.

(a) (b) (c) (d)

Fig. 11. Results of Anomaly detection: (a) Spatially
anomalous, (b) and (c) Temporally anomalous, and (d)
Suspicious behavior due to presence over large distance
or extended period. Blue track represents the actual (ob-
served) track. Red and black tracks correspond to typical
and atypical (anomalous) predicted paths respectively.

5.3 Anomaly Detection

Fig. 11 shows results of our anomaly detection algorithm
described in Section 4.3. The normal tracks adapted in
each scene can be seen in Fig. 1 and Fig. 8. In the top
row of Fig. 11a, a person walks through the paved region
and then into the grass. The algorithm separates this
trajectory into typical and atypical parts. The blue track
shown in the figure is the track of concern, red track is
the area where the prediction follows observations while
dotted black shows the prediction once an anomaly is
detected. Notice how the blue track is closely followed
by the red one as long as it is typical behavior. At the
time of training, the dump trailer was at a different
position as seen in Fig. 1a, resulting in classification
of the track observed in middle row of Fig. 11a as
anomalous. The bottom row of Fig. 11a shows another
spatially incoherent track through an area where no
motion is usually observed.

The top row of Fig. 11b shows anomaly due to the
unusual speed of a person riding a bicycle in an area
where people usually only walk. The middle row of
Fig. 11b shows the results of our algorithm on another
example where a person is running in the same paved
area. Again, this behavior has not been observed in the
tracks used for training because people usually do not
run in this area. The bottom row of Fig. 11b shows a
stopping action where a person sits down to tie their
shoelaces. Three more examples of the second type of
anomaly (temporal inconsistency) are shown in Fig. 11c.
The top and middle rows in the third column show two
persons skating and riding a bicycle respectively while
the bottom row shows a person walking on the road
where usually only cars are observed. Since the speeds of
objects in Fig. 11b and Fig. 11c are significantly different
from the average speed of objects during training, the
prediction either lags behind as compared to the actual
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measurements from the tracker, or hurries ahead result-
ing in the observed trajectory being labelled anomalous.

Three examples of the third type of anomalies are
shown in Fig. 11d. In the top row of Fig. 11d a person
is walking slowly in a circular path for a few minutes.
The motion pattern itself is not anomalous to the learned
distribution, but the presence of the object in the scene
for a relatively longer period of time results in accumu-
lation of error, calculated as di using larger values of
n in Eq. 12, and eventually becomes greater than dth

resulting in classification of the sequence as an anomaly.
The middle row of Fig. 11d shows a person jumping
over an area which people usually only sit on. Even
though the person is not present in the scene for very
long, the error di quickly becomes significant due to
the incoherence of his actions relative to the training
examples. The bottom row shows a a zigzag pattern of
walking, something not observed before, resulting in the
classification of the trajectory as anomalous.

Since the decision as to whether a given trajectory
is anomalous is subjective and differs from one ob-
server to another, we asked three human observers to
classify 19 sequences as either normal or anomalous.
The proposed method of anomaly detection was run
on these 19 sequences which labelled 14 of them as
anomalous. The quantitative results of these experiments
are summarized in Fig. 12.

Ground Truth Human 1 Human 2 Human 3
Anomalous 13 15 11
Normal 6 4 8
Precision 92.86 100 78.57
Recall 100 93.34 100

Fig. 12. Quantitative analysis of anomaly detection re-
sults using classification by 3 human observers as the
ground truth.

5.4 Persistent Tracking

(a) (b) (c)

Fig. 13. For each row, (a) shows the observed tracks in
blue and red that have been labelled wrong, and (b) and
(c) show the stitched part of tracks in black, and actual
tracks in red and blue respectively.

In Section 4.4, we described our method to track
objects persistently through occlusions. In absence of

measurements, our algorithm propagates the track based
on samples from the distribution. Fig. 13 shows two
examples of tracks that have undergone erroneous la-
beling by the tracking algorithm because both of them
had considerable missing portions due to total occlusion.
In the top row of Fig. 13, the tracker assumes that two
objects walked towards the golf car and then returned
to their original locations, which is not correct. Each of
these tracks are propagated through predicted locations
to join the correct track. The result of propagation based
on weighted mean of these samples is shown in top
row of Fig. 13b and Fig.13c, where both tracks are
separately shown for clarity. Red and blue colors show
two different tracks and the black color shows the part
where trajectory has been stitched. In the bottom row of
Fig. 13, a truck is obstructing the camera’s view.

(a) (b)

Fig. 14. Example of persistent tracking for multiple si-
multaneous objects with overlapping or intersecting tracks
undergoing occlusion. (a) Actual original tracks (ground
truth) (b) Broken tracks due to simulated occlusion shown
as black region.

Another example of persistent tracking through occlu-
sions is shown in Figs. 14 and 15, where we created a
considerably large simulated occlusion in a small video
sequence as shown in Fig. 14b as a black box in the
middle of the image. The location of this occlusion
makes the task challenging since most of the likely paths
in the scene pass through this region. This sequence
contains four tracks that have significant portions under
occlusion. For comparison with other algorithms, we
also tested Kalman filter based tracking on the same
sequence where the process noise function is assumed to
be Gaussian, and trajectories are assumed to be locally
linear, as in [28]. The results on the four tracks are shown
separately in Fig. 15. The direction of movement in all
tracks is from the top of the image downwards except
in Fig. 15c where it is from left to right. The results
of Kalman filter tracking is shown as white track, the
proposed approach as yellow and the ground truth as
green tracks. The ground truth trajectories are available
since the occlusion is only simulated. The reason for the
sharp turns at the end of the predicted tracks is the
recovery from error, once the object comes out of occlu-
sion. It is fairly obvious that Kalman filter based tracks
tend to follow linear constant motion dynamics, which
actually works better than our algorithm in Fig. 15b, but
in the other three tracks, the proposed approach works
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significantly better than the Kalman filter. The reason
for the deviation of the track generated using motion
patterns, from the ground truth (in Fig. 15b) is that the
length of the track before the occlusion is very small. As
a result, the algorithm is unable to differentiate between
the actual track that is coming from the top, and a track
which goes from that position to the left; hence, the
predicted track goes left, as the small track length makes
it seem that the object’s direction is towards the left.

(a) (b) (c) (d)

Fig. 15. Results for scenario shown in figure 14. Green
track is the ground truth. Tracking through occlusion using
Kalman filter is shown in white and yellow tracks are
generated using the proposed approach. Notice that both
methods can recover well once the measurement is avail-
able again, but during occlusion the proposed method
stays closer to ground truth.

Track Fig. 15a Fig. 15b Fig. 15c Fig. 15d
Proposed Approach 74.34 119.20 142.74 52.06
Kalman Filter 165.22 59.14 472.08 628.69
% Reduction 55.01% -50.39% 69.76% 91.72%

Fig. 16. Mahalanobis distances of tracks generated using
proposed approach and kalman filter based tracking, from
the ground truth.

Finally, we report some of the run time performance
data. All the experiments were ran on a Pentium-4 2.53
GHz machine and the coding was done in Matlab with-
out any optimizations for speed. Fig. 17 compares the
performance of kernel density estimation to a histogram
approximation in terms of different metrics.

Metric KDE Histogram % Improvement
a 0.422 1.451 243.84 %
b 11.72 % 6.93 % 40.87 %
c 35.78 10.07 71.86 %
d 0.637 2.762 333.59 %

Fig. 17. Performance of the proposed algorithm when
using histogram approximation of kernel density. The met-
rics used are: (a) Track generation (fps), (b) Metropolis
Hastings Failure rate, (c), Time taken to compute proba-
bility (ms), and (d) Foreground detection (fps).

6 DISCUSSION

In this section, we discuss some of the questions and
concerns raised by the anonymous reviewers and the
associate editor.
Comment 1: The proposed technique to handle problems
of object association across short / long-term occlusions
is not convincing especially when there are multiple

objects within the scope of this association problem.
The underlying track breaks may require sophisticated
appearance matching over and above the kinematic con-
straints learned from the track distributions.
Response: We agree that appearance is a key feature
for object association and do fully understand that suc-
cessful object association requires both spatio-temporal
and appearance features to complement each other.
Traditionally, appearance models are used along with
kinematic constraints (imposed by an assumed motion
model, such as constant velocity or constant acceler-
ation) for object association. The contribution of the
paper is to learn these kinematic constraints directly
from the track distribution instead of assuming some
motion model to be valid everywhere in a scene. The
kinematic model learned this way not only includes the
above mentioned motion properties but also embodies
scene-specific knowledge, such as presence of paths,
entry/exit points, and people preferences. Similar to tra-
ditional kinematic models, the proposed spatio-temporal
model can be complemented with more sophisticated
appearance matching to solve complex occlusions, e.g.,
occlusions due to group motion.
Comment 2: Are you assuming ideal tracking? How
does imperfect tracking influence the performance?
Response: No, we are not assuming the input tracks to be
ideal and like other realtime systems, KNIGHT system
is also susceptible to errors due to illumination changes,
shadows, and severe occlusions. However, the errors do
not greatly affect the performance of the proposed algo-
rithm because the system is trained for video sequences
collected over extensive periods of time. Over time, the
feature samples in the density estimate are re-sampled
and outliers are rejected. Consequently, the true patterns
of object dynamics are retained.
Comment 3: Although you state that the proposed algo-
rithm is resilient to failures of the underlying tracker,
it is not clear from the formulation that this is so. If
a tracker, such as KNIGHT, tends to fragment tracks a
lot, then the transition times beyond a small value will
almost never get good support. This will not reflect the
true distributions. It is not clear from the paper how this
aspect is handled? Or is it handled at all?
Response: The proposed framework does not rely on
tracking information. As a matter of fact, the distribu-
tions can be generated by using the detections alone
(by assigning a link between each pair of detection that
occurs within a given time period and using it as a data
point for the model). Over time, the actual links will
persist and the noisy links will average out. The tracking
information is used only when it is available to reduce
the influence of noise on the model. For example, con-
sider a high precision tracker that links two observations
with high precision but may fragment tracks a lot. If
the tracker establishes a link between two observations
then we ignore other possible links. However, if such a
link for an observation is not present then all possible
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pairs are considered (for example, for time interval of n
frames, the first and last n points in a track do not have
links established by the tracker). This way, the algorithm
is resilient to failures of the underlying tracker.
Comment 4: If there is a static object, like a truck or
a building, that occludes objects consistently over the
course of their motion, how can the proposed algorithm
connect these objects especially in situations when ob-
jects close to each other are moving?
Response: As mentioned in response to Comment 3, the
algorithm does not fully rely on the track links and
thus can connect objects across long term occlusions
due to a static object. The algorithm however cannot
solve occlusions caused by objects moving together in
groups. Resolving such occlusions would require use of
appearance features along with the proposed model.
Comment 5: Are there some anomalous trajectories in
your training dataset?
Response: There are some anomalous trajectories in our
training sets, for example, people walking through the
grassy areas. However, by definition, the anomalous
trajectories are very sparse and hence have very low
probability in the model as compared to normal trajec-
tories or events.
Comment 6: The determination of dth is tricky. How can
it be determined automatically?
Response: The threshold dth depends on several factors
including the distance of an object from the camera. In
other words, the farther the object, lesser should be the
value of dth, especially for scenes where the sizes of
objects vary greatly from one region to another within
the image lattice. The threshold can be determined au-
tomatically if either the camera calibration is known or
if the object sizes are also used in the feature vector.
Comment 7: The system has a high computational cost.
Response: The system has high computational cost for
training, but it can be performed off-line. The run-time
performance of the system can be significantly improved
by using software optimization and using well known
approximations of KDE, such as histograms, Fast Gauss
Transform [40], [41], and mixture models. In our ex-
periments, the use of histogram approximation (in an
un-optimized MATLAB code) greatly improved the run-
time performance. (See Fig. 17).
Comment 8: How to apply incremental learning to up-
date the model adaptively.
Response: Traditionally, the kernel density estimation is
made adaptive to the changes in the data by keeping
a fixed size queue of n data points. Once k new data
points are observed, the oldest k points in the queue
are replaced with the new data points and the model is
updated. The model updates can be done on a low pri-
ority thread, although online updating will not have any
significant effect on performance. Note that the proposed
system is based on static scenes and the availability
of large training data, and hence does not have to be
updated very frequently.

Comment 9: Why use the Gaussian distribution as pro-
posal density for Metropolis-Hastings sampling?
Response: It is often the case that the true conditional
density of object transition given the current state re-
sembles Gaussian distribution. In addition to Gaussian,
we experimented with Uniform and Epanechnikov den-
sities centered on the current location. Assuming that
the initial location X of a transition can be written as
X = (x1, x2), the results of sampling from the target
density

∫
Y

∫
τ

∫
x1

p(X, Y, τ)dx1dτdY are shown in Fig. 18.

The 1 dimensional marginal density is chosen for ease
of visualization. As can be seen in Fig. 18, the quality
of samples is not affected by the choice of proposal
density, however, the performance in terms of speed
is significantly reduced due to a bad choice as more
samples are rejected before each acceptance.
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Fig. 18. A comparison of different proposal densities. The
first row shows histograms of 10,000 samples from the
respective proposal distributions. The second row shows
histograms of samples that were accepted for the target
density plotted in red. All histograms contain 200 bins.
The acceptance rates for the three densities are 0.2%,
0.25%, and 0.54% respectively.

In conclusion, we have introduced a simple and
intuitive novel method for modeling scene dynamics.
The proposed model is rich and accurately reflects the
transition likelihoods in the scene. We have shown the
effectiveness and validity of the method experimentally
for diverse surveillance applications.

ACKNOWLEDGMENTS

This research was funded in part by the U.S. Govern-
ment VACE program. The authors are grateful to Xin
Li, Yaser Sheikh, and Marshall Tappen for their valuable
comments throughout this research.

REFERENCES

[1] “Special issue on video communications, processing, and under-
standing for third generation surveillance systems”. Proceedings
of the IEEE, 89(10), Oct 2001.

[2] R. Collins, J. Lipton, and T. Kanade. “Introduction to the special
section on video surveillance”. IEEE Trans. PAMI, 22(8), Aug 2000.

[3] O. Javed, K. Shafique, and M. Shah. “Automated Visual Surveil-
lance in Realistic Scenarios ”. In IEEE Multimedia, pages 30–39,
January - March 2007.

[4] I. Biederman. “On the semantics of a glance at a scene”. In
Perceptual Organization, pages 213–253. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1981.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



14

[5] A. Torralba. “Contextual influences on saliency”. In Neurobiology
of Attention.

[6] K. Tieu, G. Dalley, and W.E.L. Grimson. “Inference of Non-
overlapping Camera Network Topology by Measuring Statistical
Dependence”. In IEEE ICCV, 2005.

[7] T.J. Ellis, D. Makris, and J.K. Black. “Learning a multi-camera
topology”. In Joint IEEE International Workshop on Visual Surveil-
lance and Performance Evaluation of Tracking and Surveillance, 2003.

[8] C. Stauffer. “Learning to track objects through unobserved
regions”. In Proceedings of the IEEE Workshop on Motion and Video
Computing, volume 2, pages 96–102, 2005.

[9] O. Javed, K. Shafique, Z. Rasheed, and M. Shah. “Modeling
inter-camera space-time and appearance relationships for track-
ing across non-overlapping views”. Computer Vision and Image
Understanding: CVIU, 109(2), Feb 2008.

[10] H. Buxton. “Generative models for learning and understanding
dynamic scene activity”. In Generative Model Based Vision Work-
shop, 2002.

[11] A. Hunter, J. Owens, and M. Carpenter. “A neural system for
automated CCTV surveillance”. In IEE Intelligent Distributed
Surveillance Systems, 2003.

[12] J. Owens and A. Hunter. “Application of the self-organising map
to trajectory classification”. In 3rd IEEE International Workshop on
Visual Surveillance, 2000.

[13] N. Johnson and D.C. Hogg. “Learning the distribution of object
trajectories for event recognition”. Image and Vision Computing,
14(8):609–615, August 1996.

[14] J.H. Fernyhough, A.G. Cohn, and D.C. Hogg. “Generation of
semantic regions from image sequences”. In ECCV, 1996.

[15] R.J. Howard and H. Buxton. “Analogical representation of spatial
events, for understanding traffic behaviour”. In 10th European
Conference On Artificial Intelligence, 1992.

[16] E.B. Koller-Meier and L. Van Gool. “Modeling and recognition of
human actions using a stochastic approached”. In 2nd European
Workshop on Advanced Video-Based Surveillance Systems, 2001.

[17] J. Lou, Q. Liu, T. Tan, and W. Hu. “Semantic interpretation of
object activities in a surveillance system”. In ICPR, 2002.

[18] W.E.L. Grimson, C. Stauffer, R. Romano, and L. Lee. “Using
adaptive tracking to classify and monitor activities in a site”. In
IEEE CVPR, 1998.

[19] C. Stauffer and W.E.L. Grimson. “Learning patterns of activity
using real time tracking”. IEEE Trans. PAMI, 22(8):747–767, 2000.

[20] C. Stauffer. “Estimating tracking sources and sinks”. In Second
IEEE Event Mining Workshop, 2003.

[21] P. Remagnino and G.A. Jones. “Classifying surveillance events
from attributes and behaviour”. In BMVC, 2001.

[22] M. Walter, A. Psarrou, and S. Gong. “Learning prior and obser-
vation augmented density models for behaviour recognition”. In
BMVC, 1999.

[23] A. Galata, N. Johnson, and D. Hogg. “Learning variable length
markov models of behaviour”. Computer Vision and Image Under-
standing: CVIU, 81(3):398–413, 2001.

[24] T. Huang and S. Russell. “Object identification in a bayesian
context”. In Proceedings of IJCAI,, 1997.

[25] V. Kettnaker and R. Zabih. “Bayesian multi-camera surveillance”.
In IEEE CVPR, 1999.

[26] S. Dockstader and A. Tekalp. “Multiple camera fusion for multi-
object tracking”. In IEEE Workshop on Multi-Object Tracking, 2001.

[27] D. Hoiem, A. Efros, and M. Hebert. “Putting Objects in Perspec-
tive”. In IEEE CVPR, 2006.

[28] R. Rosales and S. Sclaroff. “Improved tracking of multiple humans
with trajectory prediction and occlusion modeling”. In CVPR
Workshop on the Interpretation of Visual Motion, 1998.

[29] R. Kaucic, A. Perera, G. Brooksby, J. Kaufhold, and A. Hoogs.
“A unified framework for tracking through occlusions and across
sensor gaps”. In IEEE CVPR, 2005.

[30] X. Wang, K. Tieu, and E. Grimson. “Learning semantic scene
models by trajectory analysis”. In ECCV, 2006.

[31] A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and W. Hu. “Multi-
object tracking through simultaneous long occlusions and split-
merge conditions”. In IEEE CVPR, 2006.

[32] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. “A
system for learning statistical motion patterns”. IEEE Trans. PAMI,
28(9):1450–1464, September 2006.

[33] E. Parzen. “On the estimation of a probability density function
and mode”. Ann. Math. Stati., 33:1065–1076, 1962.

[34] R. Duda, P. Hart, and D. Stork. “Pattern Classification”. Wiley
Interscience, 2nd edition, 2001.

[35] B. Turlach. “Bandwidth selection in kernel density estimation: A
review”. Institut de Statistique, 1993.

[36] B. W. Silverman. “Density Estimation for Statistics and Data Analy-
sis”. Chapman and Hall, 1986.

[37] J. A. Benediktsson and P. H. Swain. “Consensus theoretic clas-
sification methods”. In IEEE Trans. Sys. Man and Cybernetics,
volume 22, pages 688–704, 1992.

[38] G. Hinton. “Products of experts”. In ICANN, pages 1–6, 1999.
[39] K. Shafique and M. Shah. “A non-iterative greedy algorithm for

multi-frame point correspondence”. IEEE Trans. PAMI, Jan 2005.
[40] L. Greengard and J. Strain. “The fast Gauss transform”. SIAM J.

Sci. Statist. Comput., 12(1):79–94, 1991.
[41] A. Elgammal, R. Duraiswami, and L. Davis. “The fast Gauss

transform for efficient kernel density evaluation with applications
in computer vision”. IEEE Trans. PAMI., 25, Nov 2003.

Imran Saleemi received the BS degree in Com-
puter System Engineering from the Ghulam
Ishaq Khan Institute of Engineering Sciences
and Technology, Pakistan in 2004, and MS in
Computer Science from the University of Cen-
tral Florida in 2008. He is currently working
towards the PhD degree at the Computer Vision
Laboratory at University of Central Florida. His
research interests include visual tracking and
surveillance, probabilistic graphical models, and
multiview object detection and categorization.

Khurram Shafique received the BE degree in
computer systems engineering from NED Uni-
versity of Engineering and Technology, Pakistan,
in 1998 and the MS and PhD degrees, both in
computer science, from the University of Cen-
tral Florida in 2001 and 2004, respectively. He
is currently a research scientist at the Cen-
ter for Video Understanding Excellence at Ob-
jectVideo, Reston, VA. His research interests in-
clude graph theory, discrete optimization, track-
ing, correspondence across multiple cameras,

and real-time surveillance systems. He was a recipient of Hillman
Fellowship award for excellence in research in Computer Science in
2003. He is a member of the IEEE.

Mubarak Shah, Agere Chair Professor of Com-
puter Science, is the founding director of the
Computer Vision Lab at UCF. He is a co-author
of two books (Motion-Based Recognition (1997)
and Video Registration (2003)) both by Kluwer
Academic Publisher. Dr. Shah is a fellow of
IEEE, IAPR and SPIE. In 2006, he was awarded
the Pegasus Professor award, the highest faculty
award at UCF. He was an IEEE Distinguished
Visitor speaker for 1997-2000 and received
IEEE Outstanding Engineering Educator Award

in 1997. He received the Harris Corporations Engineering Achievement
Award in 1999, the TOKTEN awards from UNDP in 1995, 1997, and
2000; Teaching Incentive Program award in 1995 and 2003, Research
Incentive Award in 2003, Millionaires Club awards in 2005 and 2006,
University Distinguished Researcher award in 2007, honorable mention
for the ICCV 2005 Where Am I? Challenge Problem, and was nominated
for the best paper award in ACM Multimedia Conference in 2005. He
is an editor of international book series on Video Computing; editor in
chief of Machine Vision and Applications journal, and an associate editor
of ACM Computing Surveys journal. He was an associate editor of the
IEEE Transactions on PAMI, and a guest editor of the special issue of
International Journal of Computer Vision on Video Computing.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


