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Lecture-14

Kalman Filter



Rudolf Kalman
• Born May 19, 1930, Budapest, Hungary.
• BS (1953)  and MS (1954)  from MIT.
• Ph.D. in 1957 from Columbia under Professor 

J. R. Ragzzini.
• 1957-1958 IBM
• 1958 -1964  Research  Institute for Advanced 

Study (RIAS), Baltimore, Maryland
– RIAS was part of Glenn L. Martin Co, which 

became Lockheed Martin Corp.

• 1964 Stanford University
• 1971 University of Florida
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Main Points
• Very useful tool.
• It produces an optimal estimate of the state 

vector based on the noisy measurements
(observations).

• For the state vector it also provides 
confidence (certainty) measure in terms of 
a covariance matrix.

• It integrates an estimate of state over time.
• It is a sequential state estimator.
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State-Space Model

State-transition equation

Measurement (observation) equation
State Vector

Measurement Vector

State model error 
With covariance 
Q(k)

Observation 
Noise with covariance
R(k)

)()1()1,()( kkkkk wzz +−−Φ=

)()()()( kkkk vzHy +=
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Kalman Filter Equations

State Prediction

Covariance Prediction

Kalman Gain

State-update

Covariance-update
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Two Special Cases
• Steady State

• Recursive least squares
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Comments

• In some cases, state transition equation and 
the observation equation both may be non-
linear.

• We need to linearize these equation using 
Taylor series.
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Extended Kalman Filter

Taylor series
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Extended Kalman Filter
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Extended Kalman Filter
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Multi-Frame Feature Tracking

Application of Kalman Filter
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• Assume feature points have been detected 
in each frame.

• We want to track features in multiple 
frames.

• Kalman filter can estimate the position and 
uncertainty of feature in the next frame.
– Where to look for a feature
– how large a region should be searched
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Location

Velocity

State Vector

[ ]Tkkk yx ,=p

[ ]Tkkk vu ,=v

[ ]Tkkkk vuyx ,,,=Z
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System Model

noise
111 −−− ++= kkkk ξvpp

11 −− += kkk ηvv

111 −−− +Φ= kkkk wZZ
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Measurement Model

Measurement matrix
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Kalman Filter Equations

State Prediction

Covariance Prediction

Kalman Gain

State-update

Covariance-update
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Kalman Filter: Relation to Least Squares

minimize

Batch Mode

Estimate state such that the following is minimized:
-first term: initial estimate weighted by corresponding covariance
-second term: other measurements weighted by corresponding covariances
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Kalman Filter: Relation to Least Squares

Recursive  Mode
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Kalman Filter: Relation to Least Squares
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Kalman Filter (Least Squares)
State Prediction

Covariance Prediction

Kalman 
Gain

)1(ˆ)1,()(ˆ −−Φ= kkkk ab zz

)1(ˆ)(ˆ −= kk ab zz
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Kalman Filter (Least Squares)

State-update

Covariance-update
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Computing Motion Trajectories
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Algorithm For Computing Motion Trajectories

• Compute tokens using Moravec’s interest 
operator (intensity constraint).

• Remove tokens which are not interesting 
with respect to motion (optical flow 
constraint).
– Optical flow of a token should differ from the 

mean optical flow around a small 
neighborhood.
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Algorithm For Computing Motion Trajectories

• Link optical flows of a token in different 
frames to obtain  motion trajectories.
– Use optical flow at a token to predict its 

location in the next frame.
– Search in a small neighborhood around the 

predicted location in the next frame for a token.
• Smooth motion trajectories using Kalman 

filter.
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Kalman Filter (Ballistic Model)
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Kalman Filter (Ballistic Model)
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2008 Charles Stark Draper Prize
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For the development and 
dissemination of the optimal digital 
technique (known as the Kalman
Filter) that is pervasively used to 
control a vast array of consumer, 
health, commercial and defense 
products.
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