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Abstract 
 

This paper addresses the problem of automatically extracting frequently used 
pedestrian pathways from video sequences of natural outdoor scenes. Path models are 
learnt from the accumulation of trajectory data over long time periods, and can be used to 
augment the classification of subsequent track data. In particular, labelled paths provide 
an efficient means for compressing the trajectory data for logging purposes. In addition, 
the model can be used to compute a probabilistic prediction of the pedestrian’s location 
many timesteps ahead, and to aid the recognition of unusual behaviour identified as 
atypical object motion. 
 
Keywords: people tracking, learning paths, scene labelling, route detection, track 
prediction, video annotation 
 
1. Introduction 

 
We consider the problem of learning the routes or paths taken by pedestrians 

walking through outdoor scenes. The routes and paths are represented by a spatial model 
that identifies regions frequently used by pedestrians as they transit the scene. The task is 
tackled in the context of a multi-camera video surveillance network, where video data is 
available from cameras with both overlapping and non-overlapping fields of view, though 
results in this paper will be presented for only single camera data. 
 

The motivation for building such models is three-fold. Firstly, we require an 
efficient method to encode and annotate individual tracks to construct a log of movement 
patterns over long periods of time (i.e. weeks). Object trajectories can be assigned to one 
of only a small number of detected pathways, resulting in significant compression for the 
logged data. Secondly, accumulating tracks over a long time period establishes a norm of 
typical movements to be established and this can support the recognition of atypical or 
unusual movement and patterns of behaviour. Finally, the information can be used to 
support the tracking process, enhancing the predictive capabilities of the system to 
correspond objects over successive image frames. This gives the system the opportunity 
to predict forward many frames, based on the current location and direction.  
 

Routes and paths are distinguished in the following way: a route identifies a 
frequently used pathway followed by a pedestrian through the scene; a path identifies a 
scene-specific feature (e.g. a segment of pavement between road sections). In most cases, 
a route is associated with a matched pair of entry and exit points to the image, i.e. where 
an object first appears and where it disappears from the field of view. This might 
normally be at the borders of the image, but can also occur at occlusion boundaries, from 
which the tracked object does not re-appear. The justification for making this distinction 
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is that the raw input data is object-based, consisting of object trajectories extracted from 
image sequences. However, for the three tasks identified above (labelling, logging and 
prediction) we need to associate trajectories with scene features. 
 

The following section gives a brief overview of some of the problems of 
extracting routes and paths from image sequences and examines previous reported work 
for this task. The next section describes the models that will be generated for this 
research, and then a description of the implementation of the algorithms for building 
these models. Then, results are presented for applying the model building from image 
sequences taken from two separate sites. 
 
2. Previous work 
 

In general, the first stage of path recognition requires the tracking of individual 
objects, establishing frame-to-frame correspondence and this task has been extensively 
studied by many researchers, and is widely described in the literature. However, much 
less effort has been directed at the path detection problem. 
 

In extracting pedestrians routes, the method must be able to cope with a wide 
range of inconsistent motions, often resulting from a variety of interaction: people 
avoiding each other at busy times; avoiding static objects in the pathway; or just the 
casual meandering of a lone pedestrian. The deviation from a ‘bee’s line’ track (i.e. 
straight) is, in part, dependant on the width of the pathway. However, the trajectories can 
be further complicated by excursions outside the pathway (e.g. onto the grass). Figure 1 
shows a small number of trajectories (generated from the blob centroids) extracted from 
an image sequence for one of the sites described in the results section. 

 

 

Figure 1: Sample trajectories plotted in image plane 

Fernyhough [3] built a database of object paths by accumulating the frequency of 
trajectory occurrences in the spatial domain. He derived image regions from the database 
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using a classification proposed by Howarth and Buxton [5], dividing the space into leaf 
and composite regions, which can be used to represent areas of similar behaviours. 
 

Johnson et al [6] used a vector quantisation approach to model the distribution of 
trajectories using a neural network. An object’s trajectory was represented by a set of 
smoothed position and velocity vectors. Many trajectories were accumulated to form a 
distribution in the image plane that was represented by a set of prototype vectors. The 
vector quantisation was implemented using two competitive learning networks, the first 
to model the distribution of flow vectors, and the second to model the trajectory 
distributions. A layer of leaky neurons connects the two networks, and introduces a 
memory element into the network architecture. The model supports the detection of un-
typical instantaneous motions for detecting atypical trajectories, and was extended to 
satisfy the requirements for prediction [7], but does not provide a mechanism for 
labelling the trajectories. 
 

Sumpter and Bulpitt [9] adopt Johnson’s methodology [6], but augment the 
network with feedback from the output into the input of the leaky neurons to learn the 
patterns of activations. They then apply this model to predicting behaviours of a flock of 
penned domesticated animals (ducks) in response to a predator threat. 
 

Boyd et al [1] classified movement flow between (manually) segmented image 
regions using a graphical model, with links representing the movement between adjacent 
regions, using an analysis based on network tomography, intended for statistically 
modelling data packet flow in computer communication networks. The method avoids 
extracting trajectories, registering only the changing density estimates of objects between 
adjacent regions to model the flow patterns. As such, it also fails to meet the main 
requirements for labelling and prediction that we require. 
 
3. Scene Model  
 

We develop a spatial model for representing routes in the image. Each route is 
modelled with a central axis formed by a sequence of knot points (nodes) which 
represents some average of the route, bounded by an envelope that identifies the variation 
of the trajectories sampled for the route. The route nodes are spaced at equal separation 
distances equal to a resample distance. Each route has two terminator nodes (start and 
end) that typically correspond to entry/exit points in the image (fig. 2). 
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Figure 2: Spatial model of a route 

 
A second level of model derives semantic descriptions of scene components inferred 

from the routes – the paths. The paths are described with the following features: 
 

1. entry/exit zones: regions where pedestrians enter or exit the image 
2. junctions: regions where routes cross each other.  

 
Pedestrians enter and exit the scene in specific regions, following specific routes. 

A route describes the entire trajectory of a pedestrian from the time that he enters the 
scene till the time that he exits and can be described as a curve with specific start and end 
points. Junctions are the areas where routes cross or bifurcate. We use a graph to 
represent the topology of the network of nodes (entry/exit points and junctions) for the 
paths. 
 

           

Figure 3a: Spatial representation of paths                Figure 3b: Graph representation of paths 

 
The models are learnt from example trajectories extracted from an image 

sequence of pedestrian motion. Trajectories are grouped using a geometrical analysis that 
compares the separation distance between a trajectory and an evolving route description. 
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A second stage extracts paths from the routes by detecting route cross-over points. These 
are classified as junctions, and are combined with the route entry/exit points to construct 
the topological representation shown in figure 3b. Figure 3a shows the corresponding 
spatial representation of the paths. 
 
4 Implementation 
 

Routes are learnt by grouping sets of trajectories. The route description is stored 
in a database. The following section describes how trajectories are selected for grouping, 
the criteria for matching a new trajectory to a route, the updating process of routes in the 
database, and finally, how routes are merged. 
 

A trajectory is derived from tracking an object across many frames extracted from 
an image sequence. It consists by a sequence of 2D points corresponding to a specific 
point on the target. The centroid of the target object seems to be a good choice, because 
its estimation from the tracking algorithms is more reliable than the estimation of other 
points like the top of the bottom of the object. To avoid learning with un-representative 
data, we eliminate short trajectories and trajectories of moving objects whose direction 
changes frequently over short time periods.  
 

The distance between consecutive points of the trajectory varies considerably 
because of the speed of the target or/and the distance from the camera or/and the direction 
of the motion. For this reason, a valid and suitable trajectory is resampled over the space, 
using linear interpolation, to normalize the trajectories of high and low speed objects and 
to counter the effects of perspective. Because the aim of the proposed models is to 
represent spatially the physical extent of routes, velocity information is not interesting, so 
it can be discarded by resampling over space. But, even if velocity preservation is 
required, this can be achieved by keeping a velocity vector for each resampled point. The 
resample process also generates smoothed trajectories.  
 

The route learning algorithm takes the next trajectory and attempts to match it 
with all existing routes in the database. If a match is detected, then the matched route will 
be updated. If not, then a new route will be initialised. After a route has been matched 
with a trajectory, it becomes a candidate for merging with other routes in the database. 
The database builds up a typically a small number of routes which represent the principal 
pathways taken by pedestrians in the scene. Routes with only a small number of updates 
are generally discarded. 
 

Each route node i is characterized by: 
• A 2D vector that represents the image coordinates of the node: xi=[xi, yi] 
• A weight factor wi that reflects the strength of the node, based on the number of times 

that it has been updated 
• A normal vector ni=[nxi, nyi], defined as the unit vector perpendicular to the local 

direction (defined by three consecutive nodes of the route main axis) 
• A distribution of observations across the route (along the normal vector). Although 

this distribution could be modelled by a probability density function (pdf), we prefer 
to use the boundaries of this distribution, the left boundary li=[lxi, lyi] and the right 
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boundary ri=[rxi, ryi] as these points define the physical extent of the route on the 
image. The two boundary points lay along the normal vector of the node. 

 
4.1 Route-trajectory match. 
 

Each trajectory is compared to all existing routes in the database. The comparison 
of routes is based on a distance measure between the trajectory and a route. This distance 
measure is the maximum separation distance between the trajectory and the route.  

Computation of the maximum separation distance requires the distances of the 
trajectory points from the envelope of the route. If the trajectory point is within the 
envelope, the distance is negative, otherwise it is positive and equal to the Euclidean 
distance of the point from the closest boundary of the envelope. The maximum of these 
distances for a given trajectory and a route is the maximum separation distance (fig. 4,5). 
To cope with the case where the trajectory overlaps the route but is longer, the 
computation should not include the distances of the trajectory points beyond the 
terminators of the route (fig. 6). 

 

 
Figure 4: Distances of a trajectory points from a route. The maximum separation distance is smaller 
than the threshold, so the trajectory matches the route. 
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Figure 5: Distances of a trajectory points from a route. The maximum separation distance is larger 
than the threshold, so the trajectory is unmatched. 

 

 
Figure 6: Example of a route that must be extended. 

After estimating the distance of the trajectory from all the routes, the trajectory is 
matched to the route with the minimum corresponding distance, under the condition that 
this distance is below a given threshold (fig. 4). If the trajectory does not match to any 
existing route, a new route is created in the database, initialised with the trajectory. 
 
 
4.2 Route updating 

 
Route updating must also cope with varying degrees of overlap between route and 

the trajectory. In particular, if the trajectory is longer than the route at either end (fig. 6), 
then the route must be extended. 
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A route is updated with a matched trajectory in the following three steps: 
1. Node updating: Each node is updated using the intersection point of the 

trajectory with the normal direction line and the node weight for the new node 
position (x'): 
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The weight factor w is incremented; the trajectory is checked if it is beyond the 
envelope and if so, the associated boundary point becomes equal to the trajectory 
point that is on the normal direction. 

2. Route extension: If there are trajectory points beyond the route end node, the 
route will be extended. In this case, the trajectory points extending beyond the end 
of the route are added to the route. 

3. Route resampling. To maintain equal distances between the route nodes, the 
route is re-sampled (using linear interpolation) after updating, and the normal 
vectors are recalculated.  

 
4.3 Route merging 
 

Following updating, the updated route is compared with all the other routes in the 
database. If two routes are close enough, then they should be merged. The merging 
criterion is the maximum separation distance between the two routes. 
 

To compute the maximum separation distance, the distance of each node from the 
other route is calculated. The maximum of these distances of the nodes of one route from 
the other route defines the maximum distance of one route from the other. Ideally, for a 
small resample distance, both distances are almost equal. In practice, the maximum 
separation distance between the routes can be defined as the mean of the two distances, or 
as the distance of the route with the smallest weight factor from the one with the highest 
weight factor. (fig. 7) 
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Figure 7: Maximum Separation Distance of two paths. In this example, the distance is smaller than 
the threshold, so the paths will be merged. 

 
If the maximum separation distance of two routes is smaller than a defined 

threshold the routes are merged. The route merging is similar to route updating with a 
trajectory. First, the route with the highest weight is selected as the main route and then 
this is updated with the secondary route. Each node of the main route is updated with a 
virtual node of the secondary route that is estimated by the intersection of the secondary 
route with the normal direction line of the updated node. The main difference between 
updating and merging is that in the latter case, the weight factors (w2) and the envelope of 
the secondary route must be considered. The envelope of the merged route is calculated 
from the combination of the envelopes of both routes and the weight and node position 
are calculated as follows: 
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At the terminators, if the secondary route has nodes that extend beyond the 

terminators of the main route, then the main route is extended. Finally, the main updated 
route is resampled. 
 

The above algorithm requires only two parameters: a) the resample distance 
between the route nodes that defines the accuracy of the route representation and b) the 
distance threshold that represents the minimum allowed value of the maximum separation 
distance between different routes. 
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4.4 Constructing Paths from Routes 
 

Paths are constructed by considering the following conditions: i) grouping 
common sections of routes and creating a junction when the routes diverge, ii) by finding 
where two routes cross each other, or iii) by grouping route terminators. 
 

To identify a common section of two routes, all the nodes of the routes are 
compared using a distance threshold based on the resample distance. To avoid forming 
large numbers of junctions at points where the two routes are only briefly close, a 
threshold ensures that we only perform grouping if the number of matched nodes is above 
some minimum. 
 

To find out where two routes cross each other, we search for a pair of nodes from 
different routes within the minimum threshold distance and locate the crossing around 
these nodes. If we identify a node where several routes terminate and it isn’t close to the 
existing terminators, then this node defines a new terminator in the scene and therefore 
indicates that the route must split into two parts. 
 

5 Results 
 

The following results were obtained from video sequences from two separate 
sites. Approximately 25 minutes of video taken from a single camera were used to 
construct the route and path data from 340 object trajectories.  
 

Figure 8a and 8b shows the motion histogram image (MHI – [2]) from the two 
sites (sequence 1 and sequence 2, e.g. figure 9a and 9d) indicating the regions of the 
image where motion has been detected. In this case, the histogram is constructed from the 
binary blobs of tracked objects, which were extracted following background subtraction. 
 

    
                                            (a)                                                                       (b) 

Figure 8a, b: Motion histogram images (approximately two minutes of video) for the two data sets 
indicating the main regions of motion activity. 

 
Table 1 identifies the main routes extracted from the two image sequences. The 

table indicates the number of nodes used to construct each path, the average number of 
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trajectories that contributed to the route (weight), and finally the usage, which represents 
the probability of an object found on a particular path. Low weighted routes (i.e. 4, 6 and 
7 of sequence 1) could be discarded, or may require more training data to determine if 
they represent frequently-used routes. Six routes with a low frequency of use have been 
discarded from the routes extracted from sequence 2. 
 

Figure 9a and 9b show two routes extracted from the trajectories of sequence1 
(table 1, routes 1 and 5). The routes were extracted from a video sequence (resolution 
388x288) of 10 minutes, sampled at 2½ frames per second, comprising 155 trajectories. 
Threshold values used for the trajectory and route merging were 20 pixels and the 
resample distance was 10 pixels. The routes show two pathways leading into (and out of) 
the main entrance, and the entrance to the University bank. As can be seen, the central 
axis and the envelope give a good match to the pathways visible in the image MHI shown 
in figure 8a. Figure 9c shows the central axis for all the routes extracted from the 
sequence. 
 

Figure 9d and 9e show three routes extracted from the trajectories of sequence 2 
(table 1, routes 7, 5, 4). The routes were extracted from a video sequence (resolution 
768x576) of 14 minutes, sampled at 2 frames per second, comprising 190 trajectories. 
Threshold values used for the trajectory and route merging were 60 pixels and the 
resample distance was 40 pixels. Again the central axes and the envelopes give a compact 
representation of the pathways visible in the image and can be favourably compared to 
the MHI shown in figure 8b. Figure 6e contains the two principal routes leading down 
from the steps at the back of the scene onto the path in the foreground. Two separate 
routes are detected as a result of the bollard in the centre of the pathway, which causes a 
bifurcation of the route. Figure 9f shows the central axes for the 9 principal routes 
detected in this sequence. Six low frequency routes were rejected, and are not shown.
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Route Nodes Weight Usage  Route Nodes Weight Usage 

1 31 7.5 0.1560  1 17 39.2 0.28 
2 43 20.4 0.5880  2 17 26.0 0.186 
3 26 9.0 0.1560  3 16 10.2 0.068 
4 10 1.9 0.1300  4 16 19.9 0.134 
5 34 2.6 0.0590  5 18 11.6 0.088 
6 17 1.0 0.0110  6 15 6.3 0.04 
7 24 1.0 0.0160  7 17 12.1 0.086 
     8 14 7.2 0.042 
     9 18 10.0 0.076 

Table 1. Seven routes extracted from sequence 1 (left) and nine for sequence 2 (right). 
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(a)       (d) 

 

 
(b)       (e) 

 

 
(c)       (f) 

Figure 9: a,b) Two route models extracted from video 1. c) The central axes of the route models of 
video 1. d,e) Three route models extracted from video 2. f) The central axes of the route models of 
video 2. 
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 Figure 10 shows the result of the algorithm if ground plane coordinates are used 
instead on image plane coordinates. If we assume that the pedestrians walk on a plane 
surface (ground), then the image coordinates can be easily converted to ground plane 
coordinates, by projecting the trajectories on the appropriate plane. In this case, because 
the trajectories are formed by tracking the centroid of a human body, whose height is 
about 1.70-1.80m, the trajectories should be projected on the plane which is parallel to 
the ground and roughly 90cm above it, which can give a satisfactory approximation of the 
real ground plane coordinates. Coordinate conversion is achieved by using a geometric 
camera model as defined in [11]. Then the method is applied with a resample distance 
5000mm and a threshold of 2000mm. 
 The main benefit of representing the route models in ground plane coordinates is 
that in a multi-camera surveillance system, the ground coordinate system is common for 
all the cameras. Therefore, if some cameras have overlapped field of views, their route 
models can be merged. Another benefit of using a ground plane coordinate system is that 
the algorithm parameters are more meaningful and any perspective effects are minimised. 

                                                
       (a)                                          (b)                                           (c)                                             (d) 

Figure 10: Results of the algorithm using a ground plane coordinate system on the trajectories of 
video 2: a-c) three route models. D) the central axes of all the route models 
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Figure 11: Classification of trajectories using route model. 

 
Figure 11 shows the result of applying the route model to a set of 53 previously 

unseen trajectories. The colour coding uses solid colour lines (red, magenta, cyan, green 
and black) to identify trajectories that have been matched with known routes. Deep blue 
lines with gaps (see bottom left) indicate trajectories not matched with existing routes. It 
can be seen, for example for trajectories in the top left, where pedestrians have been 
tracked coming down the steps and turning right at the end of the pathway. This pathway 
was not represented in the original training data. The algorithm identifies 8 unknown 
routes from this set. 

 
Figure 12a shows the result of applying path detection to the route database. 

Junctions have been detected to indicate where routes cross or bifurcate (red circles). 
Entry and exit points are indicated by the blue circles. The threshold distance of 40 pixels 
is used (derived from the resample distance) for an image size of 768x576. Overlapped 
sections of routes are combined if they have two or more matched nodes. A pair of red 
circles defines the common section of the two routes, and two junctions will be formed as 
a result of merging this common section. In locations where the entry-exit points and 
junctions are found to be close, they are merged to construct the final network. Figure 8b 
shows the final results of these merging operations. 
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Figure 12a: Detected junction (red circles) Figure 12b. Green rectangles indicate the  
and entry-exit points (blue circles).  merged junctions and entry-exits. 
 

Overlapped sections of routes are combined if they have two or more matched 
nodes. In locations where these entry and exit points are found to be close, a red circle 
indicates they will be merged to construct the final network. Figure 12b shows the final 
results of this merging operation. 
 

Figure 13: Hand constructed graph of the network shown in figure 8b. Leaf nodes (smaller circles) 
indicate entry-exit points, interior nodes (larger circles) are junctions. 

 
Finally, the grouping process that generates the path model provides a simple 

scheme to generate a probabilistic expectation of the route that will be taken by a 
pedestrian entering the scene at a particular location (if it is on a known route). If pij is the 
probability that an object will exit the scene from the node j, under the condition that it 
entered the scene from the node i, and if Nij is the number of trajectories that have follow 
the route from node i to route j, then we can calculate the probability of possible exit 
nodes for a given entry node from the formula: 

∑
=

k
ik

ij
ij N

N
p  
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 The table below indicates these probabilities from the trajectory and route data 
used to create figure 12b. So for some new object appearing at entry node 5, the 
probabilistic prediction is 0.73 that it will exit at node 8, and 0.27 that it will exit at node 
6. 
 
Entry 
node 

Exit node probability 

 1 2 3 4 5 6 7 8 9 10 
1   1.0        
2      0.17 0.58 0.25   
3 1.0          
4          1.0 
5      0.27  0.73   
6  0.14   0.18    0.68  
7  1.0         
8  0.38   0.48     0.14 
9      1.0     
10    0.89    0.11   
Table 2. Probability of entry to exit node predictions estimated from frequency count of route usage. 
 
6 Conclusions – Future Work 
 

This paper has demonstrated the practicality of building spatial models based on 
the analysis of trajectory data extracted from image sequences. The models have been 
shown to be valuable for economically encoding the route followed by an object in the 
scene, reducing the trajectory data down to a single label associated with each route. 
Although many surveillance tracking algorithms provide a local predictive step to aid the 
correspondence process in the next image frame, encoding the route and path data 
supports prediction over many time steps, and may be particularly useful for predicting 
across some types of occlusion in the scene (e.g. a parked vehicle). 
 

The exit node predictions generated from the routes and paths are restricted by the 
number of trajectories available for learning and more reliable statistics would require 
much longer training periods (i.e. more trajectories). In fact, it is likely that we would 
need to partition the route learning into different time periods (e.g. each hour), as the 
statistics are not stationary over time.  
 
 The representation of the route models is based on sequences on knot points and 
linear interpolation is performed whenever is required. Although the accuracy of the 
results is satisfactory, we consider the use of cubic splines instead, that they will provide 
more accurate models. 
 

The classification process presented in the results does classify trajectories to that 
fall outside the current learnt state of the model. However, to determine a reliable 
classification of such an event requires a longer time set of observations. We consider 
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augmenting the probabilistic model of path usage to represent a Markov process, which 
encodes the track history. 
 

The next step in this research will be to combine these models across multiple 
camera views, using a common world coordinate system like a ground plane coordinate 
system. One of the guiding reasons for using the spatial model is that the features that are 
extracted are easily identified with scene features, and when the models are combined 
across many views, this characteristic will substantially ease the integration of 
information. 
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