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Abstract—This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and

camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of

standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle

fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles.

Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality

variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we

employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous

features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across

disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by

combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines

and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers

the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a

delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by

representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover’s Distance (EMD).

Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID)

trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras.

Index Terms—Video object tracking and reacquisition, object matching, feature matching, image alignment and matching.

Ç

1 INTRODUCTION

OBJECT tracking from aerial platforms requires data
association over long periods of time. The object of

interest, vehicles for the purposes of this paper, may not
remain in the field of view continuously through the course
of tracking. The tracked objects leave the field of view
because of occlusions and inaccuracies in platform pointing
directions. When the vehicles appear again, the tracker
needs to verify if the currently observed vehicles are indeed
the same as the ones being tracked earlier. Another
important visual surveillance task requires multiple ob-
servations of the same vehicle viewed from different spatial
sightings to be reliably associated. In both applications, we
need to compute matching scores between a model
(learning) sequence and a query sequence, assuming that
frame-to-frame tracking is given as input. Several repre-
sentative learning and query “object chips” are shown in
Fig. 1. It is obvious that standard frame-to-frame association
techniques cannot be directly applied to match the learning
and query sequences in these applications because of the
amount of object scale, pose and appearance change, the

background clutter, and the lack of temporal and spatial
continuity.

Despite a flurry of research on object matching and
recognition [1], [2], [3], [4], [5], [6], [7], [8], online object
fingerprinting still remains a very challenging problem
because of the following reasons:

1. Limited training data is available. In contrast with
traditional approaches to object identification in
visual imagery, we cannot assume that every object
has been modeled beforehand.

2. There can be drastic pose changes between the
learning and query sequences. It is difficult to find
reliable invariant feature representations because of
occlusion and aspect change.

3. There can be large appearance changes. The pre-
sence of shadow and specularity makes matching
even more challenging.

4. Video objects captured from various platforms and
resolutions (2-20 cm/pixel typically) have to be
handled.

5. It is not realistic to require that the object be
accurately segmented from the background, thus
object masks may not be accurate.

6. There may be multiple similar objects present at the
same time.

To match objects under large pose, scale, and appearance
changes and with background clutter and confusers, it is
crucial to utilize as much information as possible. In this
paper, we propose a novel object matching technique based
on the exploitation and combination of heterogeneous
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features: corner-like and line features for reliable geometric
alignment and blob-like region features for comprehensive
coverage, delineation, and matching of the object region.
Each feature type is represented with suitable unique
invariant representations and plays a different role in
matching object geometry, appearance, and topology.
Specifically, blob-like features [9], [10] provide good cover-
age for an object, but they are usually not suitable for image
alignment due to the lack of localization accuracy. However,
they can be consistently tracked across frames over a short
period of time. Utilizing blob-like features within a sequence
provides an accurate object mask for subsequence object
matching across a sequence, if appropriate region descrip-
tors and matching criteria are utilized [11], [12]. Outliers
such as background clutter can be eliminated in the process
of region matching. In addition, blob features can be used for
overall object part configuration (topology) matching.
Corner-like features and line features cannot provide
sufficient extent of object coverage, but they possess good
localization property and they are effective for object
geometry matching (alignment), especially in cross sequence
matching (between query and learning sequences).

Key contributions of our approach are:

1. Development of heterogeneous feature descriptors
and respective match measures that utilize corner,
line, and region features in different stages of object
matching.

2. Development of a framework of using “within-
sequence matching” using region features to obtain
precise and sufficient object coverage plus “across-
sequence matching” with point and lines features to
achieve accurate image alignment.

3. Development of a robust blob detector and a match
metric (earth mover’s distance, EMD) to effectively
match and track regions.

4. Development of a quasi-rigid alignment method
based on invariant corner and line features to align
images under large pose and appearance changes.
The method avoids the explicit computation of a
nonparametric 3D motion field by approximating it
with a feature constrained quasi-rigid piecewise

parametric motion model. It does not need explicit
camera calibration, or dense reconstruction of
3D scenes. It can handle both parametric and
nonparametric motion models, which are suitable
for video data captured from various platforms and
resolutions.

5. Development of a novel flexible template matching
scheme with entropy-based adaptive scale determi-
nation in oriented energy bands.

We review the literature in Section 2 and outline our
approach and present algorithm details in Section 3.
Experimental results are the subject of Section 4 and we
conclude in Section 5.

2 RELATED WORK

The object matching in this paper primarily focuses on
vehicle instance recognition or fingerprinting. Koller et al.
[13] employed a 3D generic vehicle model parameterized by
12 length parameters to instantiate different vehicles. Line
segments from the image are matched to the 2D model edge
segments obtained by projecting a 3D polyhedral model of
the vehicle into the image plane. This method works well
when enough image resolution is available.

Feature-based object recognition methods have flour-
ished in recent years. An extensive review of local feature
descriptors can be found in [14]. A large body of work is
based on the development of corner-like interest point and
associated invariant description [8], [15]. The interest point
finds distinctive features with precise location, but its
descriptor may not be stable under large perspective
change. A representative work using local region-like
features is the scale-invariant feature transform (SIFT)
method [4]. SIFT-like features cannot be extracted reliably
in low resolution images. There is a whole body of work on
wide baseline matching that deals with quasi-invariant
feature-based matching using 2D/3D constraints. In [7], a
stable region feature called the Maximally Stable Extremal
Regions (MSER) is developed. MSERs are invariant to affine
transformation in both image coordinates and intensity. A
robust similarity measure is also developed to establish
feature correspondences. An improved blob detector is
developed in [10], where a robust method is exploited to
move across scale space and overlapping regions are
allowed. Our regions features adapts this representation.

For object extraction and grouping, Sivic et al. [6]
presented a work on grouping object hypotheses in video
frames by tracking image patches over long sequences.
Affine covariant patches that can be tracked over a large
number of frames and move semirigidly over the sequence
are grouped into objects. Queries are matched to learned
object representations by matching the patch-based multi-
view feature groupings. The strength of this approach is
that multiple parts of an object could be matched from
many different frames. However, the representation and
matching may not lead to exact matches but is more suited
to similarity searches. Our strategy of object extraction
within sequence is motivated by this approach, but we use
different feature representation and matching metric. We
customize our across sequence alignment and flexible
matching components to suit the resolution constraints as
well as the goal of exact matching.
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Fig. 1. Some representative object matching examples. Objects

separated by a temporal or spatial gap from aerial and ground platforms

are required to be matched against each other.



For object matching and classification, there has been
significant development in part-based approach in recent
years. In [15], objects are represented as a flexible constella-
tion of parts. Scale invariant features (parts) are first detected
and a probabilistic model is used to represent the appear-
ance, scale, occlusion, and shape (configuration between
parts) of the object class. The model parameters are learned
using an EM framework and images are classified in a
Bayesian manner. Training is required in this approach and
object coverage from the detected features is not guaranteed.
Another part-based approach is by [5]. In their work,
“informative” overlapping parts (fragments) are selected
on the basis of maximizing the information delivered by the
fragments about the class (faces, cars, etc.) they represent.
Offline training has to be conducted in this approach. The
representations developed in these works are too coarse for
the purpose of object instance matching. Other related work
includes [3], [16], [17], [18], [19], etc.

Another representative part-based object (especially
vehicular object) detection method is developed in [20]. A
vocabulary of distinctive object parts is automatically
constructed from a set of training images. Images are then
represented using parts from this vocabulary and the
spatial configuration between parts is also modeled. Based
on this representation, a learning algorithm is used to
automatically learn to detect instances of the object class in
new images.

Another vehicle identification algorithm is proposed by
Ferencz et al. In [2], they used a hyperfeature for object
instance matching, where both local object appearance and
location saliency are encoded. By modeling the distribu-
tions of comparison metrics on the salient patches and
applying the mutual information-based feature selection, a
compact representation of the features with high saliency
can be build from a single example and efficient object
identification can be achieved.

3 PROPOSED APPROACH

3.1 Overall Approach

Fig. 2 illustrates our overall approach and it consists of four
major steps. We briefly summarize the four steps next and
more details follow in Sections 3.3, 3.4, 3.5, and 3.6.

3.1.1 Within Sequence Object Mask Generation

In the standard frame-to-frame tracking process, the pixel-
by-pixel ownership for the background and foreground
cannot be perfectly assigned due to the inadequate back-
ground stabilization and subsequent change detection or
imperfect background modeling and subtraction. However,
reliable object matching requires the distraction from the
background be reduced to the minimum. Therefore, we first
need to obtain the precise object ownership mask, given an
approximate bounding box for the object. We choose region
features for the task since they have good coverage
property. Blob-like regions for the key frames are extracted
after they are aligned with their neighboring frames within
the sequence and the blob configuration and appearance are
simultaneously compared using an EMD-based metric.
Outliers due to background clutter are also rejected and
an accurate object mask is generated in the blob matching
process.

3.1.2 Across Sequence Image Alignment and Matching

For across sequence matching between key frames, large
pose and appearance change need to be dealt with. Since
corner-like and line features have good localization char-
acteristic, they are utilized to align query and learning
images to the best possible accuracy.

3.1.3 Matching Measurement

A matching score is produced that consists of several terms
(normalized color correlation, color similarity, etc.) that are
computed within the object mask. More details are given in
Section 3.6.

3.1.4 Sequence-to-Sequence Matching

Finally, we pose the problem of vehicle matching and
fingerprinting with the aerial video context as sequence-to-
sequence matching problem. Sequence-to-sequence match-
ing can be robust to occlusion, pose, and lighting changes.
One frame can potentially find a best match within a
sequence of frames that may not be all affected by the same
set of changes. We first choose all the representative key

frames for both learning and query sequences. We then
match each key frame in a query sequence to each key frame
in a learning sequence. Key frames were selected based on
the drastic change in appearance and motion. Simple
appearance and motion model were used for this purpose.
The frame-to-frame matching uses aggregated matching of
local neighborhoods with flexible templates, as illustrated in
Section 3.6. The best matching score is chosen as the final
match measure. Choosing the best K pairs with/without
temporal constraints is another option. Alternatively, one
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Fig. 2. Overall image matching framework. It consists of within sequence
mask generation (cream), across sequence image alignment (blue)
steps, following the similarity measurement. A sequence-to-sequence
matching strategy is used to achieve robustness to occlusion, pose, and
lighting changes.



can build aggregated descriptors for both learning and
query sequences and then match the descriptors.

3.2 Prewarping Stage

Since our focus is vehicle matching, we exploit imaging
platform related metadata that is typically available from
inertial sensors. The metadata includes time, object velocity,
platform aspect angle, depression angle, slant range,
resolution, sensor azimuth, sensor modality, object bound-
ing box, etc. What is important to us is the extracted relative
orientation between the camera and the object (the transla-
tion part is not reliable), the driving direction of the object,
as well as the approximate resolution of the object. The
resolutions and appearances in aerial videos can typically
vary over a large range, typically 2-20 cm/pixel. To cope
with large-scale difference, platform metadata can be used
to preprocess the image data to approximately match
resolutions. Image features (points and lines) for learning
and query objects can then be derived and matched at
similar resolutions. Furthermore, platform orientation and
an object’s direction of motion can be used to define three
directions corresponding to the primary vehicle orienta-
tions in the image.

After scale and orientation compensation by metadata,
we also use edge-based Chamfer Matching [16] to solve for
the initial translation, thus completing the prewarping
process.

3.3 Within Sequence Object Mask Generation

We adopt the robust blob features developed in [10] and
match blobs in consecutive frames to generate object mask.
The consecutive frames normally have moderate amount of
motion and can be aligned using simple affine transforma-
tion. Within a frame, blobs may overlap with each other
and, from frame to frame, they may split or merge because
of shadow, lighting change, etc. A reliable metric is
therefore needed to handle the multiple to multiple blob
matching between consecutive frames. The Earth Mover’s
Distance is the natural choice for this purpose. The overall
schema of mask generation through blob matching is
depicted in Fig. 4. We introduce individual components of
our region-matching scheme in the following subsections.

3.3.1 Robust Blob Features Extraction

First, we present our homogeneous regions as blobs. A
similar approach is utilized in [11]; however, the method
described there is based on using color segmentation and
does not account for image motion. Compared with regions
computed from segmentation algorithm, blobs need not
follow the exact shape of the objects. They are more robust
and invariant to scale, appearance, and view change. Stable
regions are obtained by a hierarchical clustering scheme
where cluster centers are formed based on pixel appearance
and location. These blob features are similar to the MSER
features [7], but they do not need to be darker or brighter
than all their neighbors. Overlapping and nesting are
allowed in the blob representation and features over a
wide range of scales are detected. For matching regions, we
detect as many as possible meaningful blobs in the initial
stage and, in an iterative merging and pruning step, merge
small regions belonging to the same spatial and temporal
homogeneous regions, and remove most outliers regions
caused due to background clutter and other moving objects.

Some of the initial blob detection results are shown in Fig. 5.
Each blob is represented by the average color, area, center,
and the inertia matrix.

3.3.2 Earth Mover’s Distance

The Earth Mover’s Distance (EMD) [12], [21] is a flexible
similarity measure between two multidimensional distribu-
tions in some feature space, where a distance measure
between single features, called ground distance, is given.
Intuitively, given two distributions, one can be seen as a
mass of earth properly spread in space, the other as a
collection of holes in that same space. Then, the EMD
measures the least amount of work needed to fill the holes
with earth. Here, a unit of work corresponds to transporting
a unit of earth by a unit of ground distance. Computing the
EMD is based on a solution to the well-known transportation
problem [12].

Suppose there are M & N clusters in the first and second
set of distributions P & Q, respectively, and each cluster is
associated to a weight, wpi (for the ith cluster in P) or wqj
(for the jth cluster in Q), that represents the fraction of the
distribution for the cluster, then EMD is defined as

EMDðP;QÞ ¼
PM

i¼1

PN
j¼1 fijdijPM

i¼1

PN
j¼1 fij

;

where fij is the flow between the ith cluster in P and the
jth cluster in Q and dij is the ground distance.

The EMD naturally extends the notion of a distance
between single elements to that of a distance between sets
or distributions. It can be applied to the more general
variable-size sets of distributions and allows for partial
matches in a very natural way. This is important to deal
with occlusions and clutter in image matching.

3.3.3 Region Matching though EMD

If we represent an image by a distribution that consists of a
set of clusters (blob-like regions), where each cluster is
represented by its feature (color, location, and area) and by
the fraction of the distribution that belongs to that cluster,
then similarity between the images can be naturally
computed with EMD that basically compares the similarity
between the two sets of regions. The ground distance in this
case is defined as the linear combination of differences in
color and location for the corresponding blobs and the
fraction (weight) for each blob is defined as the percentage
of the area for the blob with respect to the total area for all
the blobs in the same image.

The EMD metric defined above is a global match
measurement for both object shape and appearance since
it accounts for the combined difference in appearance
(color) from all the blobs, and it also compares the object
part (blob) configuration by incorporation location differ-
ence into the ground distance definition.

In addition to serving as a matching measurement, the
flow matrix F ¼ ffijg produced by EMD optimization
indicates the correspondences between the two sets of
blobs. This can be demonstrated in Fig. 6. The EMD flow
matrix successfully discovers that region 1 in the left image
corresponds to regions 1-4 in the right image. We can utilize
this property to iteratively merge small regions in one
image based on the blob homogeneity in the other image
and vice versa. Eventually, if the two images correspond to
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the same object, similar sets of blobs should be produced,
where corresponding blobs should have similar size,
orientation, and location. In addition, outliers correspond-
ing to background clutter and confusers can also be
removed from the EMD flow. The final EMD cost indicates
the similarity of the two objects. The outcome of the region
matching process for this example is shown in Fig. 7. Note
the white vehicle moving in the opposite direction in the
background is removed from the object mask.

3.3.4 Object Mask Generation

Since both the learning and query are represented by a short
sequence in our framework, the region matching technique
can be easily adopted to produce the object mask. For each
frame in the learning (or query) sequence, first, we align the
current frame with respect to its neighboring frame with
affine transformation and then apply the region matching
technique using EMD as introduced above. The mask is
produced by taking the union of the blobs and applying a
dilation operation afterwords. The final masks produced for
the red van and other objects are shown in Fig. 8.

3.4 Object Matching Strategy

In order to address the challenge of significant pose change,
it is no longer feasible to rely on precise alignment between
learning and query images and global image template
matching. Matching representations vary in the amount of
appearance and geometry information they exploit. The
richer the object representation, the better the discrimination
between confusing similar targets. However, richer geo-
metric representations demand greater alignment accuracy,
which is difficult with moderate resolution imagery when
there is 3D pose change and partial occlusion. Therefore, the
most practical strategy is to use moderately rich representa-
tions that don’t demand accurate 3D alignment.

Our approach will be able to accommodate significant
pose and appearance changes, occlusion, and similar-
looking confusers due to four key features:

1. the use of metadata,
2. sequence-to-sequence strategy,
3. quasi-rigid alignment to achieve moderate accuracy

3D alignment, and
4. flexible template matching to compensate for slight

misalignment.

We now illustrate item 3 in more detail.

3.5 Line Feature-Based Quasi-Rigid Alignment

To handle large pose change, we adopt a feature-based
alignment approach [22]. For many manmade objects such
as buildings and vehicles, edges are the most dominant
features. Ideally, if we can detect all the edges and
reconstruct their 3D locations and orientations, together
with the color/texture information for all the regions
delineated by the edges, we can fully describe the geometry
and appearance of the vehicle. However, given the
relatively low resolution in aerial imagery, reliable bot-
tom-up reconstruction and 3D matching is not possible. We
exploit piecewise parametric feature matching to create a
seed set of reliable feature matches based on edges. These
matches are then used to morph between two frames using

piecewise linear warping constrained by the feature
matches. Therefore, lines and edges become the primitive
operating elements in our approach. Of course, points can
be easily incorporated in a similar way.

To obtain invariant representation of lines, we handle
rotation by classifying and matching lines in the three
principal directions, as shown in Fig. 9. Our line feature
descriptor is invariant to moderate translation and scaling.

Reliance on discrete matches only does not use all of the
information available in images, which is especially limiting
when dealing with low resolution imagery. Our use of
image metamorphosis technique [23] to interpolate the
correspondence field constrained by the sparse set of
features and establishing dense correspondences uses all
the available data. This operation approximates a weighted
piecewise affine motion model, which can handle both wide
and narrow FOV imaging scenarios. When parallax cannot
be ignored, no single parametric motion model can align the
images well, but piecewise combination of multiple affine
models suffices.

3.5.1 Detect and Classify Lines

We begin by performing Canny edge detection. From the
metadata or using dominant orientation computation, we
can obtain the approximate driving direction shown as the
positive Y-axis in Fig. 3. The X-axis is defined to be
perpendicular to the driving direction and the Z-axis is
perpendicular to the ground. Edges whose orientations are
close to the driving direction are classified as Y-edges.
Edges that are approximately perpendicular to the driving
direction are classified as X-edges. Since most vehicles do
not have many edges that are exactly perpendicular to the
ground (for example, most sedans have sloped edges), we
don’t define Z-edges; instead, we allow a large variation in
the X-edge orientations. Initially, as many edges as possible
should be detected, then short edges belonging to the same
class are linked to form longer line segments if they are
either close-by or overlapping. The classification results for
a red car at two different orientations are shown in Fig. 9.

3.5.2 Line Segment Feature Descriptor

We need an appearance descriptor for each line segment
feature to match them between views. The intensity/color
transition from one side of a line to the other is a distinctive
attribute, so we form a “band image” by collecting [Y R G B]
samples around a small band along each edge. Because the
image varies slowly parallel to the edge, the band image is
insensitive to the instability of the segment endpoints. The
sign of the edge orientation needs to be maintained since
bright-dark and dark-bright transitions come from distinct
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Fig. 3. A box model is superimposed on the image to demonstrate the

orientation from metadata. Translation is not determined from metadata.



object edges. Some band image examples for the line

segments on the red car are shown in Fig. 10.

3.5.3 Establish Line Correspondences

Once we have detected lines, classified them into two

groups, and formed the line descriptors, we can use the

normalized correlation between the band images to estab-

lish the line correspondences between two frames. The

correspondences are established for the Y-Edges and

X-Edges separately and the result for the red car is shown

in Fig. 11. The numbers above each line segments denote

the line indices. Note the figures and numbers in the

subsequent pictures are shown in smaller size because of

space limit.

3.5.4 Reject Outliers

Since some edges have similar appearance, the preceding
process includes false matchers; moreover, edge matches in
a cluttered background are useless for object alignment. To
remove these false matches, object shape induced rigidity
constraints need to be employed. The rigidity constraints
are employed in a progressively restricted way. The initial
step uses a simple approximate rigidity constraint to prune
raw features and the subsequent step performs further
pruning using a more rigorous constraint.

The initial step assumes the target depth variation is
small compared to the target range. In each direction,
parallel lines (X-edges or Y-edges) on a 3D plane in the
scene will project to families of parallel lines in both views,
where the distances di and d0i of corresponding lines to the
image origin satisfy a linear mapping of the form
d0i ¼ s � di þ t, as shown in Fig. 12. s and t are scale and
translation parameters in the 1D affine model (for the
distance function) and line matches that fit this model
poorly are rejected as outliers.

Second, we can explicitly reconstruct the 3D position and
locations of lines from a pair of frames since we know the
metadata and line correspondences, even though, in
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Fig. 4. Schema of mask generation with blob matching using an EMD

flow matrix.

Fig. 5. Initial blob detection results. The first and third rows show the

original chips and the second and forth rows are the detected blobs

superimposed on the original chips. Note the size variation of the objects

and blobs.

Fig. 6. The first row: Original two chips. The second row: Region 1 in the
left image is split into four neighboring regions (1-4) in the right image.
The left and right images are consecutive images in a time sequence.
This region correspondence can be revealed by examining the EMD
flow matrix.

Fig. 7. Iterative region matching results for the same two consecutive
images shown in Fig. 5. Note that corresponding blobs have similar size,
orientation, and location, and the global blob configuration is almost
identical. Outliers such as the white car are rejected. Blobs correspond-
ing to background region have large EMD ground distances and are
considered to be outliers and removed since their motion is not
consistent with the dominant motion (that corresponds to the vehicle).



general, three frames are required to reconstruct a 3D line.

In 3D reconstruction, camera rotation is given by the

metadata and camera translation and 3D line locations can

be estimated from 2D line correspondences, as explained in

Section 6. Because of the small baseline and other reasons,

the 3D reconstruction and, therefore, the computed 3D line

positions cannot be perfect. However, for the correctly

corresponding line pairs (inliers), the reconstructed line

location error is small; for the incorrectly corresponding line

pairs (outliers), the 3D location error is very large. Since at

this stage, most line correspondences are true correspon-

dences, most reconstructed 3D edges belong to the same

object and they tend to group together. Outliers are far

away from inliers after reconstruction and will be removed.

The line correspondences after outlier rejection are shown

in Fig. 13. We can see that edges from the background and

shadows in Fig. 11 are removed.

3.5.5 Extend Line Segments

As mentioned before, we need to use discrete matches to

approximate the dense motion field that accounts for

3D object structure, with regions of different 3D orientation

undergo significantly different transformations. As shown

in Fig. 14, faces A1, A2, and A3 undergo different

transformations. However, for pixels within region A1,

their motion can be approximated by an affine transforma-

tion, which is defined by at least three lines surrounding

region A1. All the local affine coordinate systems can be

established by using groups of three line correspondences.

However, since we cannot easily form regions without

using explicit 3D models, we use the following method to

define local similarity transformation from X-edges and Y-

edges separately. Two edge correspondences from two

distinctive directions define a local affine transformation.
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Fig. 8 Mask generation examples. (a) The original image with the object
bounding box provided by the tracker. (b) The extracted mask (note it
does not include the white car nearby). (c), (d), and (e) Masks are shown
in green and superimposed on top of each object. (f), (g), (h), and
(i) Ellipse fitting of precise object mask. Ellipses are enlarged by
20 percent, and pixels outside of masks are excluded.

Fig. 9. Detect and classify lines for vehicles. All of the lines are classified
either as Y-edges (along the driving direction, in green) or X-edges
(perpendicular to the driving direction, in red). Z-edges (in blue) are
ignored.

Fig. 10. Line descriptor examples. Band images are formed by collecting

[Y R G B] profiles along a small band along each edge, shown in the top

row. The descriptors are shown in the bottom row.

Fig. 11. Establish line correspondences. The numbers above each line

denote indices.



To achieve a similarity transformation from a line
correspondence, we need to compute the stable end points
of lines. We modify the direction of each line to point
toward either toward or perpendicular to the dominant
orientation (driving direction), depending on whether it is
in the Y-edge or X-edge group. Then, each line is intersected
with the closest two lines in the other group, giving its
refined endpoints. Note that the requirement for the
orientation accuracy is not stringent in this step; what is
important is that all the edges in the same group should
have uniform orientations. The line extension results are
shown in Fig. 15.

3.5.6 Interpolate Flow Fields

After establishing the line correspondences and their end
point correspondences, for each line segment, we define
one image flow field that is a similarity transformation

that aligns those endpoints. As shown in Fig. 16, for two
corresponding lines PQ and P 0Q0 in the destination
(Fig. 16a) and source image (Fig. 16b), for each pixel X
in the destination image, we first find the corresponding
ðu; vÞ, where u is the distance from X to P along the PQ
direction and v is the distance from X to PQ. The pair
ðu; vÞ is then used to find the pixel X in the source image,
i.e., destination Image(X) = sourceImage(X), with ðu; vÞ is
define similarly in the source image. Through this
operation, each pixel coordinate is transformed by
similarity. Pixels along each line in the source image are
transformed to the corresponding line in the destination
image. The whole image is transformed.

Given multiple line segment correspondences, we form a
weighted average of the flow fields. The weights decay
away from each line segment, ensuring that a segment only
affects the flow in its vicinity. This is exactly the approach
proposed by [23]. The flow field obtained is smooth and
coincides with the line segment correspondences. The use
of the interpolated correspondence field also overcomes the
coverage problem using sparse features and utilizes the
appearance/texture information in between the features.
Finally, we use the interpolated flow field to align images
query and learning sequences, and we dub this alignment
method as “quasi-rigid” alignment.

The quasi-rigid alignment scales well with respect to
image resolution. When image resolution is low (in the case
of Wide FOV data), we can only get a few pairs of line
correspondences, but a simple parametric motion model
such as affine is sufficient in this case. Theoretically, we
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Fig. 12. In each direction, the distances dis and d0is for the line
correspondences of the same object should satisfy an approximated
1D affine transformation, i.e., d0i ¼ s � di þ t, where s and t are scale
and translation parameters, and they are computed from line
correspondences.

Fig. 13. Outlier rejection results. Outliers are rejected for (a) horizontal
and (b) vertical lines separately. Note that, compared with the originally
established line correspondences shown in Fig. 11, false matches such
as lines from the shadow are rejected.

Fig. 14. For a 3D object, regions with different 3D orientation undergo

different transformations.

Fig. 15. Extend line segments. X-edges and Y-edges are extended to
intersect with their closest Y-edges and X-edges. The orientations are
modified to be the same for all of the X-edges and Y-edges,
respectively.

Fig. 16. Illustration of the metamorphosis operation.



only need two pairs of line correspondences to align the
low-resolution (Wide FOV) images. When the resolution
becomes higher (in the case of Narrow FOV data), a simple
parametric motion model is not sufficient and parallax
cannot be ignored any more. Fortunately, we can extract
and establish much more corresponding line pairs because
of the high resolution and the motion field established by
interpolating the correspondences from these line pairs can
well approximate the true motion field.

3.5.7 Incorporation of Points

Points can also be utilized in our framework. An example of
surviving point correspondences after outlier rejection is
shown in Fig. 17. Points are extracted using the Harris
Corner detector [24] and matched using normalized
correlation. In this example, only points on the near side
of the car have good correspondences, very few points
correspond well on the far side, the coverage is poor, and no
single global motion model estimated from these points can
explain the whole object well. However, points can be used
together with lines to constrain the flow field and the final
alignment result is shown in Fig. 18. More alignment results
are shown in Fig. 19.

3.6 Flexible Local Template Matching

In object matching, we need to account for approximations
in alignment as well as appearance differences due to a
variety of unmodeled changes. We propose matching a
patch to a local distribution of patches within the
constraints provided by aligned images. Specifically, we
represent patches using oriented energy filter outputs [25].
These capture the significant features in a patch while
ignoring certain illumination effects. Each patch captures
the spatial arrangement of edge energy and orientations
within the patch. In order to account for local alignment
differences, we perform nearest-neighbor matching of the
patch to a collection of patches in the target image.
Specifically, the score of the patch is computed as that of
the best matching patch within a small range of translations

around the patch to be matched. Scores from all the local
patches are aggregated to compute a single score between a
query and a learning image. The aggregated score is a
weighted sum of the correlation score from all the pixels.
Only the patches containing energy above a dynamic
threshold are retained in the aggregation to avoid irrelevant
background. The energy is summed over color channels in
order to include edges that only appear in color but not in
luminance. Fig. 20 shows a pair of aligned images. The
oriented energy images in four directions (0�, 45�, 90�, and
135�) are shown in the center for the left image and the
comparison of the flexible versus rigid template matching
results are shown on the bottom. The brighter the pixel, the
better the matching.

The size of the local patches is an important considera-
tion, for if a patch is much smaller than the nominal scale of
features in a neighborhood, the image pattern in the patch
will match at many shifts and with many objects, but if a
patch is too large, it becomes too sensitive to appearance
changes and misalignments and may not be sensitive
enough to small but discriminative patterns. We adapt the
patch size by choosing, for each location in an image, the
size of a window centered there whose gray-level distribu-
tion has maximum entropy [9].

The local template matching score fails to discriminate
objects that have the same geometric structure and differ
only in color. Therefore, we augment the flexible matching
score with two additional terms to give an overall similarity
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Fig. 17. Point feature correspondences. Note that the point feature

coverage is poor and, therefore, the computed global motion model is

not reliable.

Fig. 18. Quasi-rigid alignment results for the pair of images in Fig. 10
((a) original model image, (b) warped query image). The pose change is
around 33�.

Fig. 19. More quasi-rigid alignment results. In each row, the first and

center images are the original query and model images and the right one

is the warped query image. Note the large aspect change in these

examples.

Fig. 20. Flexible local template matching. Top Left: Learning and query

frames after quasi-rigid alignment. Right: Oriented energy in four

directions. Bottom Left: Local correlation scores with global affine

versus quasi-rigid alignment with 11 pixel search range.



metric. One term is local template matching of RGB images

and another term is average color similarity, measured by

the angle between RGB vectors. The template matching for

the RGB images is a modified version of normalized

correlation. The modification deals with the texture less

region better. For the similarity score combination from

three sources, we first generate each score separately for all

the trials and we obtain the weights by searching to obtain

the optimal matching performance.
Although the query and model images are rescaled to a

common resolution, the absolute GSD can vary from one

instance to another. Certain parameters of the approximate

3D alignment process and flexible local template matching

are varied according to the GSD.

4 PERFORMANCE EVALUATION

4.1 Performance Evaluation Methodology

We have extensively evaluated our algorithm for 109 ve-

hicles for Electro-Optic (EO) data and 88 vehicles for

Infrared (IR) data. The database has a wide variety of

vehicle models with different colors, shapes, and sizes.

Some representative vehicles are shown in Fig. 1. Our

experimental setup is designed to test the following aspects

of the algorithm:

1. comparison with the traditional feature-based global
affine alignment + rigid template matching method,

2. performance for both the wide and narrow FOV
videos,

3. temporal gap test,
4. performance on the aspect angle and Ground

Sampling Distance (GSD),
5. performance on the aspect angle difference and GSD

difference, and
6. performance on the difference match measurements.

For each set of experiments, we conduct a large number of

trial tests. Each trial contains one query and N = 5 learning

sequences, where the targets in the learning sequences are

all distinct and one of the learning sequences contains the

same object (but obviously from a different sequence) as the

query sequence. A trial outcome is considered correct if the

highest score among the N scores corresponds to the

learning sequence that contains the same object as the query

sequence. The performance score computed as the prob-

ability of correct association, PCA, is defined as the number

of correct outcomes divided by the number of trials.
For the experiments that involve the overall quality such

as temporal gap, aspect angle, GSD, aspect angle difference,

and GSD difference, all of the vehicles were used. For the

comparison of the low resolution data (wide FOV) versus

high-resolution data (narrow FOV), wide FOV and narrow

FOV data was used separately. For the comparison of quasi-

rigid alignment + flexible template matching versus global

affine alignment + rigid template matching, we use the

subset of narrow FOV data since parallax is more

prominent. For the comparison of using precise masks

versus not using precise masks, we chose data that exhibit

more background clutter for better comparison.

4.2 Comparison of Feature Based Global Affine and
Quasi-Rigid Algorithms

We first compare the quasi-rigid alignment and flexible
template matching (QM) algorithm with a traditional
feature-based global 2D affine alignment and rigid template
matching algorithm (GM). Fig. 21 shows the similarity
matrix for QM on a set of learning and query sequences
drawn from a narrow FOV data of four civilian vehicles and
one military vehicle. Each row of the matrix is a query and
each column of the matrix is a learning sequence. The five
distinct bands of rows and columns correspond to the five
different vehicles, illustrated by the sample image chips.
Brighter matrix elements indicate higher likelihood scores
and completely black elements indicate (query and learn-
ing) pairs that were excluded. Pairs are excluded if their
pose change is greater than 33 degrees. An ideal similarity
matrix would have a block diagonal structure with
consistently high scores on the main diagonal blocks and
consistently low scores elsewhere. In this experiment, there
are moderately bright off-diagonal blocks between targets #2
and #4, which are Chevy Cavaliers of the same color but
different number of doors. Notice that, within each main
diagonal block, the score is highest near the central diagonal
and slightly decreases away from the center, i.e., the score
decreases slightly as the temporal gap increases, indicating
resilience of our algorithm to pose change. In summary, the
correct association performance for this data set with QM is
PCA ¼ 91%.

Fig. 22 shows the similarity matrix for GM for the same
set of sequences as above. Notice that, within each main
diagonal block, the score is highest near the central diagonal
and quickly decreases away from the center, i.e., the score
decreases quickly as the temporal gap increases, indicating
poor resilience of GM to pose change. The performance
with GM is PCA ¼ 80%. The overall PCA from GM to QM
has increased 11 percent, out of which around 7-8 percent
increment is due to alignment improvement and 3-4 percent
is due to matching measurement improvement.

An instructive way to contrast the performance of the
two algorithms is to examine the distribution of similarity
scores conditioned on when the learning and query
sequences contain the same object versus different objects,
Psame versus Pdiff. Ideally, the distributions should be well
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Fig. 21. The similarity matrix for quasi-rigid alignment + flexible matching

algorithm on five narrow FOV video objects. PCA ¼ 91% for pose change

�33�.



separated, in order to reliably discriminate between the
correct and incorrect matches. Fig. 23 shows that the
separation between the same and different object distribu-
tions is weak for GM and significantly better for QM.

Finally, Fig. 24 characterizes the sensitivity of the vehicle
matching algorithm performance with respect to the degree
of orientation change between learning and query se-
quences. Each data point in this plot is derived by
restricting the set of trials to the indicated amount of pose
change; thus, the performance plotted at 17 degrees
includes trials with pose change from 0 degrees to
17 degrees, not just trials that are exactly 17 degrees. PCA
drops quickly for GM, reaching 95 percent at only
12 degrees, while QM’s performance drops less rapidly,
reaching 95 percent at 17 degrees and maintaining half the
error rate of traditional algorithm. QM performs better than
90 percent even up to 35 degrees pose change, which is
especially significant given the low resolution data.

4.3 Comparison of Sensors

We compared the performance of our algorithm using
narrow FOV and wide FOV videos. Generally, the
resolution in narrow FOV data is higher and the size of
vehicles ranges from 50 to 120 pixels. Wide FOV data
usually has lower resolution and the size of vehicles ranges
from 10 to 50 pixels. One strength of our approach is that it
scales well with respect to resolution. As stated in
Section 3.4, for the low-resolution images, the line-based

quasi-rigid alignment degrades gracefully and sufficiently
to parametric 2D motion model (such as affine) with only
two pairs of line correspondences. For the high-resolution
images, more line correspondences can be established and
more complicated motion field can be modeled.

Fig. 25 shows the similarity matrix for our algorithm on a
set of learning and query sequences drawn from the narrow
FOV data containing four civilian vehicles and three
military vehicles. This is a more extensive test than the
one shown in the previous section. The orientation change
is limited to 30 degrees and resolution change is limited to
30 percent. The correct association performance for this
experiment PCA ¼ 94%.

Fig. 26 shows the similarity matrix for our algorithm on a
set of learning and query sequences drawn from the wide
FOV data containing six civilian vehicles and five military
vehicles. The orientation change is limited to 30 degrees and
resolution change is limited to 30 percent. The correct
association performance for this experiment is PCA ¼ 96%
(for �� < 15�) andPCA ¼ 86% (for �� < 30%), respectively.

4.4 Temporal Gap Performance

We systematically evaluate our algorithm on around a
quarter million trials drawn from a data set of around
100 vehicles. We mostly used around 100 vehicles in the
data set where the query and learning sequences for the
same object separated in time up to 30 seconds. The
overall performance for EO and IR sensors are shown in
Fig. 27. We have achieved 98.8 percent PCA for EO video
data and 95.0 percent PCA for IR video data.
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Fig. 22. The similarity matrix for global 2D affine alignment + global
correlation algorithm on five narrow FOV video objects. PCA ¼ 80% for
pose change < 33�.

Fig. 23. Distribution of same-object and different-object similarity scores for global affine + rigid template matching versus Quasi-Rigid + flexible

template matching approach on five narrow FOV targets. Pose change < 15� in both cases.

Fig. 24. Sensitivity with respect to pose change for the global affine +
rigid template matching versus the Quasi-Rigid + flexible template
matching approaches on five narrow FOV targets.



4.5 Performance on Pose and Image Resolution:
Aspect Angle,GSD, Aspect Angle Difference,
and GSD Difference

Our extensive evaluation on the algorithm robustness to
pose change is demonstrated through the percentage of
correct association with respect to aspect angle and aspect
angle difference between learning and query sequences.
The performance on image resolution is explicitly demon-
strated in the Ground Sampling Distance (GSD) and GSD
difference between learning and query sequences since GSD

reflects the scale ratio between size of the actual object and
its image. The unit of GSD is usually meter/pixel. Again,
we can see that our algorithm scale well with different
resolution video data, as discussed in Section 4.3.

The overall performance on aspect angle and GSD is
shown in Fig. 28 and Fig. 29 and the performance on aspect
angle difference and GSD difference is shown in Fig. 30 and
Fig. 31.

4.6 Mask Generation Results

To demonstrate the importance of the accurate mask
generation, we used the eight vehicles (shown in Fig. 1).
The GSD for the set ranges from 0.04-0.08 m/pixel. The
maximum pose change is 23�. There are two pairs of similar
vehicles, i.e., the beige vans and the dark red vans. Heavy
shadows are also presented. Fig. 32 shows the similarity
matrix for the data set using region matching-based mask
generation plus quasi-rigid alignment and flexible template
matching. Each row of the matrix is a query and each
column of the matrix is a learning sequence. The bright
bands of rows and columns correspond to the eight
different vehicles, illustrated by the sample image chips.
Brighter matrix elements indicate higher likelihood scores.
Notice that, within each main diagonal block, the score is
highest near the central diagonal. In summary, the correct
association performance for this data set is = 84.3 percent.
By comparison, if we do not use the object mask algorithms
described in Section 3.3, this drops to 80.1 percent for the
one query versus five learning association problem. Note
that we get similar improvement if we use perfect hand
generated masks.

A more extensive test is conducted on a data set of
553 trials, which contains around 50 different vehicles
with up to 120� pose change, and object GSD ranges from
0.06-0.15 m/pixel. Fig. 33 demonstrates the superiority of
the QM algorithm with mask generation over a large
range of pose change.

4.7 Comparison of Match Measurement

To demonstrate that it is imperative to exploit as much
information as possible to achieve good matching for a
broad range of pose change between learning and query
sequences, we compare the performance of different
matching measurements with respect pose change after
performing exactly the same alignment, as shown in Fig. 34.
The following seven measurements are used in our
experiments and they encode different aspects of the object:
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Fig. 25. Similarity matrix for our algorithm on 12 narrow FOV targets.

PCA ¼ 94% for pose change < 30�.

Fig. 26. Similarity matrix for our algorithm on 11 wide FOV targets.
PCA ¼ 96% for pose change < 15�, PCA ¼ 86% for pose change < 30�.

Fig. 27. Temporal gap performance for (a) EO (upper) and (b) IR (lower) data.



1. Color Correlogram. It compares global color and

some extent of object topology between images. See

[26] for detail. We can see that color feature alone in

general is quite stable over a large range of pose

change, but the overall performance is limited. The

upper bound is around 80 percent.

2. Chamfer Distance. Chamfer distance incorporates
edge location, orientation, and gradient magnitude
difference into the match measurement and it
facilitates fast object matching using edge maps. It
is a global 2D object shape matching measurement
and robust to occlusion, obscuration, and noise. It
produces a quite good result when the pose change
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Fig. 28. Performance on aspect angle for both (a) EO and (b) IR data.

Fig. 29. Performance on GSD for both (a) EO and (b) IR data.

Fig. 30. Performance on aspect angle variation for both (a) EO and (b) IR data.

Fig. 31. Performance on GSD variation for both (a) EO and (b) IR data.



is small, but drops rapidly as pose difference
becomes larger.

3. Normalized Correlation. In general, it performs well
since it utilizes both shape and appearance informa-
tion, but, since it lacks global information such as
global appearance, therefore it cannot deal with
some easy cases when objects differ largely in color.

4. Comprehensive Match Measurement. We combine
both appearance and geometry measurements at
both the local and global levels and properly choose
the combination weight; the combined measurement
performance is shown as the red curve in Fig. 34. We
can see that it achieves the best result since all
information is used.

4.8 Representative Trials and Matching Results

For better visualization purposes, we created Web pages
to view the matching results for all the trials. Please see
the attached HTML files for more detail. Some represen-
tative trials and matching results are shown in Fig. 35.
There is a large variation in object size, aspect, and
appearance and our algorithm is able to establish the
correct association between query and learning sequences.

5 CONCLUSION

In this paper, we have demonstrated the efficacy of

Confirmatory Identification (CID) as a means for reliable

tracking of vehicles in aerial videos under real-world

operational constraints. We designed, implemented, and

thoroughly tested novel CID algorithms and software. The

software was tested and evaluated using hundreds of

thousands of trials consisting of learning sequences and a

query sequence that simulated breaks in frame-to-frame

tracking that is typical in aerial video tracking scenarios.

Under operating conditions consistent with 10 secs. of

temporal gap in tracking, the CID module has achieved

98 percent PCA for EO data and 95 percent PCA for IR data.

The operating conditions consisted of realistic depression

angles, sun angles, aspect changes, pose changes, GSD, and

GSD changes, as well as video quality and platform effects.
Our approach consists of a heterogeneous matching

algorithm to compare vehicle image sequences taken across
time and space. The heterogeneous algorithm uses regions,
lines, and points in order to align and compare the images.
It is able to compute accurate masks in the presence of
occlusion and clutter. Each of the descriptors (regions, lines,
and points) used is invariant to different changes in the
scene and viewing geometry. We believe this is the first
system which combines all three into an overall system. We
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Fig. 32. Similarity matrix for quasi-rigid alignment + flexible matching

algorithm on eight video objects. Pca = 84.3 percent for pose change

< 23�.

Fig. 33. Performance comparison of the QM algorithm with (red solid

curve) and without (green dashed curve) masks.

Fig. 34. Comparison of different matching measurements.

Fig. 35. Representative examples for vehicle matching. Each row is a
trial that consists of (a) one query and (b) five learning (right) sequences.
The learning chips are arranged (from left to right) according to their
matching scores with regard to the query. The correct matches are
marked with red boxes.



achieved correct ID rates in the range of 90 percent and
above for large pose changes for a wide variety of sensors
and resolutions.

APPENDIX

RECONSTRUCT 3D LINES FROM 2D LINE

CORRESPONDENCES wITH AFFINE CAMERA MODEL

A line ~l in an image is projected by the projection matrix P
to a plane ~� in 3D as: ~� ¼ PT~l. For two affine cameras,

P1 ¼
!11 !12 !13 !14

!21 !22 !23 !24

0 0 0 1

2
4

3
5

and

P2 ¼
�11 �12 �13 �14

�21 �22 �23 �24

0 0 0 1

2
4

3
5;

the reconstructed planes are:

�1 ¼

A1

B1

C1

D1

2
664

3
775 ¼

!11lx1 þ !21ly1
!12lx1 þ !22ly1
!13lx1 þ !23ly1
!14lx1 þ !24ly1 þ lz1

2
664

3
775

and

�2 ¼

A2

B2

C2

D2

2
664

3
775 ¼

�11lx2 þ �21ly2
�12lx2 þ �22ly2
�13lx2 þ �23ly2
�14l2þ �24ly2 þ lz2

2
664

3
775:

The intersection of the two planes �1 and �2 produces a
line with its general equation:

A1X þB1Y þ C1Z þD1 ¼ 0
A2X þB2Y þ C2Z þD2 ¼ 0:

�

If we choose the world coordinate system as shown in

Fig. 3, for the constant z planes, x ¼ 0, we have

B1Y þ C1Z þD1 ¼ 0
B2Y þ C2Z þD2 ¼ 0

�

and the constant z can be solved as

z ¼ ðB2D1 �B1D2Þ=ðB1C2 �B2C1Þ:

Or, for any x ¼ x�, define

DD1 ¼ D1 þA1X0

DD2 ¼ D2 þA2X0;

�

we have z ¼ ðB2DD1 �B1DD2Þ=ðB1C2 �B2C1Þ. Similarly,

we can recover Y = constant planes.
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