Homework 1 Solutions for CAP6412

October 15, 2003

1 Question 1

as we can easily see from figure 1
Derive $\Delta f=0$ over Ω with $f\left|\partial \Omega=f^{*}\right| \partial \Omega$ from $\min _{f} \iint_{\Omega}|\nabla f|^{2}$ with $f\left|\partial \Omega=f^{*}\right| \partial \Omega$
Solution: Let $F=|\nabla f|^{2}=\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}$
according to Euler Lagrange optimization:
$\frac{\partial F}{\partial f}+\frac{\mathrm{d}}{\mathrm{d} x} \frac{\partial F}{\partial f_{x}}=0$, and, $\frac{\partial F}{\partial f}+\frac{\mathrm{d}}{\mathrm{d} y} \frac{\partial F}{\partial f_{y}}=0$
Notice that $\frac{\partial F}{\partial f}=0, \frac{\mathrm{~d}}{\mathrm{~d} x} \cdot \frac{\partial F}{\partial f_{x}}=2 \cdot\left(\frac{\partial^{2} f}{\partial x^{2}}\right)$, and, $\frac{\mathrm{d}}{\mathrm{d} y} \cdot \frac{\partial F}{\partial f_{y}}=2 \cdot\left(\frac{\partial^{2} f}{\partial y^{2}}\right)$
$\Rightarrow\left(\frac{\partial^{2} f}{\partial x^{2}}\right)=0$, and, $\left(\frac{\partial^{2} f}{\partial y^{2}}\right)=0$
$\Rightarrow\left(\frac{\partial^{2} f}{\partial x^{2}}\right)+\left(\frac{\partial^{2} f}{\partial y^{2}}\right)=0$ with $f\left|\partial \Omega=f^{*}\right| \partial \Omega$
$\Rightarrow \triangle f=0$

2 Question 2

Derive $\Delta=\operatorname{divv}$ over Ω, with $f\left|\partial \Omega=f^{*}\right| \partial \Omega$ from $\min _{f} \iint_{\Omega}|\nabla f-\mathbf{v}|^{2}$ with $f\left|\partial \Omega=f^{*}\right| \partial \Omega$

Figure 1: A nice figure

Again according to Euler Lagrange ...
$\frac{\partial F}{\partial f}+\frac{\mathrm{d}}{\mathrm{d} x} \frac{\partial F}{\partial f_{x}}=0$, and, $\frac{\partial F}{\partial f}+\frac{\mathrm{d}}{\mathrm{d} y} \frac{\partial F}{\partial f_{y}}=0$
In this case
$\frac{\partial F}{\partial f}=0, \frac{\mathrm{~d}}{\mathrm{~d} x} \cdot \frac{\partial F}{\partial f_{x}}=\frac{\mathrm{d}}{\mathrm{d} x} \cdot 2 \cdot\left(\frac{\partial f}{\partial x}-u\right)=2 \cdot\left(\frac{\partial^{2} f}{\partial x^{2}}-\frac{\partial u}{\partial x}\right)=0$, and, $\frac{\mathrm{d}}{\mathrm{d} y} \cdot \frac{\partial F}{\partial f_{y}}=$
$\frac{\mathrm{d}}{\mathrm{d} y} \cdot 2 \cdot\left(\frac{\partial f}{\partial y}-v\right)=2 \cdot\left(\frac{\partial^{2} f}{\partial y^{2}}-\frac{\partial v}{\partial y}\right)=0$
$\Rightarrow\left(\frac{\partial^{2} f}{\partial x^{2}}\right)+\left(\frac{\partial^{2} f}{\partial y^{2}}\right)=\left(\frac{\partial u}{\partial x}\right)+\left(\frac{\partial v}{\partial y}\right)$
$\Rightarrow \Delta f=\operatorname{divv}$

3 Question 3

Derive $\min _{f \mid \Omega} \sum_{<p, q>\cap \Omega \neq \emptyset}\left(f_{p}-f_{q}-v_{p q}\right)^{2}$, with $f_{p}=f_{p}^{*} \forall p \in \partial \Omega$
All we do is take the double integral: $\iint_{\Omega}|\nabla f-\mathbf{v}|^{2}$ and find the discrete version.
It is a sum over an area $\Rightarrow \nabla f=f_{p}-f_{q}$ with $<p, q>\cap \Omega \neq \emptyset$ and $\mathbf{v}=v_{p q}$ a guidance vector.
From here we need to minimize the above equation and separate out the boundary conditions $f_{p}=f_{p}^{*} \forall p \in \partial \Omega$
In simple terms this means that $\left(f_{p}-f_{q}-v_{p q}\right)=0$ for a neighborhood around point p. To achieve this we notice that $\Rightarrow\left|N_{p}\right| \cdot f_{p}-\sum_{q \in N_{p} \cap \Omega} f_{q}=$ $\sum_{q \in N_{p} \cap \partial \Omega} f_{q}^{*}+\sum_{q \in N_{p}} v_{p q}$

4 Question 4

How to combine channels similar to how Tschumperle and Deriche did?
Equations $\left(\frac{\partial^{2} f}{\partial x^{2}}\right)+\left(\frac{\partial^{2} f}{\partial y^{2}}\right)=0$ and $\left(\frac{\partial^{2} f}{\partial x^{2}}\right)+\left(\frac{\partial^{2} f}{\partial y^{2}}\right)=\left(\frac{\partial u}{\partial x}\right)+\left(\frac{\partial v}{\partial y}\right)$ are currently applied to each of the RGB channels separately. All we have to do is add the channels up as in:

$$
\left(\frac{\partial^{2} f_{r}}{\partial x^{2}}\right)+\left(\frac{\partial^{2} f_{r}}{\partial y^{2}}\right)+\left(\frac{\partial^{2} f_{g}}{\partial x^{2}}\right)+\left(\frac{\partial^{2} f_{g}}{\partial y^{2}}\right)+\left(\frac{\partial^{2} f_{b}}{\partial x^{2}}\right)+\left(\frac{\partial^{2} f_{b}}{\partial y^{2}}\right)=0
$$

and
$\left(\frac{\partial^{2} f_{r}}{\partial x^{2}}\right)+\left(\frac{\partial^{2} f_{r}}{\partial y^{2}}\right)+\left(\frac{\partial^{2} f_{g}}{\partial x^{2}}\right)+\left(\frac{\partial^{2} f_{g}}{\partial y^{2}}\right)+\left(\frac{\partial^{2} f_{b}}{\partial x^{2}}\right)+\left(\frac{\partial^{2} f_{b}}{\partial y^{2}}\right)=\left(\frac{\partial u_{r}}{\partial x}\right)+\left(\frac{\partial v_{r}}{\partial y}\right)+\left(\frac{\partial u_{g}}{\partial x}\right)+\left(\frac{\partial v_{g}}{\partial y}\right)+\left(\frac{\partial u_{b}}{\partial x}\right)+\left(\frac{\partial v_{b}}{\partial y}\right)$

