

Jianbo Shi, Upenn Jitendra Malik, Berkeley

	Finding clumps		Finding splits
Discrete formulation	Average association $\frac{\text{asso}(A,A)}{ A } + \frac{\text{asso}(B,B)}{ B }$	Normalized Cut $\frac{\text{cut}(A,B)}{\text{asso}(A,V)} + \frac{\text{cut}(A,B)}{\text{asso}(B,V)}$ or 2 - $(\frac{\text{asso}(A,A)}{\text{asso}(A,V)} + \frac{\text{asso}(B,B)}{\text{asso}(B,V)})$	Average cut $\frac{\operatorname{cut}(A,B)}{ A } + \frac{\operatorname{cut}(A,B)}{ B }$
Continuous solution	$Wx = \overline{\lambda} x$	(D-W) $x = \overline{\lambda} D x$ or W $x = (1 - \overline{\lambda})D x$	(D-W) $x = \overline{\lambda} x$
	10/7/2003		39

Setting y = (1 + x) - b(1 - x), it is easy to see that

$$\mathbf{y}^T \mathbf{D1} = \sum_{x_i > 0} \mathbf{d}_i - b \sum_{x_i < 0} \mathbf{d}_i = 0$$

since $b = \frac{k}{1-k} = \frac{\sum_{x_i > 0} \mathbf{d}_i}{\sum_{x_i < 0} \mathbf{d}_i}$ and
 $\mathbf{y}^T \mathbf{D} \mathbf{y} = \sum_{x_i > 0} \mathbf{d}_i + b^2 \sum_{x_i < 0} \mathbf{d}_i$
 $= b \sum_{x_i < 0} \mathbf{d}_i + b^2 \sum_{x_i < 0} \mathbf{d}_i$
 $= b(\sum_{x_i < 0} \mathbf{d}_i + b \sum_{x_i < 0} \mathbf{d}_i)$
 $= b\mathbf{1}^T \mathbf{D1}.$

Putting everything together we have,

$$min_x Ncut(x) = min_y \frac{y^T (\mathbf{D} - \mathbf{W})y}{y^T \mathbf{D}y},$$

with the condition $y(i) \in \{1, -b\}$ and $y^T \mathbf{D1} = 0$.

10/7/2003

47