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AbstractÐOur goal is to develop a visual monitoring system that passively

observes moving objects in a site and learns patterns of activity from those

observations. For extended sites, the system will require multiple cameras. Thus,

key elements of the system are motion tracking, camera coordination, activity

classification, and event detection. In this paper, we focus on motion tracking and

show how one can use observed motion to learn patterns of activity in a site.

Motion segmentation is based on an adaptive background subtraction method that

models each pixel as a mixture of Gaussians and uses an on-line approximation to

update the model. The Gaussian distributions are then evaluated to determine

which are most likely to result from a background process. This yields a stable,

real-time outdoor tracker that reliably deals with lighting changes, repetitive

motions from clutter, and long-term scene changes. While a tracking system is

unaware of the identity of any object it tracks, the identity remains the same for the

entire tracking sequence. Our system leverages this information by accumulating

joint co-occurrences of the representations within a sequence. These joint co-

occurrence statistics are then used to create a hierarchical binary-tree

classification of the representations. This method is useful for classifying

sequences, as well as individual instances of activities in a site.

Index TermsÐReal-time visual tracking, adaptive background estimation, activity

modeling, co-occurrence clustering, object recognition, video surveillance and

monitoring (VSAM).

æ

1 INTRODUCTION

THE goal of this project is a vision system that monitors activity in a
site over extended periods of time, i.e., that detects patterns of
motion and interaction demonstrated by objects in the site. The
system:

. Should provide statistical descriptions of typical activity
patterns, e.g., normal vehicular volume or normal pedes-
trian traffic paths for a given time of day;

. Should detect unusual events, by spotting activities that
are very different from normal patterns, e.g., unusual
volumes of traffic, or a specific movement very different
from normal observation; and

. Should detect unusual interactions between objects, e.g., a
person parking a car in front of a building, exiting the car,
but not entering the building.

Because a site may be larger than can be observed by a single

camera, our system observes activities with a ªforest of sensorsº

distributed around the site. Ideally, each sensor unit would be a

compact packaging of camera, on-board computational power,

local memory, communication capability, and possibly locational

instrumentation (e.g., GPS). Example systems exist [10], [11], [17]

and more powerful systems will emerge as technology in sensor

design, DSP processing, and communications evolves. In a forest,

many such sensor units would be distributed around the site. For

outdoor settings, this would involve attaching them to poles, trees,

and buildings.1 For indoor settings, this would involve attaching to
walls and furniture for indoor sites, such as the Intelligent Room.2

For this article, we explore the monitoring of an outdoor site by
connecting a set of video cameras to an interconnected suite of PCs,
with each camera looking out a different window of a building, i.e.,
our focus is on the algorithmic processing of the data, rather than
on the specific sensor packages.

The forest should learn patterns of activities in a site, then
monitor and classify activities based on these learned patterns. A
coordinated sensor forest needs:

. Self-calibrationÐdetermine the positions of all the cameras
relative to one another;

. Construction of rough site modelsÐdetermine the ground
plane and mark occupied areas;

. Detect objects in the siteÐextract information about all
moving objects in the site;

. Classify detected objectsÐlabel detected objects by common
shape, appearance, or motion;

. Learn from extended observation (e.g., over a period of weeks)
Ðwhat are the common activity patterns; and

. Detect unusual events in the siteÐmark activities that don't
fit common patterns.

Our hypothesis is that these tasks can be accomplished simply

by observing moving objects. To verify this hypothesis, we need a

robust tracker that can reliably detect moving objects and return an

accurate description of the observed object, both its motion

parameters and its intrinsic parameters, such as size and shape,

and methods that can use such tracking data to accomplish the

tasks listed above. In the following sections, we describe our

tracking method [23], then outline our system for monitoring

activities over extended time periods by simply observing object

motions. Calibration of cameras and extraction of ground plane

information are covered separately in [18].

2 BUILDING A ROBUST MOTION TRACKER

A robust video surveillance and monitoring system should not
depend on careful placement of cameras. It should also be robust
to whatever is in its visual field or whatever lighting effects occur.
It should be capable of dealing with movement through cluttered
areas, objects overlapping in the visual field, shadows, lighting
changes, effects of moving elements of the scene (e.g., swaying
trees), slow-moving objects, and objects being introduced or
removed from the scene. Thus, to monitor activities in real outdoor
settings, we need robust motion detection and tracking that can
account for such a wide range of effects.

Traditional approaches based on backgrounding methods
typically fail in these general situations. Our goal is to create a
robust, adaptive tracking system that is flexible enough to handle
variations in lighting, moving scene clutter, multiple moving
objects, and other arbitrary changes to the observed scene. The
resulting tracker is primarily geared toward scene-level video
surveillance applications.

2.1 Previous Work and Current Shortcomings of Motion
Tracking

Most researchers have abandoned nonadaptive methods of back-
grounding because of the need for manual initialization. Without
reinitialization, errors in the background accumulate over time,
making this method useful only in highly supervised, short-term
tracking applications without significant changes in the scene. It is
possible to use a maximum interframe difference [19], but this
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leaves ªghostsº where the object was and leaves large regions of
the object undetected unless the object undergoes significant
motion each frame.

Most backgrounding methods involve continuously estimating
a statistical model of the variation for each pixel. A common
method of adaptive backgrounding is averaging the images over
time, creating a background approximation which is similar to the
current static scene except where motion occurs. While this is
effective in situations where objects move continuously and the
background is visible a significant portion of the time, it is not
robust to scenes with many moving objects, particularly if they
move slowly. It also cannot handle bimodal backgrounds, recovers
slowly when the background is uncovered, and has a single,
predetermined threshold for the entire scene. One interesting
attempt to meet these difficulties is W 4 [9], which combined its
estimates of the minimum value, maximum value, and maximum
interframe difference per pixel.

Ivanov et al. [12] used disparity verification to determine
moving regions in a scene. This showed invariance to lighting
variations, but involved a costly, off-line initialization. Its primary
application is for geometrically static backgrounds. Recently, an
eigenvector approximation of the entire image was used to model
the background in outdoor scenes [20].

Changes in scene lighting can cause problems for many
backgrounding methods. Ridder et al. [21] modeled each pixel
with a Kalman Filter, which made their system more robust to
lighting changes in the scene. While this method does have a pixel-
wise automatic threshold, it still recovers slowly and does not
handle bimodal backgrounds well. Koller et al. [16] have
successfully integrated this method in an automatic traffic
monitoring application.

Pfinder [24] uses a multiclass statistical model for the fore-
ground objects, but the background model is a single Gaussian per
pixel. After an initialization period where the room is empty, the
system reports good results. There have been no reports on the
success of this tracker in outdoor scenes.

Friedman and Russell [5] have recently implemented a pixel-
wise EM framework for detection of vehicles that bears the most
similarity to our work. Their method attempts to explicitly classify
the pixel values into three separate, predetermined distributions
corresponding to the road color, the shadow color, and colors
corresponding to vehicles. Their attempt to mediate the effect of
shadows appears to be somewhat successful, but it is not clear
what behavior their system would exhibit for pixels which did not
contain these three distributions. For example, pixels may present
a single background color or multiple background colors resulting
from repetitive motions, shadows, or reflectances.

2.2 Our Approach to Motion Tracking

Rather than explicitly modeling the values of all the pixels as one
particular type of distribution, we simply model the values of a
particular pixel as a mixture of Gaussians. Based on the persistence
and the variance of each of the Gaussians of the mixture, we
determine which Gaussians may correspond to background colors.
Pixel values that do not fit the background distributions are
considered foreground until there is a Gaussian that includes them
with sufficient, consistent evidence supporting it to convert it to a
new background mixture.

Our system adapts to deal robustly with lighting changes,
repetitive motions of scene elements, tracking through cluttered
regions, slow-moving objects, and introducing or removing objects
from the scene. Slowly moving objects take longer to be
incorporated into the background because their color has a larger
variance than the background. Also, repetitive variations are
learned and a model for the background distribution is generally
maintained, even if it is temporarily replaced by another

distribution which leads to faster recovery when objects are
removed.

Our backgrounding method contains two significant para-
metersÐ�, the learning constant, and T, the proportion of the data
that should be accounted for by the background. Without any
alteration of parameters, our system has been used in an indoor,
human-computer interface application and, since October 1997,
has been continuously monitoring outdoor scenes.

3 ADAPTIVE BACKGROUNDING FOR MOTION TRACKING

If each pixel resulted from a single surface under fixed lighting, a
single Gaussian would be sufficient to model the pixel value while
accounting for acquisition noise. If only lighting changed over
time, a single, adaptive Gaussian per pixel would be sufficient. In
practice, multiple surfaces often appear in the view frustum of a
particular pixel and the lighting conditions change. Thus, multiple,
adaptive Gaussians are required. We use an adaptive mixture of
Gaussians to approximate this process.

Each time their parameters are updated, the Gaussians are
evaluated using a simple heuristic to hypothesize which are most
likely to be part of the ªbackground process.º Pixel values that do
not match one of the pixel's ªbackgroundº Gaussians are grouped
using connected components. Finally, the connected components
are tracked across frames using a multiple hypothesis tracker. The
process is illustrated in Fig. 1.

3.1 Online Mixture Model

We consider the values of a particular pixel over time as a ªpixel
process,º i.e., a time series of scalars for grayvalues or vectors for
color pixel values. At any time, t, what is known about a particular
pixel, fx0; y0g, is its history

fX1; . . . ; Xtg � fI�x0; y0; i� : 1 � i � tg; �1�
where I is the image sequence. Some ªpixel processesº are shown
by the (R,G) scatter plots in Fig. 2 which illustrate the need for
adaptive systems with automatic thresholds. Fig. 2b and Fig. 2c
also highlight a need for a multimodal representation. In each case,
the ideal distribution of values should be a tight, Gaussian-like
cluster around some point. The fact that the cluster can shift
dramatically over a period of a few minutes or that two or more
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Fig. 1. The execution of the program. (a) the current image, (b) an image
composed of the means of the most probable Gaussians in the background model,
(c) the foreground pixels, (d) the current image with tracking information
superimposed. Note: While the shadows are foreground in this case, if the
surface was covered by shadows a significant portion of the time, a Gaussian
representing those pixel values may be significant enough to be considered
background.



processes at the same pixel can result in several distinctive clusters

illustrates the need for an adaptive, multimodal representation.
We chose to model the recent history of each pixel,

fX1; . . . ; Xtg, as a mixture of K Gaussian distributions. The

probability of observing the current pixel value is

P �Xt� �
XK
i�1

!i;t � ��Xt; �i;t;�i;t�; �2�

where K is the number of distributions, !i;t is an estimate of the

weight (the portion of the data accounted for by this Gaussian) of

the ith Gaussian in the mixture at time t, �i;t and �i;t are the mean

value and covariance matrix of the ith Gaussian in the mixture at

time t, and where � is a Gaussian probability density function

��Xt; �;�� � 1

�2��n2 �j j12
eÿ

1
2�Xtÿ�t�T�ÿ1�Xtÿ�t�: �3�

K is determined by the available memory and computational

power. Currently, from three to five are used. Also, for computa-

tional reasons, the covariance matrix is assumed to be of the form:

�k;t � �2
kI: �4�

This assumes that the red, green, and blue pixel values are

independent and have the same variances. While this is certainly

not the case, the assumption allows us to avoid a costly matrix

inversion at the expense of some accuracy.
Thus, the distribution of recently observed values of each pixel

in the scene is characterized by a mixture of Gaussians. A new

pixel value will, in general, be represented by one of the major

components of the mixture model and used to update the model.
If the pixel process could be considered a stationary process, a

standard method for maximizing the likelihood of the observed

data is expectation maximization [4]. Because there is a mixture

model for every pixel in the image, implementing an exact EM

algorithm on a window of recent data would be costly. Also,

lighting changes and the introduction or removal of static objects

suggest a decreased dependence on observations further in the

past. These two factors led us to use the following on-line K-means

approximation to update the mixture model.

Every new pixel value, Xt, is checked against the existing K
Gaussian distributions until a match is found. A match is defined
as a pixel value within 2.5 standard deviations of a distribution.3

This threshold can be perturbed with little effect on performance.
This is effectively a per pixel/per distribution threshold. This is
extremely useful when different regions have different lighting
(see Fig. 2a) because objects which appear in shaded regions do not
generally exhibit as much noise as objects in lighted regions. A
uniform threshold often results in objects disappearing when they
enter shaded regions.

If none of the K distributions match the current pixel value, the
least probable distribution is replaced with a distribution with the
current value as its mean value, an initially high variance, and low
prior weight.

The prior weights of the K distributions at time t are adjusted
as follows:

!k;t � �1ÿ ��!k;tÿ1 � ��Mk;t�; �5�
where � is the learning rate4 and Mk;t is 1 for the model which
matched and 0 for the remaining models. After this approximation,
the weights are renormalized. 1=� defines the time constant which
determines change. !k;t is effectively a causal low-pass filtered
average of the (thresholded) posterior probability that pixel values
have matched model k given observations from time 1 through t.
This is equivalent to the expectation of this value with an
exponential window on the past values.

The � and � parameters for unmatched distributions remain the
same. The parameters of the distribution which matches the new
observation are updated as follows:

�t � �1ÿ ���tÿ1 � �Xt �6�

�2
t � �1ÿ ���2

tÿ1 � ��Xt ÿ �t�T �Xt ÿ �t�; �7�
where

� � ���Xtj�k; �k� �8�
is the learning factor for adapting current distributions.5 This is
effectively the same type of causal low-pass filter as mentioned
above, except that only the data which matches the model is
included in the estimation.

One of the significant advantages of this method is that, when
something is allowed to become part of the background, it doesn't
destroy the existing model of the background. The original
background color remains in the mixture until it becomes the
Kth most probable and a new color is observed. Therefore, if an
object is stationary just long enough to become part of the
background and then it moves, the distribution describing the
previous background still exists with the same � and �2, but a
lower !, and will be quickly reincorporated into the background.

3.2 Background Model Estimation

As the parameters of the mixture model of each pixel change, we
would like to determine which of the Gaussians of the mixture are
most likely produced by background processes. Heuristically, we
are interested in the Gaussian distributions which have the most
supporting evidence and the least variance.
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Fig. 2. This figure contains images and scatter plots of the red and green values of
a single pixel from the image over time. It illustrates some of the difficulties
involved in real environments. (a) shows two scatter plots from the same pixel
taken 2 minutes apart. This would require two thresholds. (b) shows a bi-model
distribution of a pixel values resulting from specularities on the surface of water.
(c) shows another bi-modality resulting from monitor flicker.

3. Depending on the kurtosis of the noise, some percentage of the data
points generated by a Gaussian will not ªmatch.º The resulting random
noise in the foreground image is easily ignored by neglecting connected
components containing only a few pixels.

4. While this rule is easily interpreted an an interpolation
between two points, it is often shown in the equivalent form:
!k;t � !k;tÿ1 � ��Mk;t ÿ !k;tÿ1�.

5. In high dimensional spaces with full covariance matrices, it is
sometimes advantageous to use a constant � to reduce computation and
provide faster Gaussian tracking.



To understand this choice, consider the accumulation of
supporting evidence and the relatively low variance for the
ªbackgroundº distributions when a static, persistent object is
visible. In contrast, when a new object occludes the background
object, it will not, in general, match one of the existing
distributions, which will result in either the creation of a new
distribution or the increase in the variance of an existing
distribution. Also, the variance of the moving object is expected
to remain larger than a background pixel until the moving object
stops. To model this, we need a method for deciding what portion
of the mixture model best represents background processes.

First, the Gaussians are ordered by the value of !=�. This
value increases both as a distribution gains more evidence and
as the variance decreases. After reestimating the parameters of
the mixture, it is sufficient to sort from the matched
distribution toward the most probable background distribution
because only the matched models relative value will have
changed. This ordering of the model is effectively an ordered,
open-ended list, where the most likely background distributions
remain on top and the less probable transient background
distributions gravitate toward the bottom and are eventually
replaced by new distributions.

Then, the first B distributions are chosen as the background
model, where

B � argminb
Xb
k�1

!k > T

 !
; �9�

where T is a measure of the minimum portion of the data that
should be accounted for by the background. This takes the ªbestº
distributions until a certain portion, T , of the recent data has been
accounted for. If a small value for T is chosen, the background
model is usually unimodal. If this is the case, using only the most
probable distribution will save processing.

If T is higher, a multimodal distribution caused by a repetitive
background motion (e.g., leaves on a tree, a flag in the wind, a
construction flasher, etc.) could result in more than one color being
included in the background model. This results in a transparency
effect which allows the background to accept two or more separate
colors.

3.3 Connected Components

The method described above allows us to identify foreground
pixels in each new frame while updating the description of each
pixel's process. These labeled foreground pixels can then be
segmented into regions by a two-pass, connected components
algorithm [8].

Because this procedure is effective in determining the whole
moving object, moving regions can be characterized not only by
their position, but size, moments, and other shape information.
Not only can these characteristics be useful for later processing and
classification, but they can aid in the tracking process.

3.4 Multiple Hypothesis Tracking

Establishing correspondence of connected components between
frames is accomplished using a linearly predictive multiple
hypotheses tracking algorithm which incorporates both position
and size. We have implemented an online method for seeding and
maintaining sets of Kalman filters.

At each frame, we have an available pool of Kalman models
and a new available pool of connected components that they could
explain. First, the models are probabilistically matched to the
connected regions that they could explain. Second, the connected
regions which could not be sufficiently explained are checked to
find new Kalman models. Finally, models whose fitness (as
determined by the inverse of the variance of its prediction error)
falls below a threshold are removed.

Matching the models to the connected components involves
checking each existing model against the available pool of
connected components which are larger than a pixel or two. All
matches with relatively small error are used to update the
corresponding model. If the updated models have sufficient
fitness, they will be used in the following frame. If no match is
found, a ªnullº match can be hypothesized which propagates the
model as expected and decreases its fitness by a constant factor. If
the object reappears in a predictable region of uncertainty shortly
after being lost, the model will regain the object. Because our
classification system requires tracking sequences which consist of
representations of a single object, our system generally breaks
tracks when objects interact rather than guessing at the true
correspondence.

The unmatched models from the current frame and the
previous two frames are then used to hypothesize new models.
Using pairs of unmatched connected components from the
previous two frames, a model is hypothesized. If the current
frame contains a match with sufficient fitness, the updated model
is added to the existing models. To avoid possible combinatorial
explosions in noisy situations, it may be desirable to limit the
maximum number of existing models by removing the least
probable models when excessive models exist. In noisy situations
(e.g., ccd cameras in low-light conditions), it is often useful to
remove the short tracks that may result from random correspon-
dences. Further details of this method can be found at http://
www.ai.mit.edu/projects/vsam/.

4 PERFORMANCE OF THE TRACKER

On an SGI O2 with an R10000 processor, this method can process
11 to 13 frames a second (frame size 160� 120 pixels). The
variation in the frame rate is due to variation in the amount of
foreground present. Our tracking system has been effectively
storing tracking information for five scenes since 1997 [7]. Fig. 3
and Fig. 4 show accumulated tracks in two scenes over the period
of a day. While quick changes in cloud cover (relative to �, the
learning rate) can sometimes necessitate a new set of background
distributions, it will stabilize within 10-20 seconds and tracking
will continue unhindered.

The tracking system has the most difficulty with scenes
containing high occurrences of objects that visually overlap. The
multiple hypothesis tracker is not extremely sophisticated about
reliably disambiguating objects which cross. Adding more com-
plex dynamics or appearance templates [9] could help in this
regard. This problem can be compounded by long shadows, but,
for our applications, it was much more desirable to track an object
and its shadow and avoid cropping or missing dark objects than it
was to attempt to remove shadows. In our experience, on bright
days when the shadows are the most significant, both shadowed
regions and shady sides of dark objects are black (not dark green,
not dark red, etc.).

The tracker was robust to all but relatively fast lighting changes
(e.g., flood lights turning on and partly cloudy, windy days). It
successfully tracked outdoor scenes in rain, snow, sleet, hail,
overcast, and sunny days. It has also been used to track birds at a
feeder, mice at night using Sony NightShot, fish in a tank, people in a
lab environment, and objects in outdoor scenes. In these environ-
ments, it reduces the impact of repetitive motions from swaying
branches, rippling water, specularities, slow moving objects, and
acquisition noise. The system has proven robust to day/night cycles
and long-term scene changes. More recent results and project
updates are available at http://www.ai.mit.edu/projects/vsam/.

5 IMPROVING THE TRACKER

Although we find the results of the tracker encouraging, there are
still opportunities for improvement.
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As computers improve and parallel architectures are investi-
gated, this algorithm can be run faster, on larger images, and using
a larger number of Gaussians in the mixture model. All of these
factors will increase performance. A full covariance matrix would
further improve performance. Adding prediction to each Gaussian
(e.g., the Kalman filter approach) may also lead to more robust
tracking of lighting changes.

Beyond these obvious improvements, we are investigating

modeling some of the interdependencies of the pixel processes.

Relative values of neighboring pixels, correlations with neighboring

pixel's distributions, and simple texture measures may be useful

in this regard. This would allow the system to model changes in

occluded pixels by observations of some of its neighbors.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 8, AUGUST 2000 751

Fig. 3. This figure shows consecutive hours of tracking from 6am to 9am and 3pm
to 7pm. (a) shows the image at the time the template was stored and (b) shows the
accumulated tracks of the objects over that time. Color encodes object direction
and intensity encodes object size. The consistency of the colors within particular
regions reflects the consistency of the speed, direction, and size parameters which
have been acquired.

Fig. 4. This figure shows consecutive intervals of tracking on a different scene than

previous figure. Also, this particular day was foggy, then clear, then overcast. As

the templates show, the tracking was relatively unaffected.



Our method has been used on grayscale, RGB, HSV, and local
linear filter responses. But, this method should be capable of
modeling any streamed input source in which our assumptions
and heuristics are generally valid. We are investigating use of this
method with frame-rate stereo, IR cameras, and including depth as
a fourth channel (R,G,B,D). Depth is an example where multi-
modal distributions are useful because, while disparity estimates
are noisy due to false correspondences, those noisy values are
often relatively predictable when they result from false correspon-
dences in the background.

6 INTERPRETING THE MOTION TRACKS

Our simple adaptive background tracker has tracked over
10 million objects since 1997. As shown in Fig. 5, for every frame
that an object is tracked, its location (x, y), speed/direction (dx,
dy), and size are recorded. Also, an image of the object and a
binary motion silhouette are cropped from the original image and
the binary difference image, respectively.

Because of the stability and completeness of the representa-
tion, it is possible to do some simple classification based on
aspect ratio or size. Of more interest is classification based on
the actual movement or shape of the object. The two sets of
experiments discussed below perform classification based on
the {x, y, dx, dy, size} representation and the binary motion
silhouette representation using literally millions of training
examples. Rather than using sequences to create a sequence
classifier (as is most common), we are using the sequences to
create an instance classifier.

Our method involves developing a codebook of representations
using an on-line Vector Quantization (VQ) on the entire set of
representations acquired by the tracker. Second, we accumulate
joint co-occurrence statistics over the codebook by treating the set
of representations in each sequence as an equivalency multiset.
Finally, we perform hierarchical classification using only the
accumulated co-occurrence data.

6.1 Previous Work in Classification

There are countless examples of tracking systems that perform
predetermined classification tasks on tracked data, e.g., human vs.
vehicle or walking vs. running [2]; walking, marching, line-
walking, and kicking [3]; etc.

We are not interested in predetermined classification tasks. Our
method is most similar to the work of Johnson and Hogg [13]. They
begin their process by on-line Vector Quantization on the input
space. They then quantize again into a predetermined number of
probability distribution functions (pdfs) over their discrete states.
While a significant number of these pdfs will result in tight clusters
of activity, it is unclear how to relate two inputs that are grouped
into separate pdfs or to select the proper number of pdfs.

Our hierarchical classification involves a step that has the
flavor of Normalized Cuts and its many derivatives (see [22]).
It has discrete nodes (defined by the codebook). It has edges
which represent pairwise distances (or dissimilarities or costs)
between them. In addition, the goal is to determine two sets of

nodes that are dissimilar. However, that is the extent of the

similarity. Our ªcostsº are probabilities, not ªdistances.º Those

similarities are not directly related to the coordinates or

properties of the nodes, but rather are measured empirically

from the data. Our ªcutº does not produce two discrete sets

that minimize the cut ªsimilarities.º It produces two distribu-

tions that both explain the observed joint statistics and are

relatively dissimilar and match the co-occurrence data.
The following sections describe the method, show two sets of

results, discuss ways of improving this method, and draw

conclusions.

7 THE CLASSIFICATION METHOD

We assume that the tracker will produce a sequence of

representations of the same object. For example, a person

who is tracked through the scene for N frames will produce

N images, N binary silhouettes, N positions, N velocities, etc.

Unless the tracker makes a mistake in establishing correspon-

dence, every representation in a sequence should correspond to

the same underlying object. When developing a tracker for this

type of application, it is important to avoid tracking errors

involving false correspondences.
The following sections outline the basic process for classifica-

tion. First, a codebook of prototype representations is generated

using on-line Vector Quantization(VQ). Second, the automatically

tracked sequences are used to define a co-occurrence matrix over

the prototypes in the codebook. Finally, the co-occurrence data is

used to probabilistically break apart the prototypes in the code-

book into a binary tree representation. The result is a hierarchical

classifier which can classify any individual representation or

sequences of representations.

7.1 Codebook Generation

A codebook is a set of prototype representations which approx-

imate the density of the input representations. There are many

methods of developing codebooks of prototypes (see [6] for a

discussion).
For the quantity of data and the number of prototypes we use,

an off-line method, such as K-means, is not an option. The simplest

method of on-line Vector Quantization is to initialize the codebook

randomly with K prototypes centered at existing data points.

Then, take single data points, find the closest prototype in the

codebook, and adapt that prototype toward the data point using a

learning factor, �. This process is repeated for millions of data

points as the � value is slowly decreased until the prototypes are

stable and represent an equal amount of data. The input spaces we

dealt with did not require complex annealing strategies.
We occasionally encountered an initialization problem. Proto-

types seeded on outliers may be stranded, representing only that

data point. We circumvented this problem with a method used by

Johnson and Hogg [13] which enforces that each prototype

represents the same amount of data. Over time, stranded data

points account for larger regions of the input space until they

represent new data points. The prototypes are then adapted

toward the new data points until they represent as much data as all

the other points.
Once a codebook is generated, it is used as a lookup table for

incoming values, i.e., new values are represented by labels of

nearby prototypes. Given the desired size of the codebook, the goal

of quantizing is to determine a set of prototypes which best

represents the dataset. Our results were produced with codebooks

of 400 prototypes. More complex spaces (e.g., color image space)

would necessitate either more prototypes or more complex

prototypes.
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Fig. 5. This figure shows a single frame from a typical scene and the information

which recorded for the two moving objects. The fields which are used for the two

classification examples are labeled.



Depending on the complexity of the input space, it may be
difficult to create an effective codebook of representations. If all the
representations in the codebook are equally likely to result from all
the underlying classes, this system will fail. For example, if none of
the representations in your codebook is more likely to result from a
person than a vehicle, there will be no possibility of using those
representations to differentiate people and vehicles without
additional information.

While this may seem unsettling, we are encouraged by our
ability to generate large codebooks. Large codebooks are usually
troublesome because, as the size of the codebook, K, increases, the
amount of data needed for effective codebook generation increases
on the order of K. Also, the amount of data needed for co-
occurrence statistics accumulation increases on the order of K2.
Since our system automatically collects and processes data, we
have hundreds of gigabytes of tracking data for future processing
steps. And, our method converges as the amount of data increases
rather than suffering from over-fitting.

An area of high data point density may accumulate a large
portion of the prototypes, leaving few prototypes for the rest of
input space. In some cases, it may be desirable to have a large
number of prototypes in the high-density areas because those
regions may be the most ambiguous regions of the input space
(e.g., traffic at an intersection). In other cases, the areas of high
density may arise from uninteresting, repetitive input data (e.g.,
scene clutter) and there is no benefit to wasting a large portion of
your prototypes in that region. We currently filter most of the
sequences which are less than a few seconds in duration. This
filters most of the repetitive motions in the scene before the
learning process.

7.2 Accumulating Co-Occurrence Statistics

Once the codebook has been generated, the input space is no
longer considered. Every input data point is labeled as the most
representative prototypeÐthe one that is nearest to it. So, rather
than considering a sequence of images, binary silhouettes,
positions, or histograms, we convert to the codebook labels, then
only consider sequences of symbols, s1 through sK , corresponding
to the K prototypes.

Further, our method disregards the order of the sequence and
considers them as multisets of symbols. A multiset is a set which
can contain multiple instances of the same element. Each pair
within a sequence (excluding pairing a prototype label with itself)
is evidence that those two prototypes' appearances resulted from
the same underlying class.

The goal of this system is to produce a classification system
which can be given one or more observations (e.g., an image, a
silhouette, etc.) of a particular object and classify it into a set of
classes such that the same type of object tends to be put in the same
class. This is in contrast to systems that are specifically designed to
recognize sequences (e.g., Hidden Markov Models). When the
system has learned to classify an object based on its motion
silhouette, color histogram, or size, it should be capable of doing so
with a single example. Of course, the system should perform better
if given multiple examples, but it should not rely on seeing a
complete sequence.

Our model for the production of the sequences is simple. There
are N underlying classes, each of which occurs with some prior
probability, �c. A class c, when observed, has some probability
distribution, pc��, of producing each of the prototype's symbols. As
long as the object is observed, it will produce symbols given the
same distribution. This model reflects our assumption of the
independence of samples in a sequence discussed earlier.

The multisets of prototypes are used to estimate a co-occurrence
matrix, C where ci;j is the estimated probability that a sequence
from the training sequences will contain an input represented by

the ith prototype and a separate input represented by the jth

prototype.
First, a matrix of the accumulated co-occurrences, Ctotal

i;j , is

initialized to zeros or a prior joint distribution (see Section 10). Given

a multiset, each possible pair (excluding pairing symbols with

themselves) is added to Ctotal, weighted inversely by the number of

pairs in that sequence. Given a sequence, S � fS1; S2; . . .g, for each

pair fSi; Sj where i 6� jg

Ctotal
i;j � Ctotal

i;j � 1=P; �10�
where P � jSj2 ÿ jSj is the number of valid pairs in this

sequence. Then, the current joint co-occurrence estimate, C, is

Ctotal normalized

C � Ctotal=Z; �11�
where Z is the number of sequences currently used to estimate

Ctotal.
If there was a single underlying class and infinite sequences to

train, Ci;j would converge to p1�i� � p1�j�. In such a case, nothing

can be said about the relative relationships of the prototypes. With

N underlying classes,

lim
Z!1

Ci;j �
XN
c�1

�c � pc�i� � pc�j�: �12�

Given enough synthetically produced data from a system for

which each class has one prototype for which it is the sole

producer, it is possible to solve for all parameters of the model.

Since this is a restrictive case, we will not pursue it here. The next

section outlines how our system extracts a hierarchical approxima-

tion to these classes.

7.3 Hierarchical Classification

Our classification method takes the entire set of prototypes and the

co-occurrence matrix and attempts to determine two distributions,

or probability mass functions(pmfs), across the prototypes of the

codebook that best explain the co-occurrence matrix. Once these

distributions are determined, each distribution is treated as another

set of prototypes and their co-occurrence matrix is estimated. The

process is repeated until a stopping criterion is reached.
The root of the tree represents the universal pmf, including

every prototype in proportion to how often it occurred. At each

branch in the tree, the pmf is broken into two separate pmfs that

are relatively dissimilar. This process does not necessarily

guarantee that the two pmfs will sum to the parent pmf.
At each branch, we initialize two random pmfs with two priors,

�1 and �2, and use the pmfs and priors to create an estimate of the

co-occurrence matrix,

Ĉi;j �
XN
c�1

�c � pc�i� � pc�j�; �13�

and iteratively reestimate the parameters to minimize the sum

squared error6

E �
X
i;j

�Ci;j ÿ Ĉi;j�2: �14�

The update rules that minimize the error function with respect

to our model parameters are
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6. Arguably, the Kullback-Leibler (KL) distance, (
P

i;j�Ci;jln Ci;j

Ĉi;j
�) would

be more appropriate in comparing distributions. We are currently
investigating this and other error functions and the update rules which
result.



�c � �1ÿ ��� � �c � ���� �
X
i;j

�Ci;j ÿ Ĉi;j�pc�i� � pc�j� �15�

and

pc�i� � �1ÿ �p� � pc�i� � ��p� �
X
j

�Ci;j ÿ Ĉi;j� � pc�j�; �16�

where c is the class (c 2 f0; 1g) and the learning factor for the
priors, ��, is higher than the learning factor for the pmfs, �p. It is
sometimes useful to put soft constraints on the priors to insure
both distributions represent significant portions of the co-occur-
rence data.

At each branch, the parent distribution is used to estimate the

co-occurrences that result from that class. The co-occurrence for the

left branch subproblem would be derived from the original co-

occurrence, C, and the left pmf, p0�:�, as follows:

C0
i;j � Ci;j � p0�i� � p0�j�: �17�

C0 is used to determine the children pmfs of p0�:�, p00�:�, and p01�:�.
For example, if a pmf was uniform over half the prototypes, the co-
occurrence matrix used for its children would include only the co-
occurrences between those prototypes. If this was not done, every
branch may result in the same pmfs as the initial branch.

Once the parameters for the pmfs have been determined, any
exclusive set of them can be used as classifiers. An exclusive set of
prototypes can be determined by using the leaf nodes of any pruned
version of the binary tree. We prune after any node whose children's
distributions similarity exceeds a threshold, although Fig. 7 shows a
complete tree before the pruning for evaluation purposes. All leaf
nodes are associated with a probability distribution across the
prototypes that can now be used to classify sequences.

7.4 Classifying a Sequence

Each observation in a sequence is treated as an independent

observation. Thus, the probability of a particular class is the

product of the probabilities of that class producing each of the

observations in the sequence. This can be computed by using the

dot product of the log of the pmfs (with prior) with the

accumulated prototype histogram from the sequence. Note that if

the prototypes were split into two distinct classes, even observa-

tions which mapped to extremely ambiguous prototypes would

count toward one class or the other in equal proportion to the

definitive examples.
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Fig. 6. This figure shows a synthetic classification example with three underlying
classes shown in the upper left. The first branch separates the class whose pmf
doesn't have any overlap from the other two, p1. That separable class cannot be
further separated. The other two class pmfs are separated at the next branch (into
p00 and p01).

Fig. 7. This figure shows an image of the scene (upper left), the classification hierarchy (center), and the co-occurrence matrix and normalized pmfs (upper right) for each
element of the tree. The scene contains a road with adjacent parking spots and a path through the grass near the loading bay of our building. The binary tree shows
accumulated motion templates for each node of the tree. And the co-occurrence matrix and normalized pmfs show which prototypes occurred within the same sequences
and the probability distributions for each node in the tree (ordered breadth-first). The final level of the tree specific classes including: pedestrians on the path (one class in
each direction), pedestrians and lawn-mowers on the lawn, activity near the loading dock, cars, trucks; etc. These classes can be viewed in a Java 1.1 compatible
browser at: http://www.ai.mit.edu/projects/vsam/Classification/. Note: the columns and rows of the co-occurrence matrix have been ordered to make some of its structure
more apparent.



7.5 A Simple Example

Fig. 6 shows a synthetic example. Using the predefined classes and

priors, a root co-occurrence matrix can be formed. At each branch,

the pmf is broken into two pmfs which best explain the observed

joint co-occurrences. The classification hierarchy behaves as would

be expected, first breaking apart the class which never presents like

the other two classes, then breaking remaining two classes.

8 RESULTS

The following two examples involve creating a classification

hierarchy using the same number of prototypes, the same learning

parameters, and the same sequences produced by our tracking

system. The only difference is that they use different representa-

tions. The first example classifies activity based on a 5-tuple (image

position, speed, direction, and size). The second example classifies

shape based on a 1,024-tuple (32� 32 binary silhouettes).

8.1 Classifying Activities

This example classifies objects based on a representation of their

position, speed, direction and size (x, y, dx, dy, s). First,

400 representative prototypes are determined. Each prototype

represents all the objects of a particular size that are seen in a

particular area of a scene moving in a particular direction.

Cooccurrences are accumulated using 24 hours of sequences from

that scene. Finally, the universal pmf (the true pmf of the entire set

of sequences) is probabilistically broken into two pmfs.
The process is repeated to produce a binary tree of height 4

detailed in Fig. 7. Fig. 8 shows the history of one particular day.

Note that the scene contains a road with adjacent parking spots

and a path through the grass near the loading bay of our building.

The binary tree shows accumulated motion templates for each

node of the tree. The first break separates traffic moving in one

direction around the building and traffic moving in the other

direction because objects in this scene did not generally change

their direction. The second break for both branches separates traffic

on the road and traffic on the path. While there are some prototype

states which are common to both activities, these two activities

were significantly different and accounted for a significant amount

of the data. Further bifurcations result in classes for: pedestrians on

the path, pedestrians and lawn-mowers on the lawn, activity near

the loading dock, cars, trucks, etc. These classes can be viewed in a

Java 1.1 compatible browser at: http://www.ai.mit.edu/projects/

vsam/Classification/.
Fig. 10 shows the distribution of events over a 24 hour period,

highlighting the changes in density of pedestrian and vehicular

traffic as a function of time.

8.2 Classifying Motion Silhouettes

While this example results in a rather simple classification, it

illustrates an intended use for this type of classification. VQ

resulted in 400 silhouettes of vehicles and people. The first break

broke the silhouettes into two relatively discrete classes, people,

and vehicles. Some of the more blurry prototypes remained

ambiguous because they matched both vehicles and people. These

prototypes were shared between the two classes. Fig. 9 shows the

co-occurrence matrix, the pmfs, and some examples of prototypes

from both classes.
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Fig. 8. This figure shows how many of the activities were detected on a particular day. The first two columns correspond to the initial branch. The following four columns

correspond to the next level of the binary classification tree. The last eight columns are the leaf nodes of the classification tree. Below some of the columns the primary

type of activity for that node is listed. Morning rush hour is highlighted in green (light gray) and shows traffic moving mostly in one direction. The lunch-time pedestrian

traffic is highlighted in red (gray). The evening rush hour is highlighted in blue (dark gray) and shows more movement in the opposite direction as the morning rush hour.



Fig. 10 shows classification of a day of silhouette sequences.
After setting the similarity parameter for pruning, the resulting
classifier first separated vehicles as they were decisively different

from the other silhouettes. This means that while vehicles

appeared at many different angles within their sequences, few

sequences contained both vehicles and people. The next break was

individual pedestrians. Then, the last break removed groups of

pedestrians from clutter and lighting effects.
The daily activity histograms show some interesting facts. The

highest occurrences of people and cars was in the morning and

evening as expected. Groups of people tended to occur most

shortly after noon. The clutter was primarily trees, garbage, and

lighting effects on the sides of buildings. The histogram and

images show that it was a very windy morning and the lighting

effects occurred near dusk.

9 DETECTING UNUSUAL EVENTS

Often, a particular scene will contain events which have never

occurred or occur so rarely that they are not represented in the

clustered activities. In many cases, it is these events that are of most

interest.
Because we can build representations of common patterns in a

site, we are able to use that information to detect uncommon

patterns. We have done some preliminary work on determining

unusual activities as they occur. Our system measures two aspects

of how usual each track is. First, it measures the typicality of each

of the instantaneous states using the codebook as a density

approximator. Second, it looks at the co-occurrences exhibited by

the sequence in relation to the accumulated co-occurrence

statistics. Both measures can provide evidence in support of an

unusual event and we are currently developing this work and

determining methods by which to evaluate them.
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Fig. 9. (a) shows the co-occurrence matrix and resulting pmfs. Some of the
prototypes from the person class (b), vehicle class (c), and some prototypes which
were significantly ambiguous (d). In C, the upper left corresponds to silhouettes of
people and the lower right corresponds to silhouettes of vehicles. The vehicles
show less statistical independence because vehicles in this particular scene were
only seen as they passed through particular orientations. If the scene contained
vehicles driving in circles, the corresponding prototypes would exhibit more
independence. Note: the co-occurrence matrix has been ordered to make some of
its structure more apparent.

Fig. 10. On the left are the 400 silhouette prototypes and the co-occurrence matrix that resulted from a day's worth of tracking sequences. In the middle is the

classification hierarchy which resulted, images of all occurrences of each class, and description of the classes, as well as their performance relative to those descriptions.

On the right are 24-hour histograms of the occurrences of each class. See web page for more higher quality images.



10 CLASSIFICATION SHORTCOMINGS AND FUTURE

WORK

Admittedly, the scene that these classifiers were derived from was
well-suited to this problem. Some scenes containing the same types
of objects would have resulted in classification hierarchies without
as much structure. For example, if cars drove straight through the
scene on two separate roads, there may be no sequences of cars
moving from one road to the other. Without such evidence, there is
no reason to expect that the two resulting classes would be near
each other in the hierarchy. Unless the extended scene with
multiple cameras shows that two representations are similar, it will
have to be told by a short supervision process following training.

The most obvious weakness of this algorithm is the need to

discretize complex input spaces. We are currently investigating

automatically deriving local feature sets using VQ on subimages

and learning those features similarities using local (in time and

space) co-occurrence measurements. Doing this hierarchically holds

promise for learning useful feature sets and better prototypes.
This could also be useful for texture segmentation. For example,

create 10,000 texture prototypes and define their similarity based
on which prototypes occur near other prototypes (spatially and
temporally). Learning similarities this way, rather than attempting
to assert a prior for which textures are similar, takes advantage of
domain specific regularities and could define regularities in
domains where it is not certain how similar two textures are.

Of course, assumed similarities are useful, particularly in cases
where there is not enough data. In such cases, the Ctotal can be
seeded with a co-occurrence matrix. Hence, prototypes without
sufficient representation will assume the similarities they are
given, while the similarities of the prototypes which are observed
often are determined by the data.

Finally, we are investigating using both the prototypes and the
co-occurrences to detect outliers. If many data points in a sequence
are not represented by a prototype, it may be an unusual event.
Also, if a sequence's co-occurrences are very unlikely given the
joint co-occurrences, it is likely to be unusual.

Anomaly detection and classification in general would be
greatly enhanced by learning context cycles. If we could learn a
traffic light cycle, we could detect that cars running the light are
unusual, even though their pattern of activity was not unusual. If
we could learn daily cycles, our models could contain specific
prototypes for day and night (e.g., headlights vs. full vehicles).
Also, only deliveries made at night may be unusual.

11 CONCLUSIONS

This paper has shown a novel, probabilistic method for back-
ground subtraction. It involves modeling each pixel as a separate
mixture model. We implemented a real-time approximate method
which is stable and robust. The method requires only two
parameters, � and T. These two parameters are robust to different
cameras and different scenes.

This method deals with slow lighting changes by slowly
adapting the values of the Gaussians. It also deals with multimodal
distributions caused by shadows, specularities, swaying branches,
computer monitors, and other troublesome features of the real
world which are not often mentioned in computer vision. It
recovers quickly when background reappears and has an auto-
matic pixel-wise threshold. All these factors have made this tracker
an essential part of our activity and object classification research.

This system has been successfully used to track people in
indoor environments, people and cars in outdoor environments,
fish in a tank, ants on a floor, and remote control vehicles in a lab
setting. All these situations involved different cameras, different
lighting, and different objects being tracked. This system achieves
our goals of real-time performance over extended periods of time
without human intervention.

We have also motivated and implemented a new approach to
automatic object classification. This approach has shown promise
with two contrasting classification problems. In one case, it
produced a nonparametric activity classifier. In the other case, it
produced an binary image-based classifier. We are currently
investigating many other possible uses for this method.
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