Beyond Sliding Windows: Object Localization by *Efficient Subwindow Search*

Christoph H. Lampert[†], <u>Matthew B. Blaschko[†]</u>, & Thomas Hofmann[‡]

Max Planck Institute for Biological Cybernetics[†] Tübingen, Germany

> Google, Inc.[‡] Zürich, Switzerland

Object Localization

Sliding Window Classifiers

• Efficient Subwindow Search

Results

-0.2

-0.1

0.1 -0.2 -0.1 0.1 ... 1.5 ... 0.5 0.4 0.3

Sliding Window Classifier

approach: sliding window classifier

- evaluate classifier at candidate regions in an image $\operatorname{argmax}_{B \in \mathcal{B}} f_I(B)$
- for a 640 \times 480 pixel image, there are over 10 billion possible regions to evaluate

sample a subset of regions to evaluate

- scale
- aspect ratio
- grid size

Sliding Window Classifier

approach: sliding window classifier

- evaluate classifier at candidate regions in an image $\operatorname{argmax}_{B \in \mathcal{B}} f_I(B)$
- for a 640 \times 480 pixel image, there are over 10 billion possible regions to evaluate

sample a subset of regions to evaluate

- scale
- aspect ratio
- grid size

We need a better way to search the space of possible windows

Object Localization

Sliding Window Classifiers

Efficient Subwindow Search

Results

Problem: Exhaustive evaluation of $\operatorname{argmax}_{B \in \mathcal{B}} f_I(B)$ is too slow. Solution: Use the problem's *geometric structure*.

- Similar boxes have similar scores.
- Calculate scores for *sets of boxes* jointly (upper bound).
- If no element can contain the object, discard the set.
- Else, split the set into smaller parts and re-check, etc.
- \Rightarrow efficient branch & bound algorithm

Branch & Bound Search

Form a priority queue that stores *sets of boxes*.

- Optimality check is O(1).
- Split is O(1).
- Bound calculation depends on quality function. For us: *O*(1)
- No pruning step necessary

n × m images: empirical performance O(nm) instead of O(n²m²).
no approximations, solution is globally optimal

Branch & bound algorithms have three main design choices

- Parametrization of the search space
- Technique for splitting regions of the search space
- Bound used to select the most promising regions

Sliding Window Parametrization

• low dimensional parametrization of bounding box (left, top, right, bottom)

Branch-and-Bound works with subsets of the search space.

• Instead of four numbers [*I*, *t*, *r*, *b*], store four intervals [*L*, *T*, *R*, *B*]:

Branch-Step: Splitting Sets of Boxes

 $[L, R_1, T, B]$ with $R_1 := [r_{lo}, \lfloor \frac{r_{lo} + r_{hi}}{2} \rfloor]$

 $[L, R_2, T, B]$ with $R_2 := \left\lfloor \lfloor \frac{r_{lo} + r_{hi}}{2} \rfloor + 1, r_{hi} \right\rfloor$

Bound-Step: Constructing a Quality Bound

We have to construct f^{upper} : { set of boxes } $\rightarrow \mathbb{R}$ such that

i) $f^{upper}(\mathcal{B}) \geq \max_{B \in \mathcal{B}} f(B)$,

ii)
$$f^{upper}(\mathcal{B}) = f(B)$$
, if $\mathcal{B} = \{B\}$.

Example: SVM with Linear Bag-of-Features Kernel

• $f(B) = \sum_{i} \alpha_{i} \langle h^{B}, h^{j} \rangle$ h^{B} the histogram of the box B.

•
$$= \sum_{j} \alpha_{j} \sum_{k} h_{k}^{B} h_{k}^{j} = \sum_{k} h_{k}^{B} w_{k}, \text{ for } w_{k} = \sum_{j} \alpha_{j} h_{k}^{j}$$

•
$$= \sum_{k} \alpha_{k} w_{k}, \text{ for } w_{k} = \sum_{j} \alpha_{j} h_{k}^{j}$$

$$h_{ij} = \sum_{x_i \in B} w_{c_i}, \quad c_i$$
 the cluster ID of the feature x_i

Example: Upper Bound

• Set
$$f^+(B) = \sum_{x_i \in B} [w_i]_+$$
, $f^-(B) = \sum_{x_i \in B} [w_i]_-$.

• Set $B^{max} :=$ largest box in \mathcal{B} , $B^{min} :=$ smallest box in \mathcal{B} .

• $f^{upper}(\mathcal{B}) := f^+(B^{max}) + f^-(B^{min})$ fulfills i) and ii).

Evaluating the Quality Bound for Linear SVMs

- Evaluating $f^{upper}(B)$ has same complexity as f(B)!
- Using integral images, this is $\mathcal{O}(1)$.

Bound-Step: Constructing a Quality Bound

- It is easy to construct bounds for
 - Boosted classifiers
 - SVM
 - Logistic regression
 - Nearest neighbor
 - Unsupervised methods ...

provided we have an appropriate image representation

- Bag of words
- Spatial pyramid
- χ²
- Itemsets ...

The following require assumptions about the image statistics to implement

- Template based classifiers
- Pixel based classifiers

Object Localization

Sliding Window Classifiers

• Efficient Subwindow Search

Results

Results: UIUC Cars Dataset

• 1050 training images: 550 cars, 500 non-cars

• 170 test images single scale

• 139 test images multi scale

Results: UIUC Cars Dataset

• Evaluation: Precision-Recall curves with different pyramid kernels

• Evaluation: Error Rate where precision equals recall

method \data set	single scale	multi scale
10 imes 10 spatial pyramid kernel	1.5 %	1.4 %
4 imes 4 spatial pyramid kernel	1.5%	7.9%
bag-of-visual-words kernel	10.0 %	71.2 %
Agarwal et al. [2002,2004]	23.5 %	60.4 %
Fergus et al. [2003]	11.5%	
Leibe et al. [2007]	2.5 %	5.0%
Fritz et al. [2005]	11.4~%	12.2%
Mutch/Lowe [2006]	0.04 %	9.4%

UIUC Car Localization, previous best vs. our results

Results: PASCAL VOC 2007 challenge

We participated in the

PASCAL Challenge on Visual Object Categorization (VOC) 2007:

- most challenging and competitive evaluation to date
- training: \approx 5,000 labeled images
- task: ≈5,000 new images, predict locations for 20 object classes aeroplane, bird, bicycle, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tv/monitor

- natural images, downloaded from Flickr, realistic scenes
- high intra-class variance

Results: PASCAL VOC 2007 challenge

Results:

- High localization quality: first place in 5 of 20 categories.
- High speed: $\approx 40ms$ per image (excl. feature extraction)

Example detections on VOC 2007 dog.

Results: PASCAL VOC 2007 challenge

Results:

- High localization quality: first place in 5 of 20 categories.
- High speed: $\approx 40 ms$ per image (excl. feature extraction)

Precision-Recall curves on VOC 2007 cat (left) and dog (right).

Results: Prediction Speed on VOC2006

Extensions

Branch-and-bound localization allows efficient extensions:

• Multi-Class Object Localization:

$$(B, C)^{\mathsf{opt}} = \operatorname*{argmax}_{B \in \mathcal{B}, \ C \in \mathcal{C}} f_I^C(B)$$

finds best object class $C \in C$.

• Localized retrieval from image databases or videos

$$(I, B)^{\mathsf{opt}} = \operatorname*{argmax}_{B \in \mathcal{B}, I \in \mathcal{D}} f_I(B)$$

find best image I in database \mathcal{D} .

Runtime is *sublinear* in $|\mathcal{C}|$ and $|\mathcal{D}|$.

Nearest Neighbor query for *Red Wings* Logo in 10,000 video keyframes in "Ferris Buellers Day Off"

Summary

- For a 640×480 pixel image, there are over *10 billion* possible regions to evaluate
- Sliding window approaches trade off runtime vs. accuracy
 - scale
 - aspect ratio
 - grid size
 - *Efficient subwindow search* finds the maximum that would be found by an exhaustive search
 - efficiency
 - accuracy
 - flexibile
 - just need to come up with a bound

Source code is available online

Sucessful Sliding Window Localization has two key components:

- $\bullet~$ Efficiency of classifier evaluation $\rightarrow~$ this talk
- Training a discriminant suited to localization → talk at ECCV 2008 "Learning to Localize Objects with Structured Output Regression"