Normalized Cuts and Image Segmentation

Jianbo Shi, Upenn Jitendra Malik, Berkeley

Perceptual Grouping and Organization (Wertheimer)

- Similarity
- Proximity
- Common fate
- Good continuation
- Past experience
$=$
Visual grouping

How to Partition?

- There is no single answer
- Prior World Knowledge:
- Low Level
- Coherence of Brightness
- Color
- Texture
- Motion
- Mid or High Level
- Symmetries of Objects

How to Partition? (Cont'd)

- inherently hierarchical
- TREE STRUCTURE instead of flat partitioning
- OBJECTIVE:
- low level cues for hierarchical partitions.
- High level knowledge for further partitioning.

Tools

- $G=(V, E)$
- An edge is formed between every pair (Complete graph)
-w(i,j) function of similarity.
- Partition V into disjoint sets V1, V2,..., Vm
- Similarity within sets maximum.
- Similarity between sets minimum.

Graph Vs. Image

- What is the best criterion i.e. the weighting function
- How to compute efficiently
- The graph is huge

Definitions

- Optimal bipartition is minimum cut
- Minimum cut

$$
\operatorname{cut}(A, B)=\sum_{u \in A, v \in B} w(u, v)
$$

- computed efficiently
- partitions out small chunks

Example of a Bad Partition

- Similarity decreases as the distance increases

New Definition: Normalized Cut

- Normalize the cut.
- Still a disassociation $N \operatorname{cut}(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(B, V)}$ (dissimilarity) measure.

$$
\operatorname{assoc}(A, V)=\sum_{u \in A, t \in V} w(u, t)
$$

- Smaller the better.

New Definition: Normalized Association

- Total association (similarity) within groups.
- The bigger the better.

$$
N \operatorname{Nassoc}(A, B)=\frac{\operatorname{assoc}(A, A)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{assoc}(B, B)}{\operatorname{assoc}(B, V)}
$$

- assoc(a,a): total connectivity within A.

Normalized Cut and Normalized Association Are Related

$$
\begin{aligned}
N c u t(A, B)= & \frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(B, V)} \\
= & \frac{\operatorname{assoc}(A, V)-\operatorname{assoc}(A, A)}{\operatorname{assoc}(A, V)} \\
& +\frac{\operatorname{assoc}(B, V)-\operatorname{assoc}(B, B)}{\operatorname{assoc}(B, V)} \\
= & 2-\left(\frac{\operatorname{assoc}(A, A)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{assoc}(B, B)}{\operatorname{assoc}(B, V)}\right) \\
= & 2-N \operatorname{assoc}(A, B) .
\end{aligned}
$$

Formulation for Normal Cut

$$
\begin{aligned}
\operatorname{Ncut}(A, B)= & \frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{cut}(B, A)}{\operatorname{assoc}(B, V)} \\
= & \frac{\sum_{\left(\boldsymbol{x}_{i}>0, \boldsymbol{x}_{j}<0\right)}-w_{i j} \boldsymbol{x}_{i} \boldsymbol{x}_{j}}{\sum_{\boldsymbol{x}_{i}>0} \boldsymbol{d}_{i}} \\
& +\frac{\sum_{\left(x_{i}<0, x_{j}>0\right)}-w_{i j} x_{i} \boldsymbol{x}_{j}}{\sum_{\boldsymbol{x}_{i}<0} d_{i}} .
\end{aligned}
$$

System Linearization

$$
\begin{aligned}
& 4[\operatorname{Ncut}(\boldsymbol{x})]=\frac{(\mathbf{1}+\boldsymbol{x})^{T}(\mathbf{D}-\mathbf{W})(\mathbf{1}+\boldsymbol{x})}{k \mathbf{1}^{T} \mathbf{D} \mathbf{1}}+\frac{(\mathbf{1}-\boldsymbol{x})^{T}(\mathbf{D}-\mathbf{W})(\mathbf{1}-\boldsymbol{x})}{(1-k) \mathbf{1}^{T} \mathbf{D} \mathbf{1}} \\
& \quad \min _{\boldsymbol{x}} N c u t(\boldsymbol{x})=\min _{\boldsymbol{y}} \frac{\boldsymbol{y}^{T}(\mathbf{D}-\mathbf{W}) \boldsymbol{y}}{\boldsymbol{y}^{T} \mathbf{D} y} \\
& \boldsymbol{y}=(\mathbf{1}+\boldsymbol{x})-b(\mathbf{1}-\boldsymbol{x}) \\
& b=\frac{k}{1-k}=\frac{\sum_{x_{i}>0} \boldsymbol{d}_{i}}{\sum_{x_{i}<0} \boldsymbol{d}_{i}} \\
& k=\frac{\sum_{x_{i}>0} \boldsymbol{d}_{i}}{\sum_{i} \boldsymbol{d}_{i}}
\end{aligned}
$$

Setting up the matrices					
$\begin{array}{lllllllll} \text { d1 } 0 & 0 & 0 & 0 & 0 & \ldots \ldots & 0 \\ 0 & d 2 & 0 & 0 & 0 & 0 & \ldots \ldots . & 0 \end{array}$	D-W=				
$\mathrm{D}=0$ 0 d3 $000 \ldots \ldots 0$	d1	-w12	-w13	\ldots	-w1N
$000000 \ldots \ldots \mathrm{dN}$	-w21	d2	-w23	\ldots	-w2N
	-w31	-w32	d3	\cdots	-w3N
0 w12 w13w1N					
W=w21 0 w23 ... w2N	\ldots	\ldots	\ldots
	-wN1	-wN2	-wN3	...	dN
wN1 wN2 0					

Rayleigh Quotient

$\min _{\boldsymbol{x}} N \operatorname{cut}(x)=\min _{\boldsymbol{y}} \frac{y^{T}(\mathbf{D}-\mathbf{W}) \boldsymbol{y}}{\boldsymbol{y}^{T} \mathbf{D} \boldsymbol{y}}$

- Generalized eigenvalue system
- Minimized if y can be real.
$(\mathbf{D}-\mathbf{W}) y=\lambda \mathbf{D} y$
- Convert generalized eigensystem to a standard eigensystem:

$$
\mathbf{D}^{-\frac{1}{2}}(\mathbf{D}-\mathbf{W}) \mathbf{D}^{-\frac{1}{2}} z=\lambda z
$$

- Where

$$
z=\mathbf{D}^{\frac{1}{2}} y
$$

Results

- D-W is positive semidefinite
- eigenvectors are perpendicular.
- Second smallest eigenvector minimizes the normalized cut.
- Rayleigh quotient
- Constraints (to be justified later):
- y can take on either 1 or -b
- $\boldsymbol{y}^{T} \mathbf{D} \mathbf{1}=0$

Problem

First constraint not satisfied

- The solution gives real valued eigenvectors.
- Which pixels are above threshold, which ones are not?

Algorithm

- Set up G=(V,E)
- All the points in the image as nodes
- Complete graph.
- Weights proportional to the similarity between two pixels.
- Similarity measure is yet to be decided.

Algorithm (cont'd)

- Solve (D-W) $\mathrm{x}=\lambda \mathrm{Dx}$ for smallest eigenvectors
\square Method is yet to be decided.
- Second smallest eigenvector bipartitions the graph.
- Must decide the break point.
- Decide if current partition is good, if not recursively subdivide.

Example: Brightness Image

Define the weighting function

- To build matrices D and W:

$$
\begin{aligned}
w_{i j}= & e^{\frac{-\| \boldsymbol{F}_{(i)}-\boldsymbol{F}_{\left.(i)\right|_{2} ^{2}}^{\sigma_{2}^{2}}}{\sigma_{1}^{2}}} * \\
& \begin{cases}\frac{-\| \boldsymbol{X}_{(i)}-\boldsymbol{x}_{\left.(i)\right|_{2} ^{2}}^{2}}{\tau_{X}^{2}} & \text { if }\|\boldsymbol{X}(i)-X(j)\|_{2}<r \\
0 & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Sigma: 10 to 20 percent of the total range of the distance function.

Example (Cont'd)

- Solve for $(\mathbf{D}-\mathbf{W}) y=\lambda \mathbf{D} y$.
- Transform into a standard eigenvalue problem $\mathbf{D}^{-\frac{1}{2}}(\mathbf{D}-\mathbf{W}) \mathbf{D}^{-\frac{1}{2}} x=\lambda x$.
Normally takes $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$ operations
- Use Lanczos method to reduce computation.

Lanczos Method

- Graphs are locally connected, thus sparse
- Eigensystems are therefore sparse
- Only few smallest eigenvectors needed
- Precision requirement for eigenvectors is loose.

Dividing Point for Eigenvector

- Ideal case: second smallest eigenvector is integer.
- But in reality it takes real values
- Use the median, or
- Use 0, or
- Use the value that makes $\operatorname{Ncut}(\mathrm{A}, \mathrm{B})$ smallest.

Stability Criterion

- Sometimes an eigenvector takes on continues values.
- Not suitable for partitioning purpose
- Hard to find a cut point
- Similar Ncut values.
- Compute the histogram
- ratio between the minimum and maximum values in the bins.

Drawbacks of 2-Way Cut

- Stability criterion is good
- but it gets rid of subsequent eigenvectors
- Recursive 2-way cut is inefficient
\square uses only the second smallest eigenvector

Simultaneous K-Way Cut with Multiple Eigenvectors

- k-means is used for oversegmentation.
- Second step can vary
- Greedy Pruning
- Global Recursive Cut

Greedy Pruning

- Iteratively merge two segments until k segments are left.
- Each iteration choose the pair when merged minimizes the k-way Ncut criterion:

$$
\begin{aligned}
N c u t_{k}= & \frac{\operatorname{cut}\left(\mathbf{A}_{1}, \mathbf{V}-\mathbf{A}_{1}\right)}{\operatorname{assoc}\left(\mathbf{A}_{1}, \mathbf{V}\right)}+\frac{\operatorname{cut}\left(\mathbf{A}_{2}, \mathbf{V}-\mathbf{A}_{2}\right)}{\operatorname{assoc}\left(\mathbf{A}_{2}, \mathbf{V}\right)}+\ldots \\
& +\frac{\operatorname{cut}\left(\mathbf{A}_{k}, \mathbf{A}-\mathbf{A}_{k}\right)}{\operatorname{assoc}\left(\mathbf{A}_{k}, \mathbf{V}\right)}
\end{aligned}
$$

Global Recursive Cut

Build a condensed graph

- Each node of the graph corresponds to one initial segment
- Weights Defined as the total connection from one initial partition to another
- Use exhaustive search or generalized eigenvalue system for solution.

Experiments

- Brightness
- Color
- Texture
- Motion
- Following equation always holds; it is F(i) that changes according to the application

Similarity * Spatial Proximity

$$
w_{i j}=e^{\frac{-\|\boldsymbol{F}(i)-\boldsymbol{F}(j)\|_{2}^{2}}{\sigma_{I}}} * \begin{cases}e^{\frac{-\|\boldsymbol{X}(i)-\boldsymbol{X}(j)\|_{2}^{2}}{\sigma_{X}}} & \text { if }\|X(i)-X(j)\|_{2}<r \\ 0 & \text { otherwise }\end{cases}
$$

- $F(i)=$
- 1, when segmenting point sets
- I(i), the intensity value for segmenting scalar images
- [v,v.s.sin(h), v.s.cos(h)](i) for color images
- [||*₹1|, ... , | $\left.{ }^{\star} \mathrm{fn} \mid\right](\mathrm{i})$, for texture.
- The weight is always zero if proximity criterion is not met, i.e. The pixels are more than r pixels apart.

MOTION

- Spatiotemporal neighborhood

$$
w_{i j}= \begin{cases}e^{\frac{-\mathrm{d}_{m}(i,)^{2}}{\sigma_{m}^{2}}} & \text { if }\|X(i)-X(j)\|_{2}<r \\ 0 & \text { otherwise },\end{cases}
$$

- Dm: motion distance

$$
\mathbf{d}(i, j)=1-\sum_{\mathrm{dx}} P_{i}(\mathbf{d x}) P_{j}(\mathbf{d x})
$$

Experimental Results

Linearize the System

$$
\begin{aligned}
\operatorname{Ncut}(A, B)= & \frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{cut}(B, A)}{\operatorname{assoc}(B, V)} \\
= & \frac{\sum_{\left(\boldsymbol{x}_{i}>0, \boldsymbol{x}_{j}<0\right)}-w_{i j} \boldsymbol{x}_{i} \boldsymbol{x}_{j}}{\sum_{\boldsymbol{x}_{i}>0} \boldsymbol{d}_{i}} \\
& +\frac{\sum_{\left(x_{i}<0, x_{j}>0\right)}-w_{i j} x_{i} \boldsymbol{x}_{j}}{\sum_{\boldsymbol{x}_{i}<0} d_{i}} .
\end{aligned}
$$

- $\mathrm{Xi}>0$ if node i belongs to $\mathrm{A}, \mathrm{Xi}<0$ otherwise.
- $d(i)=\sum_{j} w(i, j)$
- $d^{(i)}$ is the connection from node ito all nodes.

Linearize the System (2)

- The equation linearizes to:

$$
\frac{(\mathbf{1}+x)^{T}(\mathbf{D}-\mathbf{W})(\mathbf{1}+x)}{k 1^{T} \mathbf{D} 1}+\frac{(\mathbf{1}-x)^{T}(\mathbf{D}-\mathbf{W})(\mathbf{1}-x)}{(1-k) 1^{T} \mathbf{D} 1}
$$

- D is a diagonal NxN matrix with d on its diagonal, W is the $N x N$ weight matrix where $w(i, j)$ is the weight of the edge between node i and j.
- 1 is a vector of all ones.

$$
k=\frac{\sum_{x_{i}>0} \boldsymbol{d}_{i}}{\sum_{i} \boldsymbol{d}_{i}}
$$

Linearize the System (3)
 $$
\frac{(\alpha(x)+\gamma)+2(1-2 k) \beta(x)}{k(1-k) M}-\frac{2(\alpha(x)+\gamma)}{M}+\frac{2 \alpha(x)}{M}+\frac{2 \gamma}{M} .
$$

Let

$$
\begin{aligned}
\alpha(\boldsymbol{x}) & =\boldsymbol{x}^{T}(\mathbf{D}-\mathbf{W}) \boldsymbol{x}, \\
\beta(\boldsymbol{x}) & =\mathbf{1}^{T}(\mathbf{D}-\mathbf{W}) \boldsymbol{x}, \\
\gamma & =\mathbf{1}^{T}(\mathbf{D}-\mathbf{W}) \mathbf{1},
\end{aligned}
$$

and

$$
M=\mathbf{1}^{T} \mathbf{D} \mathbf{1}
$$

$$
\begin{aligned}
& \text { Iinearize the System (4) } \\
= & \frac{\left(1-2 k+2 k^{2}\right)(\alpha(x)+\gamma)+2(1-2 k) \beta(x)}{k(1-k) M}+\frac{2 \alpha(x)}{M} \\
= & \frac{\frac{\left(1-2 k+2 k^{2}\right)}{(1-k)^{2}}(\alpha(x)+\gamma)+\frac{2(1-2 k)}{(1-k)^{2}} \beta(x)}{\frac{k}{1-k} M} \\
& +\frac{2 \alpha(x)}{M} .
\end{aligned}
$$

Letting $b=\frac{k}{1-k}$, and since $\gamma=0$, it becomes

$$
\begin{aligned}
& =\frac{\left(1+b^{2}\right)(\alpha(\boldsymbol{x})+\gamma)+2\left(1-b^{2}\right) \beta(\boldsymbol{x})}{b M}+\frac{2 b \alpha(\boldsymbol{x})}{b M} \\
& =\frac{\left(1+b^{2}\right)(\alpha(\boldsymbol{x})+\gamma)}{b M}+\frac{2\left(1-b^{2}\right) \beta(\boldsymbol{x})}{b M}+\frac{2 b \alpha(\boldsymbol{x})}{b M}-\frac{2 b \gamma}{b M}
\end{aligned}
$$

Linearize the System (5)

$$
\begin{aligned}
= & \frac{\left(1+b^{2}\right)\left(\boldsymbol{x}^{T}(\mathbf{D}-\mathbf{W}) \boldsymbol{x}+\mathbf{1}^{T}(\mathbf{D}-\mathbf{W}) \mathbf{1}\right)}{b \mathbf{1}^{T} \mathbf{D} \mathbf{1}} \\
& +\frac{2\left(1-b^{2}\right) \mathbf{1}^{T}(\mathbf{D}-\mathbf{W}) \boldsymbol{x}}{b \mathbf{1}^{T} \mathbf{D} \mathbf{1}} \\
& +\frac{2 b \boldsymbol{x}^{T}(\mathbf{D}-\mathbf{W}) \boldsymbol{x}}{b \mathbf{1}^{T} \mathbf{D} \mathbf{1}}-\frac{2 b \mathbf{1}^{T}(\mathbf{D}-\mathbf{W}) \mathbf{1}}{b \mathbf{1}^{T} \mathbf{D} \mathbf{1}} \\
= & \frac{(\mathbf{1}+\boldsymbol{x})^{T}(\mathbf{D}-\mathbf{W})(\mathbf{1}+\boldsymbol{x})}{b \mathbf{1}^{T} \mathbf{D} \mathbf{1}} \\
& +\frac{b^{2}(\mathbf{1}-\boldsymbol{x})^{T}(\mathbf{D}-\mathbf{W})(\mathbf{1}-\boldsymbol{x})}{b \mathbf{1}^{T} \mathbf{D} \mathbf{1}} \\
& \quad-\frac{2 b(\mathbf{1}-\boldsymbol{x})^{T}(\mathbf{D}-\mathbf{W})(\mathbf{1}+\boldsymbol{x})}{b \mathbf{1}^{T} \mathbf{D} \mathbf{1}} \\
= & \frac{[(\mathbf{1}+\boldsymbol{x})-b(\mathbf{1}-\boldsymbol{x})]^{T}(\mathbf{D}-\mathbf{W})[(\mathbf{1}+\boldsymbol{x})-b(\mathbf{1}-\boldsymbol{x})]}{b \mathbf{1}^{T} \mathbf{D} \mathbf{1}} .
\end{aligned}
$$

Setting $y=(\mathbf{1}+\boldsymbol{x})-b(\mathbf{1}-\boldsymbol{x})$, it is easy to see that

$$
\boldsymbol{y}^{T} \mathbf{D} 1=\sum_{x_{i}>0} \boldsymbol{d}_{i}-b \sum_{x_{i}<0} \boldsymbol{d}_{i}=0
$$

since $b=\frac{k}{1-k}=\frac{\sum_{x_{i}>0} d_{i}}{\sum_{x_{i}<0} d_{i}}$ and

$$
\begin{aligned}
\boldsymbol{y}^{T} \mathbf{D} \boldsymbol{y} & =\sum_{x_{i}>0} \boldsymbol{d}_{i}+b^{2} \sum_{x_{i}<0} \boldsymbol{d}_{i} \\
& =b \sum_{x_{i}<0} \boldsymbol{d}_{i}+b^{2} \sum_{x_{i}<0} \boldsymbol{d}_{i} \\
& =b\left(\sum_{x_{i}<0} \boldsymbol{d}_{i}+b \sum_{x_{i}<0} \boldsymbol{d}_{i}\right) \\
& =b \mathbf{1}^{T} \mathbf{D} \mathbf{1}
\end{aligned}
$$

Putting everything together we have,

$$
\min _{x} N c u t(x)=\min _{y} \frac{y^{T}(\mathbf{D}-\mathbf{W}) \boldsymbol{y}}{\boldsymbol{y}^{T} \mathbf{D} y}
$$

with the condition $\boldsymbol{y}(i) \in\{1,-b\}$ and $\boldsymbol{y}^{T} \mathbf{D} 1=0$.

