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Rudolf Kalman

Born May 19, 1930, Budapest, Hungary.
BS (1953) and MS (1954) from MIT.

Ph.D. In 1957 from Columbia under Professor
J. R. Ragzzini.

1957-1958 IBM

1958 -1964 Research Institute for Advanced
Study (RIAS), Baltimore, Maryland

— RIAS was part of Glenn L. Martin Co, which
became Lockheed Martin Corp.

1964 Stanford University
1971 University of Florida
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A New Approach to Linear Filtering
and Prediction Problems’
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Main Points

» Very useful tool.

e |t produces an optimal estimate of the
based on the noisy
(observations).

* For the state vector it also provides
confidence (certainty) measure in terms of
a

* |t Integrates an estimate of state over time.
e Itisa state estimator.
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State-Space Model

State-transition equation

2(k) = Dk, k —1)z(k — J.)\)

Measurement (observation) equation
y(k) =H(K)z(k) +v(k)__
\ Observation
Noise with covariance
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Kalman Filter Equations

State Prediction 2b (k) — (D(k, K _1)2a (k —1)

Covariance Prediction Pb (k) — (D(k, K _1) Pa (k _1)(1)T (k, K —1) + Q(k)

Kalman Gain

K(k) =P, (K)H" (K)(H(K)P, (kK)H" (k) + R(k)) ™

ialerupdae 2, () = 2, (k) + K(K)[y (k) — H(K)Z, (K)]
Covariance-update Pa(k) — I:)b (k) — K(k)H(k)Pb (k)
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Two Special Cases

. Steady State O(k,k-1) =
Qk)=Q
H(k)=H
R(k) =R
- Recursive least squares

Ok k-1) =1
Q(k)=0
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Ccomments

* |n some cases, state transition equation and
the observation equation both may be non-
linear.

 \We need to linearize these equation using
Taylor series.
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Extended Kalman Filter

Z(k)=f(z(k —1)) + w(k)
y(K) =h(z(k)) + v(k)

of (z(k —1))
oz(k —1)

Taylor seri
VR by ~ ~h(z, () + 7 -2, (k)
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Extended Kalman Filter
z(k)=1(z(k -1)) +w(k)

of (z(k 1))
oz(k —1)
2(k) =~ DK, k —1)z(k —1) + u(k) + w(K)
uk)=f(z,(k-1)-d(k,k-1)z_ (k-1

of (z(k —1))
oz(k —1)
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2(k) =F (2, (k—-1)) + (z(k-1)-2, (k 1)) + W(K)

Dk, k —1) =



Extended Kalman Filter

y(k) =h(z(k)) +v(k)
_hes k2 2n@K)
V() =h(z, (k) +=~

V(k) = H(k)z(k) + v(k)

y(k) =y (k) =h(z, (k)) + H(k)z, (k)

1) - (k)
oz (k)
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Multi-Frame Feature Tracking

Application of Kalman Filter
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o Assume feature points have been detected
In each frame.

* \We want to track features in multiple
HEWES

o Kalman filter can estimate the position and
uncertainty of feature in the next frame.

— Where to look for a feature
— how large a region should be searched
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pk:[xk’yk]T

Location

V, = [uk ,Vk]T Velocity

Z=|x.,y.u.,v | State Vector
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System Model

P =X Vi [’ Py =Pya+ Vi +6ia

noise
v, =[u.,v, [ _
< e Ve =V g
Z =[x,y u.,v [ _
TR Zk_q)k—lzk—l_l_wk—l
1 0 1 0] R
{0101 o
®i=l0 01 0 Wy = :
000 1 | T
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Measurement Model

Py :[Xk’yk]T
Y
Vy :[Uk’Vk]T
Z:[Xk’yk’uk’vk]-r Y

Measurement matrix

1 0 0 0

010 0

H P +

Vi
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Kalman Filter Equations

State Prediction 2b (k) = D(k, K _]_)2a (k —1)

Covariance Prediction Pb (k) — (D(k, K _1) Pa (k _1)(1)T (k, K —1) + Q(k)

Kalman Gain

K(k) =P, (K)H" (K)(H(K)P, (k)H" (k) + R(k)) ™

Sl Upikis 2,(K) =2, (K) + K(K)[y (k) - H(k)Z, (k)]
Covariance-update  P_(k) =P, (k) — K(k)H(k)P, (k)
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Kalman Filter: Relation to Least Squares

Estimate state such that the following is minimized:
-first term: initial estimate weighted by corresponding covariance
-second term: other measurements weighted by corresponding covariances

C=(Z,-2)"P, " (Z,-2)+ Zk:(vi -H,2)"W (Y -H,2)

1 =L minimize

_ k _ k
L = [F)o_1 T Z H iTWi_lHi]_l[Po_lZo T Z H iTWi_lYi]
= =1

Batch Mode
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Kalman Filter: Relation to Least Squares

~ K . k
Z, =[P+ Z H iTWi_lHi]_l[Po_lzo + Z H iTWi_lYi]
=1 i=1

o N

k-1 k4
Z =[P+ Z H iTWi_lH TR Zy+ Z H iTWi_lYi]
1=1 i=1

Recursive Mode
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Kalman Filter: Relation to Least Squares
Z =2 +K (Y, —H.Z_)
K =P H« W, + HkPk—lHkT)_l
P, = (1 =KH )R d(k,k-1) = |

Q(k)=0
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Kalman Filter ( )
State Prediction 2b (k) — (I)(k, k _1)2a (k _1)

Covariance Prediction  Pp (K) = @(K,k =1)P, (K _1)(DT (k,k=1)+Q(k)

K(k) =P, (K)H" (K)(H(K)P, (kK)H" (k) + R(k)) ™

Kalman
Gain
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Kalman Filter ( )

State-update 2a(k) = 2b (k) + K(k)[y(k) - H(k)zb (k)]

Covariance-update

P, (k) = P, (k) = K(k)H(k)P, (k)
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Computing Motion Trajectories
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Algorithm For Computing Motion Trajectories

o Compute tokens using Moravec’s Interest
operator (intensity constraint).

 Remove tokens which are not interesting
with respect to motion (optical flow
constraint).

— Optical flow of a token should differ from the
mean optical flow around a small
neighborhood.
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Algorithm For Computing Motion Trajectories

 Link optical flows of a token in different
frames to obtain motion trajectories.

— Use optical flow at a token to predict its
location In the next frame.

— Search in a small neighborhood around the
predicted location in the next frame for a token.

e Smooth motion trajectories using Kalman
filter.
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Kalman Filter (Ballistic Model)
X(t) =5a,t" +V,t+ X, z_(a a,,V,,V,)
y(t) =5a,t* +v,t+Yy, y=(x(),y)

f(Z,y)=(x(t)—.5a,t" —v,t—x,, y(t) —.5a,t* —v,t - y,)

of [-5t2 0 -t O
0Z |0 —-5t° 0 -t
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Kalman Filter (Ballistic Model)

Z(k) =Z(k —1)+ K (K)(Y (k) - H (K)Z(k - 1))
K(K)=P(k-D)H" (k) W (Kk)+HTP(k-1)HT (k)™
P(k) = (I =K(k)H (k))P(k =1)
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2008 Charles Stark Draper Prize

For the development and
dissemination of the optimal digital
technigue (known as the Kalman
Filter) that is pervasively used to
control a vast array of consumer,
health, commercial and defense
products.
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