Outline

-M-bin Histograms
-Exhaustive Search.
-Gradient-based Optimization.
-Gradient-based Optimization modified.
-Extra notes.

M-bin Histograms

- M-bin histogram is a chart with m number of bins where each bin shows the number of same color pixels.
- Target model: $\quad q^{\wedge}=\left\{q^{\wedge} u\right\} u=1 \ldots m$
$>m$: bin number in the histogram.
$>q^{\wedge}$: number of same color pixels divided by total number of pixels in the ellipse.
> Sum of the probabilities should equal to one.

M-bin Histograms

- Target candidate: $p^{\wedge}(y)=\left\{p^{\wedge} u(y)\right\} u=1 . . m$

ح $y: x \& y$ coordinates of the target in the next frame.
> $p^{\wedge}(y)$: probability of same color pixels (\# same color pixels / total ellipse pixels).
> Sum of probabilities should equal to one.

M-bin histogram Modification

- Assigning smaller weights to pixels farther from the center of ellipse.

$$
q=C \sum_{i=1}^{n} k(\|x i\|) \delta[b(x i)-u]
$$

> x_{i} :normalized pixel locations in the region defined as the target model.
> $k(x)$:differentiable decreasing function to assign less weight for farther pixels.
$>b\left(x_{i}\right)$: which bin this pixel belong to.
$>u$:bin number in the histogram.

M-bin histogram Modification

> δ :Kronecker delta function.

$$
\delta=\left\{\begin{array}{l}
1 \text { whenu }=b\left(x_{i}\right) \\
\text { 0otherwise }
\end{array}\right.
$$

> C: normalization constant since the sum of all pixel probabilities is equal to one.

- For target candidates $p_{u}(y)$, the target center location (y) and number of pixels considered in the localization process (h) are introduced to the $\mathrm{k}(\mathrm{x})$ profile.
$p_{u}(y)=C_{h} \sum_{i=1}^{n h} k\left(\left\|\frac{y-x_{i}}{h}\right\|\right) \delta\left[b\left(x_{i}\right)-u\right]$

Similarity function

- The similarity function defines a distance among target model and candidates.
- The maximum multiplication between probabilities of target model \hat{q} and candidates $\hat{p}(y)$ will give the least error.
- How:

$$
(\hat{p}(y)-\hat{q})^{2}=\hat{p}(y)^{2}+\hat{q}^{2}-2 \hat{p}(y) \hat{q}
$$

Exhaustive Search

- Computed the m-bin histogram probabilities of the target model \hat{q}.
- Computed probabilities of the target $p(y)$ candidates for different locations of (y) where y is an ($m * m$) window and m-bin histogram will be computed for each position in the window.
- Apply similarity function(i.e: distance) between each q and $\hat{p(y)}$ find the minimum.
$d(y)=$

$$
\sqrt{1-\rho[\hat{p}(y), \hat{q}]}
$$

gradient-based optimization procedures

- Compute the gradient between two points.
- If the gradient is decreasing, continue in the same direction, otherwise reverse.
- In the paper, gradient is computed from two similarity distances.
- If gradient decreasing, continue computing till finding local maxima or minima.

Modification To Gradient optimization

- Note: paper authors mention in p. 566 that gradient-based optimization procedures are difficult to apply and only an expensive exhaustive search can be used and on p. 567 a modification to gradient-based is proposed.

Modification To Gradient optimization

- Instead of using the gradient-based method to find the location of the target candidate and computing the similarity distance, a formula derived from Using Taylor expansion around the values is used: $\quad\left\{p^{\wedge}{ }_{u}\left(y^{\wedge} 0\right)\right\}_{u=1 . . m}$

1. Compute $\left\{p^{\wedge}{ }_{u}\left(y^{\wedge} 0\right)\right\}_{u=1} \ldots m$ where $y^{\wedge} 0$ is the same center location of the previous frame in the new frame and evaluate similarity function

$$
\sum_{u=1}^{m} \sqrt{{p^{\wedge}{ }_{u}\left(y^{\wedge}{ }_{0}\right) q^{\wedge}{ }_{u}}^{\text {a }} \text {. }}
$$

Modification To Gradient optimization

2. $\begin{aligned} & \text { Derive weights } \\ & \text { according to this } \\ & \boldsymbol{W}\end{aligned}=\sum_{u=-1}^{m} \sqrt{\frac{q^{\wedge} u}{p^{\wedge} u\left(y^{\wedge} o\right)}} \delta\left[b\left(x_{i)-u}\right]\right.$ relation.
3. Find new location of target candidate according to

$$
y^{\wedge} 1=\frac{\sum_{i=1}^{w_{i k}} x_{i w i}}{\sum_{i=1}^{n k i} w_{i}}
$$

4. If $\left\|y^{\wedge} 1=y^{\wedge}\right\| \quad<\epsilon$
stop, otherwise $y^{\wedge} 0=y^{\wedge} 1$

Adaptive Scale

- The ellipse should be adjusted incase it contains unwanted information.
- Run the target localization algorithm three times with bandwidths $h=h_{\text {prev }}, h=h_{\text {prev }}-\Delta h$, and $h=h p r e v+\Delta h$.
- $h_{\text {opt }}$ is chosen where the similarity function is largest.

$$
\text { hnew }=\gamma \text { hopt }+(1-\gamma) \text { hprev }
$$

Background Modification

- There are some cases when some of the target features are also present in the background, their relevance for the localization of the target is diminished.
- Compute the histogram of the background ellipse and probabilities of ellipse pixels.

- find the minimum probability $O u$ and divide it by
$\left\{\hat{o_{u}}\right\} u=1 \ldots m$ to get $v u$.
- Note: the paper did not mention if the histogram computed is the difference between background ellipse and object ellipse or is it the whole thing.

Extra Notes

- Note one: in the previous formula there could be an error since v_{u} is cancelled with v_{u} in eqation(18).
- Other features can be combined with color (like gradient) to calculate probability and it was used in face tracking in this paper.

