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Abstract

This paper presents an approach to extracting and using
semantic layers from low altitude aerial videos for scene
understanding and object tracking. The input video is cap-
tured by low flying aerial platforms and typically consists
of strong parallax from non-ground-plane structures. A
key aspect of our approach is the use of geo-registration
of video frames to reference image databases (such as those
available from Terraserver and Google satellite imagery)
to establish a geo-spatial coordinate system for pixels in
the video. Geo-registration enables Euclidean 3D recon-
struction with absolute scale unlike traditional monocular
structure from motion where continuous scale estimation
over long periods of time is an issue. Geo-registration also
enables correlation of video data to other stored informa-
tion sources such as GIS (Geo-spatial Information System)
databases. In addition to the geo-registration and 3D re-
construction aspects, the key contributions of this paper in-
clude: (1) exploiting appearance and 3D shape constraints
derived from geo-registered videos for labeling of structures
such as buildings, foliage, and roads for scene understand-
ing, and (2) elimination of moving object detection and
tracking errors using 3D parallax constraints and seman-
tic labels derived from geo-registered videos. Experimental
results on extended time aerial video data demonstrates the
qualitative and quantitative aspects of our work.

1. Introduction & related work

Interpretation of aerial video data for scene and object
level understanding is an important problem domain in to-
day’s world since large areas of the world are being captured
from the air for both commercial and military applications.
In particular, videos captured using low-flying aerial plat-
forms consists of strong parallax from non-ground-plane
structures [6, 12], which contains rich information about the
3D nature of the scene as well as moving objects. By lever-
aging the 3D cue implied in the videos, this paper presents
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Figure 1. Scene segmentation of aerial video. After combining
multi-cue from video, geo-reference image and GIS information,
the input video will be partitioned into different meaningful lay-
ers, such as building, road, tree, and cars, for video understanding
and event analysis. (a) One input frame. (b) Corresponding depth
cue estimated from the video. (c) The desired scene segmentation
results.

an approach to extracting and using semantic layers from
low altitude aerial videos for scene understanding and ob-
ject tracking. In our approach, one key aspect is the use
of geo-registration between video frames and reference im-
age to establish a geo-spatial coordinate system for pixels
in the video. Geo-registration enables Euclidean 3D re-
construction with absolute scale unlike traditional monoc-
ular structure from motion where continuous scale estima-
tion over long periods of time is an issue. Geo-registration
also enables correlation of video data to other stored in-
formation sources such as GIS databases, which will pro-
vide another set of cues for scene segmentation. In addi-
tion to the geo-registration and 3D reconstruction aspects,
the key contributions of this paper also include: (1) exploit-
ing appearance and 3D shape constraints derived from geo-
registered videos for labeling of structures such as build-
ings, foliage, and roads for scene understanding, and (2)
elimination of moving object detection and tracking errors
using 3D parallax constraints and semantic labels derived
from geo-registered videos.

Scene understanding using static image segmentation

1
978-1-4244-2243-2/08/$25.00 ©2008 IEEE



has been studied extensively and a number of methods
have been developed to relate scene structure to seman-
tics [17, 2]. In those approaches, typically manually seg-
mented images are collected as training data to learn a
set of specified object clusters, such as trees, grass, roads,
buildings, and cars, etc. During the learning process, a
range of features, such as color histogram, texture, gradi-
ent, lines and curves, are extracted from the images for the
model clustering. However, without the help of depth cues,
these methods face a serious challenge to infer building
structures by either rectangle or parallelogram fitting since
a number of man-made ground structures, such as roads,
parking lots, and parks have similar geometry as buildings.
In photogrammetry community, some researchers combine
high resolution DEM (Digital Elevation Model) or LIDAR
(Light Detection and Ranging) data with/or without aerial
images to recover building structures [4, 3, 18].

Compared to the existing image-based scene segmenta-
tion and DEM-based urban reconstruction methods, our ap-
proach exploits the information implicit in the aerial video
sequence and the associated geo-reference image. We lever-
age the estimated depth and motion cues with 2D image fea-
tures to segment video frames into semantic regions. With
the help of depth cue, our segmentation approach effectively
partitions each video frame into ground and non-ground re-
gions for building and tree detection, and also achieve the
consistent scene segmentation results over the frames by en-
forcing spatiotemporal constraints.

Fig. 1 shows the concept of our geo-based video scene
segmentation for both scene understanding and object track-
ing. Given an input aerial video sequence, we first perform a
geo-referenced depth estimation to compute depth for each
frame. Then based on the estimated depth, the non-ground
regions are segmented and a planar fitting plus depth exten-
sion approach is applied to extract the structure of buildings
and tree shapes. In our approach, the estimated depth does
not only help for the structure detection but also can effec-
tively reduce false alarms in object tracking related to 3D
parallax. Moreover, we also integrate GIS information into
our framework to detect road network, which further parti-
tions the video frame into blocks and assist tracking associ-
ation along the road network even when vehicles stopping,
occluded or making a turn.

Current approaches to aerial video process are mainly
focused on moving object tracking and do not largely ex-
ploit scene context from video data [11, 1, 20]. [10] use
video scene segmentation to reduce tracking false alarms.
These work mostly focus on image based segmentation,
where only texture and color information are used for sys-
tem training. This approach is effective in removing false
alarms typically from the trees but unfortunately it ignores
the strong 3D cue implied in the video sequence. In the area
of aerial video based depth estimation, the most relevant
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Figure 2. Our two-stage algorithm framework. The first stage is
the geo-based depth estimation algorithm, and the second stage is
multi-cue scene segmentation algorithm.

work is [15], where a set of pushbroom mosaics are created
to estimate depth. However, the construction of pushbroom
mosaic needs a strict requirement on the aerial trajectory
and camera setup: the camera should be setup as a top view
with a straight flight path as possible. In our case, the aerial
platform and the camera can follow an arbitrary trajectory
and the camera zoom setting may change over time.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of our algorithmic framework.
Section 3 addresses geo-referenced camera pose and depth
estimation. In section 4, an approach is presented to ex-
tract the structure of buildings, roads and trees with the de-
tected moving objects from the videos by integrating mo-
tion, depth, color, texture and GIS information. The experi-
mental results are reported in Section 5.

2. Algorithm overview

Fig. 2 shows the algorithm framework of our approach
that includes two main stages: (1) Geo-spatial depth es-
timation from monocular aerial video, and (2) Multi-cue
scene segmentation. In the first stage, we employ the geo-
referenced imagery from Terraserver/Google to perform
ortho-rectification of video frames and recover metric depth
of the scene. The process includes geo-registration, pose
estimation and depth recovery. Once depth maps are esti-
mated, the second stage process partitions each frame into
ground and non-ground regions based on depth variation.
For the non-ground regions, a planar fitting and depth ex-
tension approach is designed to identify building structures
by integrating depth, color, and texture information and seg-
ment trees and other foliage in the video. For the ground
regions, additional GIS information is used to extract and
refine geo-registered road network. Finally, all extracted re-
gions are combined with object tracking results and visual-
ized as the scene segmentation for video understanding and
event analysis.



3. Depth estimation from arial video

Depth estimation from monocular aerial videos is in gen-
eral a challenging problem as the internal camera parame-
ters can change over time (due to variable zooming), scale
needs to be continuously estimated, and the quality of im-
agery is also highly variable due to blurring and illumina-
tion changes. Furthermore, typical imaging scenarios in-
clude platforms flying high enough that the camera model
often degenerates to an affine camera with the scene be-
ing largely planar with some depth variation due to build-
ings, foliage and terrain. Traditional frame-to-frame struc-
ture from motion methods are generally unreliable under
these conditions.

We employ geo-referenced reference imagery available
from open sources such as Terraserver and Google maps
to perform video frame to reference imagery pose estima-
tion. By matching features in video frames to features
in reference imagery, metric pose estimation is possible.
Since each point in geo-referenced imagery has an associ-
ated world coordinate (latitude, longitude), the pixel corre-
lated with a point in the reference imagery inherits that co-
ordinate. This becomes the basis of refining pose estimates
for each frame and Euclidean depth estimation by frame-to-
frame correlation. The flowchart in Fig. 3 shows the detail
steps in our geo-referenced camera pose and depth estima-
tion process.

3.1. Geo-registration

Geo-reference image databases typically consist of
ortho-rectified imagery for the flat ground with each
latitude-longitude specified for each point. Optionally it is
possible to utilize digital elevation maps (DEMs) but these
are not available in public databases such as Terraserver and
Google. We use geo-registration to match features on the
ground in videos to the reference imagery. No 3D pose es-
timation is done at this stage. Our approach employs SIFT
feature [9] to detect a number of correspondences between
the input video frames and geo-reference image for an ini-
tial alignment. Then a topology-based bundle adjustment
process is applied to refine the registration process by in-
corporating the frame-to-frame transformation within the
sequence [14, 13]. During geo-registration, we also apply
a third-order lens distortion model to remove the radial dis-
tortion [5] such that

p̂ = (1 + k1r + k2r
2 + k3r

3)p̃, (1)

where p̃ is the ideal image location of geo-correspondences,
p̂ is the actual image position, and r is the radial distance.
Fig. 4 shows one geo-registration example, where the track
and GIS information are also overlapped on the image.
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Figure 3. The flow chart of our geo-based depth estimation algo-
rithm, where three major modules are required in the process.

3.2. Camera calibration and pose estimation

After frame-to-reference geo-registration, we re-
estimate camera poses based on a set of initial camera
locations provided by the on-board GPS sensor. We assume
that the geo-reference coordinates are located on the ground
plane with height Z0. Then based on 3D projection, a 3D
ground point P = [X Y Z0 1]′ can be projected on frame
Ij at p = [u v 1]′ such that

p = KjRj [I| − Cj ]

⎡
⎢⎢⎣
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Y
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1

⎤
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⎣
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1

⎤
⎦ , (2)

where Kj is the camera calibration matrix for frame Ij , Rj

is the corresponding rotation matrix, Cj = [Xc
j Y c

j Zc
j ]

′

is the initial camera center given by GPS. Similarly, we
can also project the video frame into the geo-coordinates
through the projective geo-registration transformation such
that

p = Hj

⎡
⎣

X
Y
1

⎤
⎦ , (3)

where Hj is a projective transformation between frame Ij

and geo-reference image. By comparing Eq. 2 with Eq. 3,
we obtain

KjRjA = Hj

KjRj = A−1Hj = M, (4)

where M is only depended on Hj and camera center loca-
tion. Once M is computed, we can apply QR decompo-
sition or SVD decomposition to estimation rotation matrix
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Figure 4. One frame geo-registration with track and GIS informa-
tion overlapped.

Rj and calibration matrix Kj for each frame Ij . In the ex-
periments, we found that SVD decomposition can tolerate
lens distortion and produce better orientation results than
QR decomposition that enforces Kj as an upper triangle
matrix. The SVD decomposition is given as follows:

M = UDV ′ = (UDU ′)(UV ′) = KjRj , (5)

where Kj = UDU ′ and Rj = UV ′. The resulted Kj may
not be a strict upper triangle matrix due to the image noise
and remaining lens distortion, but it can be further enforced
to an upper triangle matrix by parameter fitting[21, 5].

After estimating the camera calibration and rotation ma-
trices for each frame, we apply a Kalman filter to smooth
the calibration matrix and rotation angles by assuming the
camera mechanical change is continuous over consecutive
frames. Then, based on the refined Kj , Rj , and the corre-
spondences between each video frame to geo-reference im-
age, the camera location Cj can be re-estimated from Eq. 2
with 3D bundle adjustment[5].

3.3. Depth estimation and depth fusion

In the geo-referenced world coordinates, X and Y axes
are along east and north respectively, and Z axis is perpen-
dicular to the ground plane. We quantize depth along the
Z axis to represent depth layers along this axis with a to-
tal of 50 layers. We apply the multi-frame graph cut al-
gorithm [8, 19] to estimate depth from videos. Due to the
varying image quality of video frames, the quality of the
estimates depth maps is highly variable as shown in Fig.5.b.

To obtain consistent depth map over the video sequence,
we propose a bilateral depth fusion technique to refine the
depth map by fusing the low quality depth information from
multiple frames. We first project multiple depth maps into
the reference frame and apply a weighted average to fuse the

(a)

(b)

(c)

Figure 5. Depth estimation and fusion results. (a) Input video
frames. (b) Depth estimation computed by graph cut, which may
not be consistent between the frames. (c) Refine depth using bilat-
eral filter.

maps into one depth map d̄. Then a color guided bilateral
filter [16] is designed to smooth d̄ the depth map:

d =
1
kp

∑
q∈Ω

d̄qf(‖p − q‖)g(‖Ip − Iq‖), (6)

where d is the final output depth map, p and q are pixel
locations, f is a spatial filter kernel, g is range filter kernel
over image color domain, Ω is the spatial support region of
kernel f , and kp is a normalizing factor. Fig.5.c shows the
bilateral fusion results where the smoothness in continuous
regions and sharp discontinuities at depth boundaries are
preserved.

4. Multi-cue scene segmentation

In this section, we first discuss our planar plus depth
extension scene segmentation approach for building and
tree segmentation by combining the multiple cues estimated
from videos. Then, we present the integration of additional
GIS information to identify road network within the seg-
mented ground regions.

4.1. Building and tree detection

Using the estimated depth with a threshold can partition
each video frame into ground and non-ground regions as
shown in Fig.6.c. After the partition, the segmented non-
ground regions include tree, building and some false alarms
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Figure 6. Multi-cue building and tree detection and segmentation. (a) Input video frame. (b) Corresponding depth map. (c) Non-ground
region detection using a low depth threshold, which may include tree, building and some false alarm regions. (d) Roof detection with a high
depth threshold and non-tree filtering. (e) Refine depth for roof regions by two-dimension plane fitting (Eq.9). (f ) Tree region detection
(gray pixels) using a mix-gaussian model with depth, color, and texture. (g) Region extension from the roof to ground along depth direction
as shown in (f ). (h) Final result of building and tree detection and segmentation.

due to the imperfect depth estimation. Then, we raise the
depth threshold to detect the roof segments as shown in
Fig.6.d. For each roof region, a common plane model can
be used to refine the depth and identify the roof categories,
such as flat roof, slant roof, or a tall sidewall like water
tower. The plane mode is given as

f1x + f2y + f3z + f4 = 0, (7)

where fis are the plane parameters, x and y are image co-
ordinates, and z is estimated depth. However, this model is
for genetic plane fitting and does not fully exploit 3D cam-
era pose constraint implied in the video.

Given a fixed depth z, the plane in 3D world will inter-
sect with the viewing plane as a line as shown in Fig.6.b.
Along this intersection line, the depth would be invariant.
For different depthes, the planes will have different intersec-
tion lines in the image. Since the camera in the UVA video
is a weak perspective camera due to large flying height, this
set of lines will approximately parallel to a direction, u, and
depth change along the gradient descent direction, v, which
would be perpendicular to u. Therefore, the freedom of
plane fitting model is reduced and a two-dimension func-
tion is good enough to estimate the parameters for the plane
such that

f5w + f3z + f4 = 0, (8)

where w is the coordinate along v direction and w =
[x y]′·v/‖v‖. Fig.7 and Fig.6.e − f compare the results
using different plane fitting schemes. The approach using

two-dimension function (Eq.9) can greatly improve impre-
cise depth estimation and achieve more reasonable results
for scene structure extraction.

Once the depth gradient descent direction, v, is deter-
mined, we can recover the whole building segment by ex-
tending the roof pixels along this direction to the corre-
sponding pixels on the ground with depth z = Z0 as shown
in Fig.6.f − g. Using this way, the structures of the build-
ings are fully recovered and the height of each building
is also determined. Our approach can effectively tolerate
depth quality variations and does not require highly precise
depth estimation for building detection and segmentation.

For tree detection, a multi-cue gaussian mixture model is
built from a set of sample images with the estimated depth
map such that

p(x; ak, Sk, πk) =
m∑

k=1

πkpk(x), (9)

where πk is the weight of k-th mixture and
∑m

k=1 πk = 1,
ak and Sk are the corresponding mean and covariance ma-
trix. In our case, the feature space dimension, m, is nine,
which is composed by depth, color, and texture. After the
training stage, we apply the model to classify image pixels
for the tree detection and segmentation. Using our model,
we can reject most false alarms from either grass or spec-
ular lighting regions as shown in gray color Fig.6.f . Some
false alarms will be further reduced by building extension
and region size constraints. The final segmentation result is
illustrated in Fig.6.h.
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Figure 7. The results using genetic plane fitting. The refined depth
may have some change along depth invariant direction u, which
may cause building distortion as shown in the right side image.

4.2. GIS guided road detection

Without any knowledge, detecting road from single im-
age or video sequence is still a challenging problem. In this
paper, we leverage the correlated GIS information to relax
the difficulty for road detection, which is then used for ve-
hicle tracking and scene segmentation.

Given a road network, the image can be easily parti-
tioned into different blocks, which may be associated with
certain semantic meanings, such as parking lot, foliage,
business zone, or residential zone. However, the GIS meta-
data related to geo-reference image may not be precisely
aligned with the image and does not provide road width in-
formation for each road. Fig.8.a shows one example of the
original road metadata projected on the geo-reference im-
age, where a few pixels offset between the real road and the
GIS road.

In order to obtain better road network, we combine road
appearance with parallel lines detection to refine the road.
Our approach includes two steps: model training and detec-
tion. In the training step, a set of road patches are sampled
from the images based on the GIS road information. After
aligning these patches along the road direction, we extract
color and gradient features from the patches. These features
are projected on the vertical direction of the road and form
a combined histogram to represent the road patch. A gaus-
sian mixture model is then created to model the distribution
of the feature vectors.

In the detection stage, we also align the extracted road
along the road direction (y axis) as shown in Fig.8.c. Next,
we shift the histogram along x axis to identify the best cor-
relation between the gaussian mixture model and the in-
put feature histogram. Fig.8.d shows the correlation result.
Once the road center is determined (green lines in Fig.8.c
and 8.e), we can estimate the road width (bounded by pink
lines) by peak detection on gradient histogram with sym-
metrical constraint as shown in Fig.8.e. Fig.8.e shows the
final results for the road refinement.

The estimated road network is also very useful for ve-
hicle tracking and depth correction. For example, with the
road knowledge, the tracking process can effective handle
occlusion issue along the road direction.

(a)

(c) (d) (e)

(b)

x

y

x x

y y

Figure 8. (a) The road network from GIS is overlapped on the geo-
reference image, where a few pixels may be off from the real road.
(b) The corresponding refined road network. (c) One road patch
is extracted and aligned along the road direction, where red line
is the road center provided from GIS and green line is the refined
road center by our approach. (d) The histogram correlation results
using our gaussian mixture model. (e) The projected gradient his-
togram for road width estimation.

5. Experimental results

In this section, we report the experimental results on
VIVID2 aerial video data set. These videos are captured
by an aerial platform with flying height about 1000 meters
for semi-urban area vehicle tracking. In our experiment,
we select several video sequences from DLTV (daylight TV
sensor), and each sequence is about four minutes with more
than 7000 frames. After preforming the geo-spatial aerial
video process, we generate a series of results including geo-
registration, camera pose, depth map, road map, scene seg-
mentation and moving object tracking for each input video,
which provide fundamental primitives for high level event
analysis and scene exploitation.

Since low flying aerial video consists of strong parallax
when the camera viewing a 3D scene, it would be challeng-
ing to detect and track moving objects using 2D frame-to-
frame stabilization. Using epipolar constraint or 3D shape
constraint is the most popular way to remove false alarms
whose motion is consistent with 3D geometry. This pa-
per also employs the 3D shape constraint to remove false
alarms [12] since we have explicitly estimated the depth in-
formation for each frame. In our approach, we combine sta-
bilization, optical flow warping and depth warping to detect
moving blobs for tracking. Fig.9 compares vehicle tracking
results with/without using depth integration. With the depth
estimation, false alarms around tall static objects, such as
water tower or tree tips, can be significantly reduced. To
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Figure 9. Elimination of tracking false due to 3D parallax. (a)
The tracking results without using 3D shape constraint. (b) The
tracking results with 3D shape constraint, where the false alarms
are reduced significantly around the water tower or tree tip. (c)
The corresponding depth maps.

quantitatively evaluate our tracking performance, we man-
ually generate ground truth for some sequences and then
employ the performance metrics from standard evaluation
program [7] to test our algorithm. One critical metric in [7]
is Multiple Object Tracking Accuracy (MOTA) defined as

MOTA = 1 −
∑N

t=1(cf + cm + log(cs))∑N
t=1(cg)

, (10)

where cf and cm are the false acceptance and false rejec-
tion counts, cs is total number of incorrect identity switches
made by the system, and cg is the ground truth object
counts. The perfect tracking result will be given a score
equal to 1, and the tracking performance become worse
when the score becomes smaller or negative. After we
tested the sequences, the average MOTA is improved from
0.740 to 0.851 (15% improvement) and false alarm rate is
dropped from 0.190 to 0.072 (62% improvement).

Fig.11 illustrates the final scene segmentation results for
different frames by combining vehicle tracking, building,
foliage, and road detection, where the corresponding depth
maps are provided in Fig.10. After applying our multi-cue
scene segmentation approach, the input aerial video is then
able to be interpreted as a text message or an event report.
For example, by exploiting the spatiotemporal relationship
among the segmented layers and moving vehicles, the im-

Figure 10. The corresponding original images and depth maps of
Fig.11.b and 11.c.

age in Fig.11.a then can be encoded as a report for event
analysis, such as “eight cars are driving along 19th street
and stop at intersection between 19th street and A avenue”,
“building 0 is located at the right side of the vehicles”, etc.

Another benefit of our geo-based approach is that we can
provide absolute scale in the video for the photogrammetry
purpose including height of building, driving distance or ve-
hicle speed, while the traditional monocular structure from
motion has a problem to estimate such accurate scale over
long periods of time. For example, in Fig.11.a, the heights
of the water tower and building are measured as 50 meters
and 15 meters respectively.

6. Conclusion

In this paper, we have presented an approach to extract
semantic layers from low attitude aerial videos for scene
understanding and object tracking. Our main contributions
consist of: (1) We provide a reliable geo-based solution
to estimate camera pose for depth estimation of an aerial
video. (2) Using the estimated depth cue combining with
other image features, we propose a planar plus depth exten-
sion approach to preform scene segmentation for both build-
ing and foliage. (3) Elimination of false tracking alarms of
moving objects using 3D parallax constraints and seman-
tic labels derived from geo-registered videos. After apply-
ing our approach on a set of aerial video sequences cap-
tured by VIVID program, the experiment results illustrate
that our method can produce reasonable depth map over a
long period time and significantly reduce the false alarms
for vehicle tracking due to 3D parallax. Even for such low
quality, monocular video sequences, our approach still gen-
erates promising scene segmentation results for video-based
semantic scene exploitation and event analysis.
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Figure 11. The final scene segmentation results. For each frame, a 3D coordinate system is drawn on the top-right corner, where red line is
Z axis, green line points to east, and blue line points to north. The road name, building ID, and tracking ID are marked on each object in
the image.
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