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Abstract. We propose a novel method for action detection based on a new ac-
tion descriptor called a shape flow that represents both the shape and movement
of an object in a holistic and parsimonious manner. We find actions by finding
shape flows in a target video that are similar to a template shape flow. Shape
flows are largely independent of appearance, and the match cost function that we
propose is invariant to scale changes and smooth nonlinear deformation in space
and time. The problem of matching shape flows is difficult, however, yielding a
large, non-convex, integer program. We propose a novel relaxation method based
on successive convexification that converts this hard program into a vastly smaller
linear program: By using only those variables that appear on the 4D lower convex
hull of the matching cost volume, most of the variables in the linear program may
be eliminated. Experiments confirm that the proposed shape flow method can
successfully detect complex actions in cluttered video, even with self-occlusion,
camera motion, and intra-class variation.

1 Introduction

An action can be characterized by the movement and deformation of a shape. A flow
line, which is the space-time line formed by a tracked object point over time, provides
a compact representation of motion. An object’s shape flow, which we define simply as
an assembly of flow lines, represents not only the object’s motion but also its shape and
deformation over time. Flow lines have previously been used for motion visualization
[5]. We propose the shape flow as a representation for actions.

Consider the shape flows shown in Fig. 1. One can readily identify complex actions
based on the shape flow alone, suggesting that it is a discriminative and descriptive
representation. The shape flow itself is quite simple to compute. The challenge, which
is the focus of this paper, is how to use the shape flow as a representation for actions.
In particular how can we efficiently search for a template shape flow in a cluttered
single-view video? And how can we do the search in a manner that is invariant to scale
changes and nonlinear shape deformations, and also tolerant of occlusion and intra-class
variation? Although shape flow matching is certainly an NP-hard problem because of
the loopy relations between flow lines, we show that a novel linear relaxation based on
successive convexification [6] yields both an efficient and accurate matching algorithm
for finding actions in video.

There is much related work on detecting actions in video. The first dimension of
related work consists of methods that use multi-view stereo to reliably access 3D spa-
tial information. Parameswaran & Chellappa [12] use multiple cameras to capture joint
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Fig. 1. Example shape flows and first/last frames for a variety of actions. Even though individual
flow lines are noisy, the shape flow represents the holistic shape and movement of the object
reliably. In this paper, we show how to efficiently search for a template shape flow in a target
video. Please note that the figures in this paper are best viewed in color.

locations via motion capture, while Yilmaz & Shah [20] use manually labeled joint lo-
cations. Weinland et al. [18] use multiple cameras to achieve reliable background sub-
traction, using 3D silhouettes of foreground objects to describe actions. These methods
are only tangentially related to this paper, however, as they rely on multi-view stereo.

The second dimension of related work includes methods that rely on background
subtraction to formulate action features from silhouettes of foreground objects either
in 2D or in 3D. Weinland et al. [18] use 3D silhouettes from multi-view stereo, as
mentioned above. Both Yilmax & Shah [19] and Blank et al. [2] use background sub-
traction in 2D images to describe actions as 3D space-time volumes. Bobick & Davis
[3] project space-time silhouettes into the image to get 2D action silhouettes. In this
paper, we address the problem of finding actions in cluttered single-view video with a
moving camera and moving background objects. Silhouette based features, which rely
on high quality background subtraction, are difficult to use in this regime.

The third dimension of related work involves using labeled joint trajectories to detect
human actions. In this class-specific approach, joint locations may be labeled in differ-
ent ways. Parameswaran & Chellappa use motion capture and manual labeling for joint
locations in 2D and 3D in their work [12]. Yilmaz & Shah [20] use manually labeled
joint trajectories in 3D, and Sheikh & Shah [17] use manually labeled joint trajectories
in 2D. Recognizing actions is challenging even with clean joint trajectories. Although
automatic human pose tracking is recently much improved [11,13] and so could be used
to extract (unclean) joint trajectories from unlabeled video, we pursue a non-parametric
approach of analyzing the whole motion field rather than the motion of distinguished
high-level feature points.

The final dimension of related work consists of non-parametric action models, and
contrasts methods that rely on sparse descriptors located at interest points versus meth-
ods that use a dense motion or gradient field. These methods typically operate on un-
calibrated single-view video, do not require background subtraction, and do not require
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manual labeling of foreground objects. Laptev & Lindeberg [9] have extended the no-
tion of Harris extrema to find space-time interest points. Schuldt et al. [14] use motion
and gradient histograms around these interest points to recognize actions using SVMs.
Scovanner et al. [15] extend the popular SIFT descriptor to space-time volumes for
the purpose of action recognition. Instead of constructing features that are tolerant to
clutter, one may instead use dense feature fields along with clutter-tolerant matching.
Efros et al. [4] recognize actions using optical flow fields from single frames, carefully
smoothed and rectified. Shechtman & Irani [16] cleverly match space-time volumes di-
rectly, without any explicit motion estimate. Ke et al. [7] have extended that work using
superpixels and part-based matching. Laptev & Prez [10] match histograms of gradients
from space-time cubes using a boosted cascade.

These non-parametric methods represent a recent trend toward using volumetric
space-time descriptors that combine shape and motion information, along with a match-
ing framework that tolerates both foreground deformation and background clutter. We
adopt this general approach to finding actions, although our proposed shape flow de-
scriptor is neither an interest point method nor a dense field approach. As is clear in
Fig. 1, the shape flow preserves much information about both the shape and movement
of an object in a manner that is largely independent of the object’s appearance. This
enables us to match both shape and motion in a uniform framework.

The outline of the paper is as follows. In §2 we describe a simple method to compute
shape flows. In §3, we formulate the shape flow matching problem and show how this
NP-hard problem may be solved efficiently using a novel relaxation scheme. We present
experimental results in §4 and conclude in §5.

2 The Shape Flow of an Action

We desire a compact yet expressive descriptor of both the shape and motion of an object.
In addition, we seek a general method that may be applied to any object class, so we
do not attempt to track distinguished points (such as joints) or to impose a shape model
a priori. Instead, we seek a non-parametric shape and motion representation. We adapt
the technique of flow fields from motion visualization [5]. If points on an object may be
tracked in 2D video, then their positions through time form a flow field of lines in 3D.
Flow lines will inevitably be individually unreliable, but the collection of flow lines—
the shape flow, as shown in Fig. 1—is a compact and descriptive action representation.

We use a greedy scheme to compute flow lines based on iterative conditional modes
(ICM) [1] to estimate the sparse point motion between adjacent frames. ICM is based
on an MPEG-like local motion estimation search; it computes motion vectors that both
minimize an image match cost and maximize the the motion consistency of neigh-
boring points. We apply ICM to edge pixels that surpass a Canny detector threshold;
neighborhood relations are defined by the Delaunay triangulation of these edge pixels.
The resultant sparse motion field is then interpolated across Delaunay cells to produce
a dense motion field. The frame-by-frame motion fields produced by this procedure are
then simply concatenated to form 3D flow lines in the space-time video volume. There
are no constraints to prevent flow lines from intersecting.

This method for computing flow lines is designed to produce flow lines that are
good enough on average to generate a coherent flow field, since our robust matching
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(a) Template shape flow (b) Template graph (c) Target video flow

(d) This paper (e) DP (f) ICM

Fig. 2. Matching shape flows. A template shape flow (a) and its neighbor relation graph (b) are
matched to a target video (c). Note that stationary points in (a) and (c) produce flow lines orthog-
onal to the page, which are depicted as dots. The matching result using the proposed method of
this paper (d) is superior to the result achieved either by dynamic programming (e) or iterative
conditional modes (f). In (d-f), the blue dots denote the start points of target candidate flow lines.

procedure tolerates flow line errors. Although the method is greedy, one can see from
Fig. 1 that the flow lines are actually quite clean. More accurate but computationally
more expensive methods such as [8] could be used to improve the flow line extraction.

Although the collection of flow lines that we compute is dense, for computational
considerations we sample the field in both the template and the target. The spatial
localization of flow lines in a shape flow is therefore somewhat imprecise. However,
any localization error introduced by this sampling process is overwhelmed by variation
caused by viewpoint changes and intra-class shape and motion variation. We now turn
to the shape flow matching procedure.

3 Matching Shape Flows for Action Detection

In this section, we address the problem of matching a shape flow to a target video. We
desire the matching to be scale invariant, operate in significant clutter, and also to be
tolerant to spatial and temporal deformations caused by viewpoint variation and intra-
class variation. The problem is made more difficult by the fact that the relationships
between flow lines in a shape flow, which are defined by a Delaunay triangulation, form
a loopy graph. We present a novel relaxation method that can accomplish effective and
efficient matching using a compact linear program.

3.1 An Example

Before describing the matching procedure, we present the matching example shown in
Fig. 2 in order to elucidate both the problem statement and the shape flow representa-
tion. Figs. 2(a,b) show the top-down view (projected along the time axis) of a template
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shape flow for a person waving both arms. Note that the shape flow consists of a col-
lection of flow lines (a) related by a neighborhood graph (b) given by the Delaunay
triangulation of the flow line start points. Fig. 2(c) shows the top-down view of the flow
lines in the target video volume, which are sampled from edge pixels in the first frame.
Note that the target is a different person at a different scale, and that, individually, the
target flow lines differ significantly from those in the template.

The problem is to find an assignment between flow lines in the template and flow
lines in the target so that (1) the paired flow lines are similar, and (2) the spatial re-
lationships between flow lines as given by the neighbor graph are respected. Fig. 2(d)
shows the matching result using the method proposed by this paper. Not only is the tar-
get detected and well localized, but the assignment of flow lines between the template
and target is sensible.

Our proposed method’s success relies on the combination of matching the loopy
relation graph and doing a robust global search. We can see the result of removing one
or the other of these elements. Fig. 2(e) shows the result of our method if the loopy
graph is replaced by a chain. In this case, without cycles, the matching may be done
efficiently using dynamic programming (DP). Fig. 2(f) shows the result of using the
fully loopy graph, but using ICM instead of our proposed linear relaxation. The DP and
ICM results are poor, despite the fact that both methods were given the advantage of
having the template pre-scaled to the target scale.

3.2 The Matching Problem

The template shape flow consists of a set of flow lines. These flow lines originate from
randomly selected edge points on the object. Pairwise neighbor relationships between
flow lines are given by the Delaunay triangulation of the flow line start points. Thus, the
neighbor graph has cycles. All of the flow lines in the template have the same temporal
extent, but vary in length due to motion.

The target search domain is a space-time video volume having the same temporal
extent as the template action. The search is performed over a randomly selected subset
of flow lines anchored by edge points in the first frame of the volume. The goal is to find
a consistent assignment of flow lines in the template to flow lines in the target. Matched
flow lines should be similar, and the spatial arrangement in the target should match that
of the template. We assume that there is little change in rotation between the template
and target, but that there may be a large change in scale.

Let S denote the template point set and N the set of neighbor point pairs in the
template. We formulate shape flow matching as the following optimization problem:

min
t,l

⎧
⎨

⎩

∑

s∈S
c(s, t(s), l) + λ

∑

{p,q}∈N
||(p − q) − (l · t(p) − l · t(q))||

⎫
⎬

⎭
(1)

where t(s) maps template point s to the target point, and c(s, t, l) is the cost of match-
ing s and t with scale l. The first term in the energy function is the cost of matching
individual flow lines. The second term penalizes assignments that violate the relative
positions of flow lines given by the neighbor graph N. λ weighs the relative importance
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Fig. 3. (a) Matching a template shape flow to a target video frame. See Eq. 1. (b) Linearizing
the problem with respect to scale. By quantizing the range of scales, the nonlinear scale factor
is replaced by scale-specific indicator variables ξ. This quantization of scale is not a problem
because the matching cost can tolerate some scale difference between the template and target.

of the two terms. We wish to find an assignment t(·) and scale l so that the tem-
plate shape flow matches a target shape flow with small cost in a spatially consistent
manner.

The matching cost c between a pair of flow lines is computed as follows. Flow lines
are normalized to a common spatial diameter (but regularized to account for stationary
flow lines, which have zero diameter). Each flow line has the same number of sample
points, given by the number of frames in the template. The matching cost is given
simply by the Euclidean distance between the two vectors formed by the normalized
flow lines’ 2D spatial coordinates. Because of the spatial normalization, the flow line
matching cost is scale invariant. One could use scale-specific matching costs, but we
found this simpler method to be sufficient.

As stated, this optimization problem is difficult to solve. It is discrete, nonlinear, and
highly non-convex. In addition, the loopy relation graph precludes efficient search. We
are, however, able to solve this optimization problem effectively. In the following sub-
sections, we show how to remove the nonlinearities, how to deal with the non-convexity,
and how to dramatically reduce size of the search space, yielding a fast and small linear
program solution.

3.3 Linearization

As stated, the optimization problem is a nonlinear integer program. The first step in
transforming the problem into a linear program is to remove the nonlinearities. As
shown in Fig. 3, we may remove the nonlinear scale factor from the energy function
by searching over a range of m discrete scales L = {l0, l1, ..., lm−1}. We use m = 7
scales, equally spaced between half and double the template’s natural scale. Let ξs,t,l
be binary indicator variables that take the value 1 when template point s matches target
point t at scale l. The nonlinear scale factor is replaced by the scale-specific indicator
variables ξ. Quantizing scale in this manner works because the matching tolerates small
differences in scale between the template and target shape flows. The first term of Eq. 1
may therefore be linearized as follows:

∑

s∈S, t∈T(s), l∈L

c(s, t, l) · ξs,t,l (2)
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where T(s) is the target candidate point set for template point s. In order to linearize the
second term in the energy function, we use the L1 vector norm and a standard linear
program trick to linearize the absolute value function. By introducing some pairs of
auxiliary variables, the second term may be linearized as follows:

λ
∑

{p,q}∈N
(u+

pq + u−
pq + v+

pq + v−pq) (3)

where u+
pq, u−

pq, v+
pq and v−pq are non-negative auxiliary variables. Let x(.) and y(.) be

functions that extract the x and y coordinates of a point. The auxiliary variables follow
the constraints ∀{p,q} ∈N :

u+
pq − u−

pq = up − uq − x(p) + x(q) v+
pq − v−pq = vp − vq − y(p) + y(q) (4)

and where up and vp are x and y coordinates of the scaled target point l · t(p):

us =
∑

t∈T(s), l∈L

l · x(t) · ξs,t,l vs =
∑

t∈T(s), l∈L

l · y(t) · ξs,t,l (5)

If the objective function is optimized given these constraints, at least one of u+
pq or

u−
pq and at least one of v+

pq or v−pq vanishes. The proof of this fact is by contradiction:
If it were not the case, then we could subtract the smaller value in each pair from
u+ and v−, producing a feasible solution at lower cost. Based on this observation,
u+
pq + u−

pq = |up − uq − x(p) + x(q)| and v+
pq + v−pq = |vp − vq − y(p) + y(q)|,

and therefore u+
pq +u−

pq + v+
pq + v−pq = ||(p − q)− (l · t(p) − l · t(q))||. The original

energy minimization problem of Eq. 1 is now linear.
Additional constraints enforce that the matching is an assignment, where each tem-

plate point matches a single target point:

∑

t∈T(s), l∈L

ξs,t,l = 1, ξs,t,l = 0 or 1, ∀s ∈ S (6)

And we constrain each pair in the assignment to select the same scale w, so that the
template scales uniformly:

∑

t∈T(s), l∈L

l · ξs,t,l = w, ∀s ∈ S (7)

The matched target points are given by:

t̂x =
∑

t∈T(s), l∈L

x(t) · ξs,t,l t̂y =
∑

t∈T(s), l∈L

y(t) · ξs,t,l (8)

The original nonlinear integer problem has been transformed into a linear integer pro-
gram without any approximations: The linearized version solves the original problem
exactly, apart from the effects of quantizing scale. The problem is still integer, however,
and still non-convex. The following subsection addresses both of these issues.
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s

Fig. 4. Convexification using the 4D lower convex hull. The actual cost surface of the integer
program is non-convex (a). Relaxing the ξ yields a linear program, the solution for which lies on
the lower convex hull (b) of the original cost surface. Any variables corresponding to points above
this surface are redundant in the linear program, so they may be pruned (c). In our formulation, the
cost surface is 3D, and so the lower convex hull is 4D. As the dimensionality increases, pruning
becomes proportionally more effective.

3.4 Relaxation and Convexification: The Lower Convex Hull Property

Due to the computational expense of integer programming, we relax the indicator vari-
ables ξs,t,l so that instead of taking discrete binary values they take continuous values
in the unit interval. In this now linear program, the ξ correspond to a kind of likelihood
that a template flow line matches a target flow line at a particular scale. The program
is very large, however: The number of variables ξs,t,l is proportional to the number of
template points, the number of candidate points, and the number of discrete scales. We
can greatly reduce the number of ξ variables without changing the solution of the linear
program by taking advantage of the following property.

Property. We need keep only those ξs,t,l that correspond to the vertices of the 4D lower
convex hull of the point clouds (l · t, l, c(s, t, l)) with respect to the last coordinate for
each s.

As depicted in Fig. 4, the solution to a linear program may be found by exploring
the lower convex hull of the cost surface. Variables corresponding to interior points,
depicted as gray dots in Fig. 4(b), are algebraically redundant because they may be
represented as linear combinations of points on the hull. These “interior variables” may
be safely removed from the linear program without affecting its solution.

This convexification procedure can reduce the size of the linear program and there-
fore greatly speed up its solution—by a factor of 100 or more in our experiments in this
problem domain. Note that if c(s, t, l) is convex over (l · t, l) for each s in the original
integer program, the relaxed linear program will find the global optimum.

3.5 Iterative Refinement

In general, the cost surface c(s, t, l) is non-convex over the domain (l · t, l). Because
of the convexification, and because of the interactions between variables from N, the
linear relaxation gives an approximate solution. The magnitude of the approximation
error depends on the size of the domain, however, because the convex approximation
will be more accurate when the domain is smaller. This suggests an iterative approach
known as successive convexification [6].

Initially, the search window, or trust region, covers the entire target domain: Every
point in the target frame is a possible matching candidate for each template point at
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(a) Sampled frames from the 1000-frame fitness video.
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(b) Template #1, top 7 matches, and per-frame match cost.
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(c) Template #2, top 7 matches, and per-frame match cost.

Fig. 5. Detection of two 15-frame actions in the fitness video. The graphs show the per-frame
match cost for the template; blue dots mark the locations of true positives. For each template and
match, there are three images: (1) the first frame of the action with the template’s neighbor graph,
frame number F, and match cost C; (2) the second frame of the action; and (3) the last frame of
the action. In (b), the top 6 matches correspond to the 2 true positives for a right leg out action.
In (c), the top 5 matches correspond to the 1 true positive for a right arm out, left knee out action.
In these examples, which include significant camera motion, there are no errors.

every scale. In this case, the matching will still likely find the correct target, but the con-
vexification introduces localization errors. Given a solution, we may iteratively shrink
the trust region over the domain (t, l), each time repeating the convexification and linear
relaxation procedure. As the trust region shrinks, the lower convex hull fits the original
cost surface more accurately, and the template is localized in the target more accurately.
At most 5 iterations are required, and the program shrinks geometrically in size at each
iteration.
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4 Empirical Evaluation

We show experimental results for the proposed action detector on a wide range of videos
and on the action dataset of Blank et al. [2]. The output of the optimization described
above is the best match for a template in each frame of the target video, whether that
match is good or bad. We require a method of ranking the matches by quality, across
frames, to generate a top-list for action detection.

4.1 Scoring Action Matches and Ranking Results

The energy function that we minimize to find an action in a video frame is effective at
locating the best match within a frame. However, the energy values cannot be meaning-
fully compared across frames. There are two reasons for this. First, the flow line match
cost in the linear program is totally scale invariant, which is too lenient for a cross-
frame match score. And second, the energy will be artificially low when the template is
matched against a partially similar action; for example, a template of a person waving
one arm will match well to a target waving two arms, but should not be scored high.

(a) Sampled frames from the 3501-frame sign video.

Frame 0195 Frame 3204
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(b) Template #1, top 5 matches, and per-frame match cost.
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(c) Template #2, top 5 matches, and per-frame match cost.

Fig. 6. Compare with Fig. 5. In (b), the top 4 matches correspond to the 2 true positives for a 7-
frame exchange action. In (c), the top 5 matches correspond to the 4 true positives for a 15-frame
message action; the message template is partitioned into left/right halves. In these examples,
which involve self-occlusion, there are no errors.
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Frame 0550

(a) Template

Frame 0456
Cost 0.468

(b) 1st match

Frame 1676
Cost 0.531

(c) 2nd match

Frame 0683
Cost 0.607

(d) 3rd match

Frame 1563
Cost 0.620

(e) 4th match

Fig. 7. Detection of a complex 15-frame action in the 2091-frame gymnastics video. The action is
the first half or a forward flip on the balance beam. The top row of images shows frames sampled
uniformly in time from the video. Column (a) shows the action template along with three frames
(beginning, middle, end) from the action. Columns (b-e) show the top 4 matches. The sequence
contains 3 true positives, which are the top 3 matches. In this example, which involves rapid and
complex object motion as well as camera motion and background clutter, there are no errors.

To address these issues, we formulate a more robust similarity measure between the
template shape flow and the matched target shape flow. First, we normalize the flow
lines within each shape flow by the mean flow line length, and translate each flow line
start point to the origin. The distance between these two bundles of normalized and
shifted flow lines is defined as the average minimum distance between individual flow
lines across bundles, which is a symmetric measure. The distance between individual
flow lines is again defined as the Euclidean distance between the flow lines’ spatial
coordinate vectors.

As stated, this shape flow distance measure discards all information regarding the
relative position of flow lines. For most actions, for ranking results, this is not a problem.
However, consider the highly symmetric actions shown in Fig. 6(c). Because the flow
lines on the left arm of one action will have low distance to the flow lines on the right
arm of the other action, the total distance will be very low. Consequently, for such
actions, we break the symmetry by partitioning the template into halves. Normalization
is still performed on the entire template, but the distance is computed for each part
separately. The total distance for a partitioned template is simply the average distance
of the parts, weighted by the number of flow lines in each part. All of the results in this
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Fig. 8. The top 30 detections for a 8-frame swing template action in an 8000-frame video golf.
There are 10 hits (with duplicates) of 14 true positives and 11 false positives, yielding 71% recall
and 63% precision. This is a difficult video with few true positives compared to negatives, and
much camera motion.

paper use a whole single-part template; only the action in Fig. 6(c) required a (left-right)
template partition.

4.2 Results

We first present action detection results for single actions in four extended videos. Fig. 5
shows results for the fitness video; Fig. 6 for the sign video; Fig. 7 for the gymnastics
video; and Fig. 8 for the golf video. In all cases, the top matches are determined using
the shape flow distance measure described in the previous subsection. These videos
involve fast object motion, camera motion, and background clutter. In addition, the
template and target are always of different people, which introduces scale variation,
pose variation, and intra-class variation.

Fig. 5 shows match results for two 15-frame actions in the 1000-frame fitness video.
All true positives from the video appear at the front of the list of top matches. Fig. 6
shows the same perfect result for the detection of two 15-frame actions in the 3501-
frame sign video. In both videos, there are multiple positives per true positive because
the top list ranks matches from all frames in the video. The fitness video involves a mov-
ing camera and background clutter; the sign video involves background clutter (there
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Fig. 9. Detecting actions in the video dataset of Blank et al. [2]. The dataset consists of 93 single
action video clips for 10 actions. The 10 actions are: running (Run), walking (Walk), side stepping
(Side), jumping in place (VJump), waving one arm (Wave1), waving two arms (Wave2), forward
jumping (FJump), forward hopping (FHop), jumping jack (JJump), and bending (Bend). We use
a single action template for each action class. Graphs (a-j) show, for each action, all 92 clips
(template clip excluded) sorted by match score when matched against that action template; the
y-axis places each clip into its ground truth category. Most of the same category target clips (red
dots) are ranked first, which is the goal. Graphs (k-t) show the corresponding precision recall (PR)
curves for the 10 actions. We achieve high precision and recall for 8 of 10 actions; the FJump and
FHop actions are extremely similar visually, and panels (g,h) show that they get confused with
each other.

are many stationary flow lines in the background) as well as complex self occlusion.
Despite these challenges, the actions are detected successfully.

Fig. 7 shows match results for a complex 15-frame action in the 2091-frame gym-
nastics video. After applying non-minima suppression in the time dimension to the
per-frame match scores, the three true positives appear as the top three matches. Non-
minima suppression is not necessary, but prunes duplicate matches from the top list.
Despite background clutter, constant camera motion, and significant intra-class varia-
tion, the proposed method is again successful.

Fig. 8 shows results for a 8-frame swing action in the 8000-frame golf video. This is
the most challenging of the four videos, and demonstrates some match failures. The top
30 matches are shown over the entire sequence. There are 10 hits of 14 true positives
with 11 false positives, yielding 71% recall and 63% precision (accounting for duplicate
hits). This sequence involves much camera motion, a variety of individuals as targets,
and highly variable background clutter. In addition, there are many distractor frames in
which there is no relevant object present.

We also report results for the action recognition dataset of Blank et al. [2] in Fig. 9.
The dataset consists of 93 single action video clips for 10 actions performed by various
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subjects. We extract a single 15-frame shape flow template for each action by randomly
choosing a 15-frame sequence from a randomly chosen clip. Each template is then
matched against each frame in the set of test clips (excluding the template clip). The
match cost for a clip is taken as the minimum match cost across frames in the clip.
Fig. 9 shows that the top matching clips have the correct class, yielding high perfor-
mance precision recall curves for 8 of 10 classes; the FJump and FHop classes are not
distinguished well by our detector, but that is because they are visually extremely sim-
ilar. The equal precision-recall point across the dataset is 90%. Excluding the FJump
and FHop categories, the equal PR point is at 95%.

5 Conclusion

We have proposed a novel representation for actions called the shape flow, which in-
corporates both the shape and motion of an object in an assembly of easily computed
flow lines. We have formulated action detection and localization as an energy mini-
mization problem, yielding a difficult nonlinear, non-convex integer program. We show
how to linearize this energy function, and how to use successive convexification of the
energy cost surface to relax the program and vastly reduce the size of the linear pro-
gram without approximation. Experimental results on difficult videos and a standard
action detection dataset confirm that the proposed method can accommodate complex
object motion and self-occlusion, camera motion, background clutter, scale changes,
pose variation, and intra-class variation. The method is non-parametric, and requires
neither background subtraction nor accurate trajectories. We believe that this method is
a useful tool for automatic action detection.
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