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Abstract—There are two open problems when finite mixture densities are used to

model multivariate data: the selection of the number of components and the

initialization. In this paper, we propose an online (recursive) algorithm that

estimates the parameters of the mixture and that simultaneously selects the

number of components. The new algorithm starts with a large number of randomly

initialized components. A prior is used as a bias for maximally structured models.

A stochastic approximation recursive learning algorithm is proposed to search for

the maximum a posteriori (MAP) solution and to discard the irrelevant

components.

Index Terms—Online (recursive) estimation, unsupervised learning, finite

mixtures, model selection, EM-algorithm.
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1 INTRODUCTION

FINITE mixture probability density models have been analyzed
many times and used extensively for modeling multivariate data
[16], [8]. In [3] and [6], an efficient heuristic was used to
simultaneously estimate the parameters of a mixture and select
the appropriate number of its components. The idea is to start with
a large number of components and introduce a prior to express our
preference for compact models. During some iterative search
procedure for the MAP solution, the prior drives the irrelevant
components to extinction. The “entropic-prior” from [3] leads to a
MAP estimate that minimizes the entropy and, hence, leads to a
compact model. The Dirichlet prior from [6] gives a solution that is
related to model selection using the “Minimum Message Length”
(MML) criterion [20].

This paper is inspired by the aforementioned papers [3], [6].

Our contribution is in developing an online version which is

potentially very useful in many situations since it is highly

memory and time efficient. We use a stochastic approximation

procedure to estimate the parameters of the mixture recursively.

More on the behavior of approximate recursive equations can be

found in [13], [5], [15]. We propose a way to include the suggested

prior from [6] in the recursive equations. This enables the online

selection of the number of components of the mixture. We show

that the new algorithm can reach solutions similar to those

obtained by batch algorithms.
In Sections 2 and 3 of the paper, we introduce the notation and

discuss some standard problems associated with finite mixture

fitting. In Section 4, we describe the mentioned heuristic that

enables us to estimate the parameters of the mixture and to

simultaneously select the number of its components. Further, in

Section 5, we develop an online version. The final practical

algorithm we used in our experiments is described in Section 6. In

Section 7, we demonstrate how the new algorithm performs for a
number of standard problems and compare it to some batch
algorithms.

2 PARAMETER ESTIMATION

A mixture density with M components for a d-dimensional random
variable ~xx is given by:

pð~xx;~��Þ ¼
XM
m¼1

�mpmð~xx;~��mÞ; with
XM
m¼1

�m ¼ 1; ð1Þ

where ~�� ¼ f�1; ::; �M;~��1; ::; ~��Mg are the parameters. The number of
parameter depends on the number of components M and the
notation ~��ðMÞ will be used to stress this when needed. The mth
component of the mixture is denoted by pmð~xx;~��mÞ and ~��m are its
parameters. The mixing weights denoted by �m are nonnegative
and add up to one.

Given a set of t data samples X ¼ f~xxð1Þ; . . . ;~xxðtÞg the maximum
likelihood (ML) estimate of the parameter values is:

b~��~�� ¼ argmax
~��

ðlog pðX ;~��ÞÞ:

The Expectation Maximization (EM) algorithm [4] is commonly
used to search for the solution. The EM algorithm is an iterative
procedure that searches for a local maximum of the log-likelihood
function. In order to apply the EM algorithm, we need to introduce
for each ~xx a discrete unobserved indicator vector ~yy ¼ ½y1 . . . yM �T .
The indicator vector specifies (by means of position coding) the
mixture component from which the observation ~xx is drawn. The
new joint density function can be written as a product:

pð~xx;~yy;~��Þ ¼ pð~yy;�1; ::; �MÞpð~xxj~yy;~��1; ::; ~��MÞ ¼
YM
m¼1

�ymm pmð~xx;~��mÞym ;

where exactly one of the ym from~yy can be equal to 1 and the others

are zero. The indicators ~yy have a multinomial distribution defined

by the mixing weights �1; ::; �M . The EM algorithm starts with

some initial parameter estimate
b~��~��ð0Þ. If we denote the set of

unobserved data by Y ¼ f~yyð1Þ; . . . ;~yyðtÞg the estimate
b~��~��ðkÞ from the

kth iteration of the EM algorithm is obtained using the previous

estimate
b~��~��ðk�1Þ:

E step : Qð~��; b~��~��ðk�1ÞÞ ¼ EYðlog pðX ;Y;~��ÞjX ;
b~��~��ðk�1ÞÞ ¼X

all possible Y
pðYjX ;

b~��~��ðk�1ÞÞ log pðX ;Y;~��Þ

M step :
b~��~��ðkÞ ¼ argmax

~��
ðQð~��; b~��~��ðk�1ÞÞÞ:

ð2Þ

The attractiveness of the EM algorithm is that it is easy to
implement and it converges to a local maximum of the log-
likelihood function. However, one of the serious limitations of the
EM algorithm is that it can end up in a poor local maximum if not
properly initialized. The selection of the initial parameter values is
still an open question that was studied many times. Some recent
efforts were reported in [3], [6], [17], [18], [19].

3 MODEL SELECTION

Note that, in order to use the EM algorithm, we need to know the
appropriate number of componentsM. Too many components lead
to “overfitting” and too few to “underfitting.” Choosing an
appropriate number of components is important. Sometimes, for
example, the appropriate number of components can reveal some
important existing underlying structure that characterizes the data.
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Full Bayesian approaches sample from the full a posteriori

distribution with the number of components M considered

unknown.This ispossibleusingMarkov chainMonteCarlomethods

as reported in [11], [10]. However, these methods are still far too

computationally demanding. Most of the practical model selection

techniques are based on maximizing the following type of criteria:

JðM;~��ðMÞÞ ¼ log pðX ;~��ðMÞÞ � P ðMÞ: ð3Þ

Here, log pðX ;~��ðMÞÞ is the log-likelihood for the available data.

This part can be maximized using the EM. However, introducing

more mixture components always increases the log-likelihood. The

balance is achieved by introducing P ðMÞ that penalizes complex

solutions. Some examples of such criteria are the Akaike Informa-

tion Criterion [1], the Bayesian Inference Criterion [14], the

Minimum Description Length [12], the Minimum Message Length

(MML) [20], etc. For a detailed review, see, for example, [8].

4 SOLUTION USING MAP ESTIMATION

The standard procedure for selecting M is the following: Find the

ML estimate for different M-s and choose the M that maximizes

(3). Suppose that we introduce a prior pð~��ðMÞÞ for the mixture

parameters that penalizes complex solutions in a similar way as

P ðMÞ from (3). Instead of (3), we could use:

log pðX ;~��ðMÞÞ þ log pð~��ðMÞÞ: ð4Þ

As in [6] and [3], we use the simplest prior choice, the prior only on

the mixing weights �m-s. For example, the Dirichlet prior (see [7],

chapter 16) for the mixing weights is given by:

pð~��ðMÞÞ / exp
XM
m¼1

cm log �m ¼
YM
m¼1

�cmm : ð5Þ

The procedure is then as follows: We start with a large number

of randomly initialized components M and search for the MAP

solution using some iterative procedure, for example, the

EM algorithm. The prior drives the irrelevant components to

extinction. In this way, while searching for the MAP solution,

the number of components M is reduced until the balance is

achieved.
It can be shown that the standard MML model selection

criterion can be approximated by the Dirichlet prior with the

coefficients cm equal to �N=2, where N presents the number of

parameters per component of the mixture. See [6] for details. The

parameters cm have a meaningful interpretation. For a multinomial

distribution, the cm presents the prior evidence (in the MAP sense)

for the class m (number of samples a priori belonging to that class).

Negative prior evidence means that we will accept that the class m

exists only if there is enough evidence from the data for the

existence of this class. If there are many parameters per

component, we will need many data samples to estimate them.

In this sense, the presented linear connection between the cm and

N seems very logical. The procedure from [6] starts with all the

�m-s equal to 1=M . Although there is no proof of optimality, it

seems reasonable to discard the component m when its weight �m
becomes negative. This also ensures that the mixing weights stay

nonnegative.
The “entropic prior” from [3] has a similar form: pð~��ðMÞÞ / exp

ð��Hð�1, . . . ; �MÞÞ, whereHð�1; . . . ; �MÞ ¼ �
PM

m¼1 �m log �m is the

entropy measure for the underlying multinomial distribution and �

is a parameter.Weuse thementionedDirichlet prior because it leads

to a closed form solution.

5 RECURSIVE (ONLINE) SOLUTION

For the ML estimate, the following holds: @

@
b~��~�� log pðX ;

b~��~��Þ ¼ 0. The

mixing weights are constrained to sum up to 1. We take this into

account by introducing the Lagrange multiplier � and get:

@
@�̂�m

log pðX ;
b~��~��Þ þ �ð

PM
m¼1 �̂�m � 1Þ

� �
¼ 0. From here, after getting

rid of �, it follows that the ML estimate for t data samples should

satisfy �̂�ðtÞm ¼ 1
t

Pt
i¼1 o

ðtÞ
m ð~xxðiÞÞ with the “ownerships” defined as:

oðtÞm ð~xxÞ ¼ �̂�ðtÞm pmð~xx; b~��~��ðtÞm Þ=pð~xx; b~��~��ðtÞÞ: ð6Þ

Similarly, for the MAP solution, we have @
@�̂�m

ðlog pðX ;
b~��~��Þ + log

pðb~��~��Þ þ �ð
PM

m¼1 �̂�m � 1ÞÞ ¼ 0, where pðb~��~��Þ is the mentioned Dirichlet

prior (5). For t data samples, we get:

�̂�ðtÞm ¼ 1

K

Xt
i¼1

oðtÞm ð~xxðiÞÞ � c

 !
; ð7Þ

where K ¼
PM

m¼1ð
Pt

i¼1 o
ðtÞ
m ð~xxðiÞÞ � cÞ ¼ t�Mc (since

PM
m¼1 o

ðtÞ
m

¼ 1). The parameters of the prior are cm ¼ �c (and c ¼ N=2 as

mentioned before). We rewrite (7) as:

�̂�ðtÞm ¼ �̂�m � c=t

1�Mc=t
; ð8Þ

where �̂�m ¼ 1
t

Pt
i¼1 o

ðtÞ
m ð~xxðiÞÞ is the mentioned ML estimate and the

bias from the prior is introduced through c=t. The bias decreases

for larger data sets (larger t). However, if a small bias is acceptable

we can keep it constant by fixing c=t to cT ¼ c=T with some large T .

This means that the bias will always be the same as if it would have

been for a data set with T samples. If we assume that the

parameter estimates do not change much when a new sample

~xxðtþ1Þ is added and, therefore, oðtþ1Þ
m ð~xxðiÞÞ can be approximated by

oðtÞm ð~xxðiÞÞ that uses the previous parameter estimates, we get the

following well behaved and easy to use recursive update equation:

�̂�ðtþ1Þ
m ¼ �̂�ðtÞm þ ð1þ tÞ�1 oðtÞm ð~xxðtþ1ÞÞ

1�McT
� �̂�ðtÞm

� �
� ð1þ tÞ�1 cT

1�McT
:

ð9Þ

Here, T should be sufficiently large to make sure that McT < 1. We

start with initial �̂�ð0Þm ¼ 1=M and discard the mth component when

�̂�ðtþ1Þ
m < 0. Note that the straightforward recursive version of (7)

given by: �̂�ðtþ1Þ
m ¼ �̂�ðtÞm þ ð1þ t�McÞ�1ðoðtÞm ð~xxðtþ1ÞÞ � �̂�ðtÞm Þ, is not

very useful. For small t, the update is negative and the weights

for the components with high oðtÞm ð~xxðtþ1ÞÞ are decreased instead of

increased. In order to avoid the negative update, we could start

with a larger value for t, but then we cancel out the influence of the

prior. This motivates the important choice we made to fix the

influence of the prior.
The most commonly used mixture is the Gaussian mixture. A

mixture component pmð~xx;~��mÞ ¼ N ð~xx;~��m;CmÞ has its mean ~��m and

its covariance matrix Cm as the parameters. The prior has influence

only on the mixing weights and we can use the recursive equations:

b~��~��ðtþ1Þ
m ¼ b~��~��ðtÞ

m þ ðtþ 1Þ�1 o
ðtÞ
m ð~xxðtþ1ÞÞ

�̂�
ðtÞ
m

ð~xxðtþ1Þ � b~��~��ðtÞ
m Þ ð10Þ

ĈCðtþ1Þ
m ¼ ĈCðtÞ

m þ ðtþ 1Þ�1 o
ðtÞ
m ð~xxðtþ1ÞÞ

�̂�
ðtÞ
m

�
ð~xxðtþ1Þ � b~��~��ðtÞ

m Þð~xxðtþ1Þ � b~��~��ðtÞ
m ÞT

� ĈCðtÞ
m

�
ð11Þ

from [15] for the rest of the parameters.
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6 A SIMPLE PRACTICAL ALGORITHM

For an online procedure, it is reasonable to fix the influence of the

new samples by replacing the term ð1þ tÞ�1 from the recursive

update equations (9), (10), and (11) by � ¼ 1=T . There are also

some practical reasons for using a fixed small constant �. It reduces

the problems with instability of the equations for small t.

Furthermore, a fixed � helps in forgetting the out-of-date statistics

(random initialization and component deletion) more rapidly. It is

equivalent to introducing an exponentially decaying envelope:

�ð1� �Þt�i is applied to the influence of the sample ~xxðt�iÞ.
For the sake of clarity, we present here the whole algorithm we

used in our experiments. We start with a large number of

components M and with a random initialization of the parameters

(see next section for an example). We have cT ¼ �N=2. Further-

more, we use Gaussian mixture components with full covariance

matrices. Therefore, if the data is d-dimensional, we have N ¼
dþ dðdþ 1Þ=2 (the number of parameters for a Gaussian with a full

covariance matrix). The online algorithm is then given by:

. Input: new data sample ~xxðtþ1Þ, current parameter estimatesb~��~��ðtÞ.

. Calculate “ownerships:” oðtÞm ð~xxðtþ1ÞÞ ¼ �̂�ðtÞm pmð~xxðtþ1Þ;
b~��~��ðtÞm Þ=

pð~xxðtþ1Þ;
b~��~��ðtÞÞ.

. Update mixture weights: �̂�ðtþ1Þ
m ¼ �̂�ðtÞm þ �ðo

ðtÞ
m ð~xxðtþ1ÞÞ
1�McT

� �̂�ðtÞm Þ �
� cT

1�McT
.

. Check if there are irrelevant components: if �̂�ðtþ1Þ
m < 0,

discard the component m, set M ¼ M � 1 and renormalize
the remaining mixing weights.

. Update the rest of the parameters:

- b~��~��ðtþ1Þ
m ¼ b~��~��ðtÞ

m þ w~�� (where w ¼ � o
ðtÞ
m ð~xxðtþ1ÞÞ

�̂�
ðtÞ
m

and ~�� ¼ ~xxðtþ1Þ -b~��~��ðtÞ
m Þ.

- ĈCðtþ1Þ
m ¼ ĈCðtÞ

m þ wð~��~��T � ĈCðtÞ
m Þ (tip: limit the update

speed w ¼ minð20�;wÞ).
. Output: new parameter estimates

b~��~��ðtþ1Þ
.

This simple algorithm can be implemented in only a few lines

of code. The recommended upper limit 20� for w simply means

that the updating speed is limited for the covariance matrices of

the components representing less than 5 percent of the data. This

was necessary since ~��~��T is a singular matrix and the covariance

matrices may become singular if updated too fast.

7 EXPERIMENTS

In this section, we demonstrate the algorithm performance on a

few standard problems. We show summary results from 100 trials

for each data set. For the real-world data sets, we randomly sample

from the data to generate longer sequences needed for our

sequential algorithm. First, for each of the problems, we present

in Fig. 1 how the selected number of components of the mixture

was changing when new samples are sequentially added. The

number of components that was finally selected is presented in the

form of a histogram for the 100 trials. In Fig. 2, we present a

comparison with some batch algorithms and study the influence of

the parameter �.
The random initialization of the parameters is the same as in

[6]. The means b~��~��ð0Þ
m of the mixture components are initialized by

some randomly chosen data points. The initial covariance matrices

are a fraction (1=10 here) of the mean global diagonal covariance

matrix:

Cð0Þ
m ¼ 1

10d
trace

1

n

Xn
i¼1

ð~xxðiÞ � b~��~��Þð~xxðiÞ � b~��~��ÞT !
I;

where b~��~�� ¼ 1
n

Pn
i¼1 ~xx

ðiÞ is the global mean of the data and I is the
identity matrix with proper dimensions. We used the first
n ¼ 100 samples (it is also possible to estimate this initial
covariance matrix recursively). Finally, we set the initial mixing
weights to �̂�ð0Þm ¼ 1=M. The initial number of components M

should be large enough so that the initialization reasonably covers
the data. We used here the same initial number of components as
in [6].

7.1 The “Three Gaussians” Data Set

First, we analyze a Gaussian mixture with mixing weights
�1 ¼ �2 ¼ �3 ¼ 1=3, means �1 ¼ ½0 � 2�T , �2 ¼ ½0 0�T , �3 ¼ ½02�T ,
and covariance matrices

C1 ¼ C2 ¼ C3 ¼
2 0
0 0:2

� �
:

A modified version of the EM called “DAEM” from [17] was able
to find the correct solution using a “bad” initialization. For a data
set with 900 samples, they needed more than 200 iterations to get
close to the solution. Here, we start with M ¼ 30 mixture
components. With random initialization, we performed 100 trials
and the new algorithm was always able to find the correct solution
while simultaneously estimating the parameters of the mixture and
selecting the number of components. A similar batch algorithm
from [6] needs about 200 iterations to identify the three
components (on a data set with 900 samples). From the plot in
Fig. 1, we see that already after 9,000 samples the new algorithm is
usually able to identify the three components. The computation
costs for 9,000 samples are approximately the same as for only
10 iterations of the EM algorithm on a data set with 900 samples.
Consequently, the new algorithm for this data set is about 20 times
faster in finding a similar solution (a typical solution is presented
in Fig. 1 by the “� ¼ 2 contours” of the Guassian components). In
[9], some approximate recursive versions of the EM algorithm
were compared to the standard EM algorithm and it was shown
that the recursive versions are usually faster. This is in correspon-
dence with our results. Empirically, we decided that 50 samples
per class are enough and used � ¼ 1=150.

7.2 The “Iris” Data Set

We disregard the class information from the well-known 3-class, 4-
dimensional “Iris” data set [2]. From the 100 trials, the clusters
were properly identified 81 times. This shows that the order in
which the data is presented can influence the recursive solution.
The data set had only 150 samples (50 per class) that were repeated
many times. We expect that the algorithm would perform better
with more data samples. We used � ¼ 1=150. The typical solution
in Fig. 1 is presented by projecting the 4-dimensional data to the
first two principal components.

7.3 The “Shrinking Spiral” Data Set

This data set presents a 1-dimensional manifold (“shrinking spiral”)
in the three dimensions with added noise: ~xx ¼ ½ð13� 0:5tÞ cos t
ð0:5t� 13Þ sin t t� þ ~nn, with t � Uniform½0; 4�� and the noise
~nn � Nð0; IÞ. The modified EM called “SMEM” from [18] was
reported to be able to fit a 10 component mixture in about
350 iterations. The batch algorithm from [6] is fitting the mixture
and selecting 11, 12, or 13 components using typically 300 to
400 iterations for a 900 samples data set. From the graph in Fig. 1, it is
clear that we achieve similar results, but much faster. About
18,000 samples was enough to arrive at a similar solution.
Consequently, again, the new algorithm is about 20 times faster.
There are no clusters in this data set. The fixed� has as the effect that
the influence of the old data is downweighted by the exponential
decaying envelope �ð1� �Þt�k (for k < t). For comparison with the
other algorithms that used 900 samples, we limited the influence of
the older samples to 5 percent of the influence of the current sample
by � ¼ � logð0:05Þ=900. In Fig. 1, we present a typical solution by
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showing for each component the eigenvector corresponding to the
largest eigenvalue of the covariance matrix.

7.4 The “Enzyme” Data Set

The 1-dimensional “Enzyme” data set has 245 data samples. It was
shown in [11] using the MCMC that the number of components
supported by the data is most likely four, but two and three are
also good choices. Our algorithm arrived at similar solutions. In a
similar way as before, we used � ¼ � logð0:05Þ=245.

7.5 Comparison with Some Batch Algorithms

The following standard batch methods were considered for
comparison: the EM algorithm initialized using the result from
k-means clustering; the SMEM method [18]; the greedy EM method
[19] that starts with a single component and adds new
ones—reported to be faster than the elaborate SMEM. We used
900 samples for the “Three Gaussians” and the “Shrinking Spiral”
data sets. The batch algorithms assume a known number of
components: three for the “Three Gaussians” and the “Iris” data,
13 for the “Shrinking Spiral,” and four for the “Enzyme” data set.
Our new unsupervised recursive algorithm RUEM has selected on
average approximately the same number of components for the

chosen �. All the iterative batch algorithms in our experiments
stop if the change in the log-likelihood is less than 10�5. The
results are presented in Fig. 2a. The best likelihood and the lowest
standard deviation are reported in bold. We also added the ideal
ML result obtained using a carefully initialized EM. For the “Iris”
data, the EM was initialized using the means and the covariances
of the three classes. However, the solution where the two close
clusters are modeled using one component was better in terms of
likelihood. This “wrong” solution was found occasionally by some
of the algorithms. The results from the RUEM are biased.
Furthermore, the parameter � is controlling the speed of updating
the parameters and, therefore, also the effective amount of data
that is considered. Therefore, we present also the results
“polished” by additionally applying the EM algorithm and using
the same sample size for the batch algorithms. The RUEM results
and the “polished” results are better or similar to the batch results.
We also observe that the greedy EM algorithm has problems with
the “Iris” and the “Shrinking spiral” data.

7.6 The Influence of the Parameter �

In Figs. 2b and 2c, we show the influence of the parameter � on the
selected number of components. We also plot the log-likelihood
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per sample for different values of �. For the “Three Gaussians“

data set, there is a range of values for � where the same number of

components is finally selected. We can expect similar results for

other data sets where the clusters are well described by the mixture

components and the components are well separated. For the

“Shrinking Spiral” data set, there are no clear clusters and the

number of selected components slowly declines with larger �.

Similarly, the log-likelihood also decreases with �. For comparison,

we plotted also some log-likelihood values from some batch

algorithms (see previous section). The new unsupervised proce-

dure simultaneously estimates parameters and selects a compact

model. We observe from the log-likelihood values that for a wide

range of values for �, we get a good representation of the data with

a compact model. The graphs for the real-world data “Iris” and

“Enzyme” are not included since they look similar to the graphs

for the “Shrinking Spiral” data.

8 DISCUSSION AND CONCLUSIONS

We have proposed an online method for fitting mixture models

which relies on a “description-length reducing” prior and a MAP

estimation procedure for selecting a compact model. The experi-

mental results indicated that the recursive algorithm was able to

solve difficult problems and to obtain similar solutions as other

elaborate batch algorithms. However, the theoretical support for

the finally selected number of components is questionable. Some

arguments in favor of the “entropic prior” and its connections to

other model selection criteria are given in [3]. The Dirichlet prior

we used is related to the well founded MML principle, but it can be
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perhaps better viewed as an efficient heuristics. Therefore, if
selecting the correct model is critical, we suggest, as in the much
slower batch version [6], to perform an additional check with some
standard model selection criterion (full MML for example). An
additional problem when compared to the batch version [6] is the
introduced parameter � that balances the influence of the data
against the influence of the prior. This is similar to the parameter �
from the “entropic prior” (� in [3]). Some experiments were
performed to show the influence of the parameter �. The
parameter � ¼ 1=T is related to the number of data samples T
that are considered and some heuristic choices were used in the
previous section. If selecting the correct number of components is
not critical the new recursive procedure is highly time and
memory efficient and potentially very useful to give a “quick“
up-to-date compact description of the data.
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