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Abstract For each scenario, we qggose an algorithm and demon-

Scene flow is the three-dimensional motion field ofstrate it on a collection of video sequences of a dynamic,
points in the world, just as optical flow is the two- non-rigid scene. We also show that multiple estimates of
dimensional motion field of points in an image. Any opticalthe normal flow cannot be used to estimate scene flow di-
flow is simply the projection of the scene flow onto the imJ€ctly, without some form of regularization or smoothing.
age plane of a camera. In this paper, we present a frame- One possible application of scene flow is as a predictor
work for the computation of dense, non-rigid scene flowfor efficient and robust stereo. Given a reconstructed model
from optical flow. Our approach leads to straightforward Of the scene at a certain time, one would like to obtain an
linear algorithms and a classification of the task into three estimate of the structure at the next time step using minimal
major scenarios: (1) complete instantaneous knowledge ofomputation. This would allow: (1) more efficient compu-
the scene structure, (2) knowledge only of correspondenci@tion of the structure at the next time step because a first
information, and (3) no knowledge of the scene structure€stimate would be available to reduce the search space, and
We also show that multiple estimates of the normal flow{2) more robust computation of the structure because the
cannot be used to estimate dense scene flow directly witfredicted structure can be integrated with the new stereo

out some form of smoothing or regularization. data. Other applications of scene flow include various dy-
namic rendering and interpretation tasks, from the genera-
1 Introduction tion of slow-motion replays, to the understanding and mod-

Optical flow is a two-dimensional motion field in the €ling of human actions.
image plane. It is the projection of the three-dimensionall.1 Related Work
motion of the world. If the world is completely non-rigid,  Computing the three-dimensional motion of a scene is
the motions of the points in the scene may all be indepena fundamental task in computer vision that has been ap-
dent of each other. One representation of the scene motigiroached in a wide variety of ways. If the scene is rigid
is therefore a dense three-dimensional vector field definegnd the cameras are calibrated, the three-dimensional scene
for every point on every surface in the scene. By analogytructure and relative motion can be computed (up to a
with optical flow, we refer to this three-dimensional motion scale factor) from a single monocular video sequence using
field asscene flow. structure-from-motiofUliman, 1979. If the scene is only

In this paper, we present a framework for the compu-piecewise rigid, extensions to structure-from-motion algo-
tation ofdense, non-rigiccene flow directly from optical rithms can be used. See, for examp#hang and Faugeras,
flow. Our approach leads to efficient linear algorithms and19924 and[Costeira and Kanade, 1908
a classification of the task into three major scenarios: Although restricted forms of non-rigidity can be ana-

1. Complete instantaneous knowledge of the structurd/Z€d using the structure-from-motion paradigavidan
of the scene, including surface normals and rates of"d Shashua, 1988general non-rigid motion cannot be
change of depth maps. In this case, only one opticaFSt'mated from a single camera Wlthqutaddltlonal assump-
flow is required to compute the scene flow. tions about the scene. However, given strong encaigh
priori assumptions about the scene, for example in the
2. Knowledge only of stereo correspondences. In thi§orm of a deformable modé&Pentland and Horowitz, 1991
case, at least two optical flows are needed to computf\vietaxas and Terzopoulos, 1996r the assumption that
the scene flow, but more improve robustness. the motion minimizes the deviation from a rigid body mo-

3. No knowledge of the surface. In this case, several option [Ullman, 1984, recovery of three-dimensional non-

tical flows can be used in a reconstruction algorithm'i9id motion from a monocular view is possible. See

to estimate the scene structure (and then scene flow)lPenna, 199kfor a recent survey of onocular non-rigid
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motion estimation, and the assumptions used to compute it.
Another common approach to recovering three- {::}

dimensional motion is to use multiple cameras and com- Surface f /

bine stereo and motion in an approach knownregion- lumination Flux E

stereo Nearly all motion-stereo algorithms assume that (Irradiance)

the scene is rigid. See, for exampl&/axman and Dun-

can, 1986 [Young and Chellappa, 199%nd[Zhang and

y
Faugeras, 1992bA paper which explicitly combines two
X
z

optical flow fields is that ofShiet al,, 1994. In this paper,
both the analysis and implementation are only applicable
to certain simple motions of the camera (i.e. translations).
A few motion-stereo papers do consider non-rigid mo-
tion, including[Liao et al, 1997 and [Malassiotis and
Strintzis, 1997. The former uses a relaxation-based al-
gorithm to co-operatively match features in both the tem-
poral and spatial domains. It therefore does not provide
dense motion. The latter uses a grid which acts as a de=igure 1: A non-rigid surfacef(z, y, z;t) = 0 is moving with
formable model in a generalization of the monocular ap+espectto a fixed world coordinate systémy, ). The normal
proaches mentioned above. Besides requidngriori to the surface im = n(w,y,z;t). The surface is assumed to
models of the scene, most deformable-model based agpe Lambertian with albede = p(=,y, #; t) and the illumination

proaches to motion-stereo would be too inefficient for ourflux (iradiance) is. The:*" camera is fixed in space, has a co-
stereo-prediction application. ordinate framéu;, v;), is represented by thiex 4 camera matrix

P, and captures the image sequehce: I;(u;, v;; t).
2 Image Formation Preliminaries
Consider a non-rigidly moving surfagéx, y, z;¢) = 0
imaged by a fixed camera with 3 x 4 projection matrix
P;, as illustrated in Figure 1. There are two aspects to th . : e
formation of the image sequenge= I; (u;, v;;t) captured  'Nd N the scene vidx ~ 7 Au;.

by camera: (1) the relative camera and surface geometry, >I"C€ image co-ordinates do not map uniquely to scene
and (2) the illumination and surface photometrics. co-ordinates, the inverse Jacobian cannot be computed

2.1 Relative Camera and Surface Geometry without knowledge of the suate. If we know the surface
The relationship between a poi@t, y, =) on the surface (and its gradient), the inverse Jacobian can be estimated as
and its image coordinatés;, v;) in cam’erai is given by: the solution of the following two sets of linear equations:

u .
CameraR Center of Projection

camerai via Au; = g‘; Ax. Similarly, the inverse Jaco-

bian 2X- describes the relationship between a small change
dna pointin the image of cametaand the point it is imag-

du; 0 10
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Equation (3) expresses the constraint that a small change
in u; must lead to a small change inwhich when pro-
jected back into the image gives the original change;in
Equation (4) expresses the constraint that a small change in
i does not lead to a change jnsince the corresponding
point in the world should still lie on the swte.

The 6 linear equations in Equations (3) and (4) can be
decoupled into 3 foX- and 3 forZ%. Unique solutions

where[P;]; is the j* row of P;. Equations (1) and (2)
describe the mapping from a poirt = (z,y, z) on the
surface to its imagey; = (w;,v;) in camerai. Without
knowledge of the surface, these equations are not inver
ible. Givenf, they can be inverted, but the inversion re-
quires intersecting a ray in space with the surfce

The differential relationships betweanandu; can be _ . i
represented by2x 3 Jacobian matri®%, The 3 columns ~ exist for bothg- and 2 if and only if:
of the Jacobian matrix store the differential change in pro- ou du
jected image co-ordinates per unit change,ig, andz. A ( L% Z) -V #0. (5)
closed-form expression f(g% as a function ofk can be ox  ox
derived by differentiating Equations (1) and (2) symboli- SinceV f is parallel to the surface normal the equations
cally. The Jacobia@% describes the relationship between are degenerate if and only if the ray joining the camera cen-
a small change in the point on the surface and its image iter of projection an is tangent to the surface.




2.2 lllumination and Surface Photometrics upon the structure of the three-dimensional scene, itis often
At a pointx in the scene, the irradiance or illumination assumed that:

flux measured in the directiom at time¢ can be repre-

sented byF = E(m;x;t) [Horn, 1988. This 6D irradi- n-s = / E(m;x;t)n - dm (10)
ance function?' is what is described as thpenoptic func- S(n)

tionin [Adelson and Bergen, 1991 is constant &-[n - s] = 0). With uniform illumination or

We denote the net directional irradiance of light at theg surface normal that does not change rapidly, this assump-
point(z, y, z) on the surface at timeby s = s(z,y, 2;¢).  tion holds well (at least for Lambertian surfaces).

The net directional irradianceis a vector quantity and is In either scenarié% goes to zero, and we arrive at the
given by the (vector) surface integral of the irradiarice  Normal Flow or Gradient ConstraintEquation, used by
over the visible hemisphere of possible directions: “differential” optical flow algorithmgBarronet al,, 1994:
du; I;
s(z,y,z;t) = / E(m;z,y, z;t)dm (6) VI - ] 0 = 0. (12)
S(n) dt " ot

Using this constraint, a large number of algorithms have
been proposed for estimating the optical fl%. See
[Barronet al, 1994 for a recent survey.

whereS(n) = {m : ||jm|| = 1 and m-n < 0} is the hemi-
sphere of directions from which light can fall on a surface
patch with surface normail.
We assume that the surface is Lambertian with albedal Three-Dimensional Scene Flow
p = p(x;t). Then, assuming that the poirt= (z,y, z) In the same way that optical flow describes an instanta-
is visible in thei™* camera, and that the intensity registeredneous motion field in an image, we can think of scene flow
in image/; is proportional to the radiance of the point that a5 a three-dimensional flow fiel describing the motion
it is the image of (i.e. image irradiance is proportional toat every point in the scene. The analysis in Section 2.1
scene radianckHorn, 1984), we have: was only for a fixed timeé. Now suppose there is a point
] ] ] x = x(t) moving in the scene. The image of this point in

Lifuist) = —Cp(x;1) In(x; 1) - s(x;1)] (7) camerE’;\i)is u; = u;(t). If the camera is not moving, the
where( is a constant that only depends upon the diametefate of change ofi; is uniquely determined as:
of the lens and the distance between the lens and the image

plane. The image pixel;, = (u;, v;) and the surface point d;i = %ui Ccll—x (12)
x = (x,y, ) are related by Equations (1) and (2). , . t X ! L . .

) ) i Inverting this relationship is, again, impossible with-
3 Two-Dimensional Optical Flow out knowledge of the surfacg. To invert it, note thaik

Supposex(t) is the 3D path of a point on the surface depends not only om;, but also on the time, indirectly
and the image of this point in cameias u;(¢). The 3D  through the surfac¢g = f(x;t). That isx = x(u,(t);1).
motion of this point is‘é—’t‘ and the 2D image motion of its Differentiating this expression with respect to time gives:

iartian iedu Al
projection is<3;+. The 2D flow field<3+ is usually known dx ox du;  Ox

as optical flow. As the point(¢) moves on the surface, it — = + = . (13)

is natural to assume that its albegle= p(x(¢);¢) remains dt Ou; dt ot |,

constant; i.e. we assume that This equation says that the motion of a point in the world is
dp made up of two components. The first is the projection of
FT 0. (8)  the scene flow on the plane tangent to the surface and pass-

ing throughx. This is obtained by taking the instantaneous
(For a deformably moving surface, it is only the surfacention on the image plane (the optical fléi), and pro-
properties IiI§e albedo that'distinguish points anyvyay). Th"’j‘ecting it outinto the scene using the inverse Jacolan
basis for optical flow algorithms is then the equation: The second term is the contribution to scene flow arising
dr; du; 9l d from the three-dimensional motion of the pointin the scene
- Vi T + o —C-p(x;1) a[n -s] (9) imaged by a fixed pixel. It is the instantaneou; motion of
x along the ray corresponding io,. The magnitude of
whereV J; is the spatial gradient of the imagés: is the x| s (proportional to) the rate of change of the depth
optical flow, and3%: is the instantaneous rate of change of 5¢ the surfacef along this ray. A derivation ofZX| s
the image intensityi =1 (ui;t). presented in Appendix A. ot Tu
The termu s depends upon both the shape of the surface  There are three major ways of computing scene flow, de-
(n) and the illuminations). To avoid explicit dependence pending upon what is known about the scene at that instant:




t=1 t=2 t=3 t=4 t=2>5

Figure 2: A sequence of images that show the scene motion. For lack of space, we only present scene flow results forthis
paper. The extended sequence is presented to help the reader visualize the three-dimensional motion.

1. Completely known instantaneous structure of the
scene, including surface normals, depth maps, and the
temporal rate of change of these depth maps.

2. Knowledge only of stereo correspondences. Since we
are working in a calibrated setting, thisis equivalent to
having the depth maps. However, it does not include
the surface normals and the temporal rates of change

of the depth maps. Figure 3:The horizontal and vertical optical flows &= 1 for
3. Completely unknown scene structure. We do not everthe same camera used in Figure 2. Darker pixels indicate motion
know correspondence information. to the left and top of the frames respectively.

Each of these cases leads to a different strategy for estimat- \ia that we assume that the surface is locally planar

ing the scene flow. It Seems intuitive that less kpowledgthen computing the inverse Jacobian. Since the surface is
of scene structure requires the use of more optical ﬂOWSknown, it is possible to project the “flowed” point in the

and indeed this result does follow from the amount of deya46 and intersect this ray with the surface. We currently

gener%t:/y n thz Ilnegbr eqluatlprr: s U?Ed to ﬁon;p;:te ﬁcer@o not perform this to save an expensive ray-surface inter-
ow. We now describe algorithms for each of the threeg,tion for every pixel.

cases. We also demonstrate their validity using flow results If only one optical flow is used, the scene flow can be
Comp“‘e‘?' from. multiple Image sequences (captured fmn(]:omputed only for those points in the scene that are visible
various wewpomtg) of a non-rigid, _dynamlca_llly ghangmg in that image. It is possible to use multiple optical flows
Zcine.cgnme Tgfeh kﬂiﬁesgq:egf gllerfzhcoeWg(Ienolr:rggel'J[:e 2. in multiple cameras for better visibility, and for greater ro-
' f1h F: : Ig v k ith hiah y bustness. Also, flow is recovered only when the change in
It t e;]sur a;:ef IS c%mp etely known (with high accu- depth map is valid - that is, when an individual pixel sees
ragy), the surtace gra |efof can be computeq at every neighboring parts of the surface as time changes. If the
point. The inverse Jacoblagur‘— can then be estimated by

ing th 6 e N E X 3 otion of a surface is large relative to its size, then a pixel
solving the set of 6 linear equations in Equations (3) and e, s gifferent surfaces, and flowrmaot be computed.

(4). Given the inverse Jacobian, the scene flow can be esti- . o
; o : ) Consider the scene shown as a sequence in Figure 2. For
mated from the optical flovgd—; using Equation (13): lack of s | .
pace, we only present scene flow results for time
dx ox du; Ox t = 1inthis paper. The scene flow is computed using depth
d T ow; di Tl (14) " maps from the model obtained from the volumetric merg-
e ing of multiple range imagegach computed using stereo,
Computing 2| requires the temporal derivative of the as described ifiRanderet al, 1994. Another input is the
surface depth map, and is described in Appendix A. optical flow shown in Figure 3, which was computed using
Complete knowledge of the scene structure thus enableg hierarchical version of the Lucas-Kanade optical flow al-
us to compute scene flow from one optical flow, (and thegorithm. The final input is the temporal rate of change of
rate of change of the depth map corresponding to this imthe depth map, estimated from the difference between two
age.) These two pieces of information copesd to the independently computed volumetric models.
two components of the scene flow; the optical flow is pro- Figure 4 shows the result of computing scene flow for
jected onto the tangent plane passing throxgland the the visible set of points on the model. The original points
rate of change of depth map is mapped onto a componetatre shown in light grey. The points that the original points
along the ray passing through the scene pegirsind the have “flowed to” by adding the scene flow are shown in
center of projection of the camera. black. The darker points therefore represent a prediction




Origind scene”” .

points
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Figure 5:The magnitude of the scene flow is displayed for points
on the model (the locations of which are obtained by projecting
depth maps from 4 cameras into the scene). The magnitude of the
scene flow is displayed as intensity. It can be seen that the largest
fotion occurs on the ball and the arm of the person at the rear,
while the smallest motion is near the feet of the players.

Figure 4: The computed scene flow. The original points on the
model are shown in grey. The locations that these points hawv
“flowed” to are shown in black. These flowed points form a pre-
diction of the model at time = 2.

where:

of the model at timg¢ = 2. They could be used to en- - q _ -
hance the efficiency and robustness of shape recovery. In Suy  dus  dus fus
Figure 4, it is seen that the bending motion of the player A A 3
on the right (the player with the ball) is recovered, as is e By 9z ot
the downward (and somewhat sideways) motion ofthe ball. g — : : : L, U= : (15)
The major motion of the player of the left (the player facing : : : :

. . . : . Jdu N Jdu N Jdu N dupn
the ball) is the upward motion of his left arm, which is par- ¢ oy 02 ot
tially recovered. No flow is recovered for some points on 6§§ 65; 65? 63?

the arm because the arm moves very fast relative to its size. L J
Many pixels see completely different surfaces even during
one time-step. Therefore the rate of change of depth infor/his gives us2\' equations in 3 unknowns, and so for
mation for the points on those surfaces is invalid yielding’\' > 2 we have an overconstrained system and can find
no flow estimate for those points. an estimate of the scene flow. (This system of equations
42 Known Image Correspondences is degenerate if and only if the poirtand theN camera
' ) . centers are co-linear.) A singular value decompositid of
The second major case is when the structure of the scenfives the solution that minimizes the sum of least squares
is not completely known, but correspondences between imgf the error obtained by re-projecting the scene flow onto
ages are available. In our calibrated setting, correspongach of the optical flows.
dences can be used to compute depth maps, but these depthye implemented the above algorithm and applied it to
maps may be too noisy to estimate surface normals anghe same sequence that was used in the previous section,
temporal rates of change. This situation is common. Fohyt without using the surface normal or rate of change of
example, it is typical in image based modeling and renderye depth map. We used optical flows from 15 different
ing problems. While these problems typically only con- cameras. The use of this many optical flows ensures that
sider static scenes, scene flow can be used as a meansggry point at which we desire to compute scene flow is
extending image based modeling methodologies into thgjewed by at least 2 or 3 cameras.
temporal domain for dynamic scenes. Figure 5 shows the magnitude of the computed scene
If the surface is not completely known, it is not possible flow. The absolute values of the computed flows inihg,
to solve for4 directly from one camera. Instead, consider and: directions are averaged and displayed as the intensity
the implicit linear relation between the scene and the optifor each point. Since image corpemdences along with
cal flow, as described by the Jacobian in Equation (12). camera calibration give us depth maps, the scene flow is
This set of equations provides two linear constraints orcomputed for a set of points, the locations of which are
& Therefore, if we haveV > 2 cameras, we can solve obtained by projecting depth maps from 4 widely separated

for ﬂl—’t‘, by setting up the system of equatidBs = U, cameras into the scene. Itis seen that the motion of the ball,
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Figure 6:The initial point cloud is shown in light grey, while the Figure 7: A comparison of the flowed points (black) with an
set of points that these points have flowed to are shown in blackndependently computed model at the next next time instant (light
As can be seen, there is significant three-dimensional motion ofrey). It is seen that the flowed points are a good approximation

the player downwards and to their right. of the model at the next time instant.
and the vertical motion of the left arm of the person at the®i (W) iS in the null-space of3). Therefore, we have the
rear are the most significant. following constraint on the the scene flow:
' A close up of the player holding the ball is.displayed in dx ou; \* duy dx
Figures 6 and 7. In Figure 6, the light grey points represent m; (x) - =\ o) @~ ri(w)| - 7 =0 (17)

the model at = 1, which are displaced by the estimated

scene flow to give the darker colored points. The SaM&yherem, (x) = (%u,)* dcil, « r:(u;) is a vector which
. . . . (3 x t 13 '3

flowedpoints are shown in Figure 7, except that the lightjs herpendicular to the plane defined by the camera center

grey points now represent the modet at 2, computed in-

i ‘ and the optical flow in the image plane. Hencexifs
dependently using stereo and volumetric merdiRgnder actually a point on the surface, the vectans(x) should

etal, 1994. The figures clearly show that the displace- 4 i in a plane (the one perpendicular to the scene flow

ment of points using the scene flow results in them movingd_x)_ We form a measure of how coplanar the vectors are

almost exactly onto the “true” model. Hence, scene flowggl computing thé x 3 matrix:

may be used as a predictor for the structure of the scene a
subsequent time intervals. M(x) = Z ;! (18)
4.3 No Knowledge of the Surface i

If the pointx lies on the surface, Equation (12) must wherem, is m; normalized to a unit vector. The normal-
hold for every camera Therefore, it is possible to use the jzation makes the algorithm less susceptible to incorrect
degree to which Equation (12) is consistent across camerasarge magnitude flows. The smallest eigenvalue A(x)
as information for a flow-based reconstruction algorithm.of A7 is a measure of non-coplanarity. We therefore use
Such an approach would, however, be very susceptible ta; — \(x) as a measure of the likelihood thaties on the
outliers. A single large magnitude flow which was wrong surface. {V is the number of cameras.)

could always make the equations inconsistent. We there- \We discretize the scene into a three-dimensional array

fore take a slightly different approach. of voxels, as was done in the Voxel Coloring algorithm of
The solution of Equation (12) can be written in the fol- [Seitz and Dyer, 1997 We then computeV — \(x) for
lowing form: each voxel,gnoring visibility as in[Collins, 1998. Ignor-
ing visibility in this way does not significantly affect the
dx <3uz' )* du; +pri(w) (16) performance because our coplanarity measure is not signif-
at ~ \ox ) “ar THMW icantly affected by outliers. (This algorithm could be ex-

tended to keep track of the visibility in a similar manner to
Where(%)* is the pseudo-inverse 88, r;(u;) isthe di-  [Seitz and Dyer, 1997f so desired.)
rection of a ray through the pixel; (see Appendix A), and We present the results of this algorithm in Figure 8. We
1 is an unknown constant that depends upon instantaneowssed the data from all 51 cameras of the CMU Virtualized
properties of the surfacg. (Equation (16) holds because Reality domelNarayanaret al, 1999 (Some of the data



that it might be possible to estimate the scene flow directly
from three such constraints. Unfortunately, differentiating
Equation (7) with respect te we see that:

3112'
ox
Since this expression is independent of the canieeeand
instead only depends on properties of the scene (the surface
albedop, the scene structute, and the illuminatios), the
coefficients offi—’t‘ in Equation (20) should ideally always

be the same. Hence, any number of copies of Equation (20)
Figure 8: A volume rendering of the coplanarity measwe—  will be linearly dependent. In fact, if the equations turn out
A(x). As can be seen, the gross scene structure is recovered fairlyot to be linearly dependent, this fact can be used to deduce
well. Note, however, that this algorithm only recovers structurethatx is not a point on the surface. (See Section 4.3.)

where the scene is moving. Hence, certain parts of the scene, such Thjs result means that it is impossible to compute 3D
as the legs, are not recovered as well as others. The informatiogcene flow independently for each point on the object, with-
prqvided byN—A(x) could be combined with traditional sources 1+ some form of regularization of the problem. We wish
of information to further enhance the robustness of stereo. to emphasize, however, that this result does not mean that
from one camera is presented in Figure 2). For all 51 camis jt not possible to estimate other useful quantities directly
eras, we computed the optical flow from= 1to¢ = 2. from the normal flow, as for example is done[idegah-

The measure of coplanarity — A(x) was then computed  garipour and Horn, 19§7nd other “direct methods.”
for each voxel and thresholded. Figure 8 contains a volume

rendering of the results. As can be seen, the gross structure  Conclusions

of the scene is recovered. Note, however, that this flow- Three-dimensional scene flow is a fundamental property
based reconstruction algorithm can only recover structur®f dynamic scenes. It can be used as a prediction mecha-
where the scene is actually moving. This is the reason thdtism to build more robust stereo algorithms, and for vari-
certain parts of the scene, such as the legs of the people, ap&S scene interpretation and rendering tasks. We have pre-
not fully recovered. sented a framework for computing scene flow from opti-

4.4 Three-Dimensional Normal Flow Constraint  cal flow, assuming various instantaneous properties of the

Optical flow <2 is a two dimensional vector field, and SCENe are known. We intend to extend our framework to in-
t 1 .
so is often divided into two components, thermal flow corporate knowledge of structure computed independently

and thetangent flow The normal flow is the component &t the next time instant. We also plan to investigate other
in the direction of the image gradieRt!;, and the tangent @gorithms for computing scene flow that do not use opti-
flow is the component perpendicular to the normal flow.cal flow, and develop methods of quantitatively evaluating

The magnitude of the normal flow can be estimated directlyfn€ir accuracy.

Vi = —C -V (p(x;t) [n(x;) - s(x;)]). (21)

from Equation (11) as: A Computing g_>;
u
|V1—I| . % - _ﬁ% (19) The term 2| is the 3D motion of the point in the

scene imaged by the pixa}. Suppose the depth of the sur-
Estimating the tangent flow is an ill-posed problem. Henceface measured from thé&" camera isl; = d;(u;). Then,
some form of local smoothness is required to estimate théhe pointx can be written as a function #f;, u;, andd; as
complete optical flowiBarronet al, 1994. Since the es- follows. The3 x 4 camera matri¥; can be written as:
timation of the tangent flow is the major difficulty in most
algorithms, it is natural to ask whether the normal flows
from several cameras can be used to estimate the 3D scefif,qre R
flow without having to use some form of regularization.
The Normal Flow Constraint Equation (11) can be

P, = [R; T;] (22)

; is a3 x 3 matrix andT; is a3 x 1 vec-
tor. The center of projection of the camera-®; ' T;,
the direction of the ray through the pixa} is r;(u;) =

rewritten as: R;l(ui, v;, )T, and the direction of the cametaaxis is
Ou; dx ol r;(0) = R;71(0,0,1)T. Using simple geometry, (see Fig-
Vii- [8—x E] to =0 (200 e 9) we therefore have:

This is a scalar linear constraint on the components of the

_ _poim o [lri(0)]fri (ui)
scene flowcé—’t‘. Therefore, at first glance it seems likely x = R Ti+d; [ : (23)

r; (0) N Ve (ul)
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