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Abstract
A new method for r eal-time tracking of non-rigid ob-

jects seen from a moving camera is proposed. The cen-
tral computational module is based on the mean shift
iterations and �nds the most probable tar get p osition in
the current frame. The dissimilarity between the target
model (its c olor distribution) and the target candidates
is expr essed by a metric derived from the Bhattacharyya
coe�cient. The theoretical analysis of the approach
shows that it relates to the Bayesian framework while
providing a practical, fast and e�cient solution. The
capability of the tracker to handle in real-time partial
occlusions, signi�cant clutter, and target scale varia-
tions, is demonstrated for several image sequences.

1 Introduction

The e�cient tracking of visual features in complex
en vironments is a challenging task for the vision com-
munit y.Real-time applications such as surveillance and
monitoring [10], perceptual user interfaces [4], smart
rooms [16, 28], and video compression [12] all require
the ability to track moving objects. The computational
complexity of the tracker is critical for most applica-
tions, only a small percentage of a system resources be-
ing allocated for tracking, while the rest is assigned to
preprocessing stages or to high-level tasks such as recog-
nition, trajectory interpretation, and reasoning [24].

This paper presents a new approach to the real-time
tracking of non-rigid objects based on visual features
such as color and/or texture, whose statistical distribu-
tions c haracterize the object of interest. The proposed
tracking is appropriate for a large variet y of objects with
di�erent color/texture patterns, being robust to partial
occlusions, clutter, rotation in depth, and changes in
camera position. It is a natural application to motion
analysis of the mean shift procedure introduced earlier
[6, 7]. The mean shift iterations are employed to �nd
the target candidate that is the most similar to a given
target model, with the similarity being expressed by a
metric based on the Bhattacharyya coe�cient. Vari-
ous test sequences show ed the superior tracking perfor-
mance, obtained with low computational complexity.

The paper is organized as follows. Section 2 presents
and extends the mean shift property. Section 3 intro-
duces the metric derived from the Bhattacharyya coef-
�cient. The tracking algorithm is dev eloped andana-
lyzed in Section 4. Experiments and comparisons are
giv en in Section 5, and the discussions are in Section 6.

2 Mean Shift Analysis

We de�ne next the sample mean shift, introduce the
iterativ e mean shift procedure, and present a new the-
orem showing the convergence for kernels with convex
and monotonic pro�les. For applications of the mean
shift property in low lev el vision (�ltering, segmenta-
tion) see [6].

2.1 Sample Mean Shift

Given a set fxigi=1:::n of n points in the d-
dimensional space Rd, the multivariate kernel density
estimate with kernel K(x) and window radius (band-
width) h, computed in the point x is given b y

f̂(x) =
1

nhd

nX
i=1

K

�
x� xi
h

�
: (1)

The minimization of the average global error betw een
the estimate and the true density yields the multivariate
Epanechnikov kernel [25, p.139]

KE(x) =

�
1

2
c�1d (d+ 2)(1� kxk2) if kxk < 1

0 otherwise
(2)

where cd is the volume of the unit d-dimensional sphere.
Another commonly used kernel is the multiv ariate nor-
mal

KN(x) = (2�)�d=2exp

�
�1
2
kxk2

�
: (3)

Let us introduce the pro�le of a kernel K as a func-
tion k : [0;1) ! R such that K(x) = k(kxk2). F or
example, according to (2) the Epanechnikov pro�le is

kE(x) =

�
1

2
c�1d (d+ 2)(1� x) if x < 1

0 otherwise
(4)

and from (3) the normal pro�le is given b y

kN (x) = (2�)�d=2exp

�
�1
2
x

�
: (5)

Employing the pro�le notation we can write the density
estimate (1) as

f̂K(x) =
1

nhd

nX
i=1

k

 x� xih


2
!
: (6)

We denote
g(x) = �k0(x) ; (7)

assuming that the deriv ativ eof k exists for all x 2
[0;1), except for a �nite set of points. A kernel G
can be de�ned as

G(x) = Cg(kxk2); (8)
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where C is a normalization constant. Then, by taking
the estimate of the density gradient as the gradient of
the density estimate we have

r̂fK(x)�rf̂K(x)= 2

nhd+2

nX
i=1

(x� xi) k0
 x� xih


2
!

=
2

nhd+2

nX
i=1

(xi � x) g
 x� xih


2
!
=

2

nhd+2
�

�
"

nX
i=1

g

 x� xih


2
!#24
Pn

i=1 xig
�x�xi

h

2�
Pn

i=1 g
�x�xi

h

2� �x
3
5 ; (9)

where
Pn

i=1 g
�x�xi

h

2� can be assumed to be

nonzero. Note that the derivativ e of the Epanechnikov
pro�le is the uniform pro�le, while the derivative of the
normal pro�le remains a normal.

The last brac ketin (9) contains the sample mean
shift v ector

Mh;G(x) �
Pn

i=1 xig
�x�xi

h

2�
Pn

i=1 g
�x�xi

h

2� � x (10)

and the density estimate at x

f̂G(x) � C

nhd

nX
i=1

g

 x� xih


2
!

(11)

computed with kernel G. Using now (10) and (11), (9)
becomes

r̂fK(x) = f̂G(x)
2=C

h2
Mh;G(x) (12)

from where it follows that

Mh;G(x) =
h2

2=C

r̂fK(x)
f̂G(x)

: (13)

Expression (13) shows that the sample mean shift vec-
tor obtained with kernel G is an estimate of the normal-
ized density gradient obtained with kernel K. This is a
more general formulation of the property �rst remarked
by Fukunaga [15, p. 535].

2.2 A Su�cient Conv ergenceCondition

The mean shift procedur eis de�ned recursively by
computing the mean shift vector Mh;G(x) and trans-
lating the center of kernel G byMh;G(x).

Let us denote by
�
yj
	
j=1;2:::

the sequence of succes-

sive locations of the kernel G, where

yj+1 =

Pn
i=1 xig

�yj
�xi

h

2�
Pn

i=1 g

�yj
�xi

h

2� ; j = 1; 2; : : : (14)

is the weighted mean at yj computed with kernel G
and y1 is the center of the initialk ernel. The density

estimates computed with kernel K in the points (14)
are

f̂K =
n
f̂K(j)

o
j=1;2:::

�
n
f̂K(yj)

o
j=1;2:::

: (15)

These densities are only implicitly de�ned to obtain
r̂fK . How ev er we need them to prove the convergence
of the sequences (14) and (15).

Theorem 1 If the kernel K has a convex and mono-
tonic decreasing pro�le and the kernel G is de�ned ac-
cording to (7) and (8), the sequences (14) and (15) are
convergent.

The Theorem 1 generalizes the con vergence shown
in [6], where K was the Epanechnikov kernel, and G
the uniform kernel. Its proof is given in the Appendix.
Note that Theorem 1 is also valid when we associate to
each data point xi a positive weight wi.

3 Bhattacharyya Coe�cient Based

Metric for Target Localization

The task of �nding the target location in the current
frame is formulated as follows. The feature z repre-
senting the color and/or texture of the target model is
assumed to have a density function qz, while the target
candidate cen tered at location y has the feature dis-
tributed according to pz(y). The problem is then to
�nd the discrete location y whose associated density
pz(y) is the most similar to the target density qz.

T o de�ne the similarity measure we take into account
that the probability of classi�cation error in statistical
hypothesis testing is directly related to the similarity
of the t w o distributions.The larger the probability of
error, the more similar the distributions. Therefore,
(con trary to thehypothesis testing), we formulate the
target location estimation problem as the derivation of
the estimate that maximizes the Bayes error associated
with the model and candidate distributions. For the
moment, w e assume that the target has equal prior
probability to be present at any location y in the neigh-
borhood of the previously estimated location.

An en tity closely related to the Bayes error is the
Bhattacharyya coe�cient, whose general form is de-
�ned by [19 ]

�(y) � � [p(y); q] =

Z p
pz(y)qz dz : (16)

Properties of the Bhattacharyya coe�cient such as its
relation to the Fisher measure of information, quality
of the sample estimate, and explicit forms for various
distributions are given in [11, 19].

Our in terest in expression (16) is, how ever, moti-
vated by its near optimality given by the relationship
to the Bayes error. Indeed, let us denote by � and �
tw o sets of parameters for the distributionsp and q and
by� = (�p; �q) a set of prior probabilities. If the value
of (16) is smaller for the set � than for the set �, it
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can be proved [19] that, there exists a set of priors ��

for which the error probability for the set � is less than
the error probability for the set �. In addition, starting
from (16) upper and low er error bounds can be derived
for the probability of error.

The derivation of the Bhattacharyya coe�cient from
sample data involv es theestimation of the densities p
and q, for which we employ the histogram formulation.
Although not the best nonparametric density estimate
[25 ], the histogram satis�es the low computational cost
imposed by real-time processing. We estimate the dis-
crete densit y q̂ = fq̂ugu=1:::m (with

Pm
u=1 q̂u = 1)

from the m-bin histogram of the target model, while
p̂(y) = fp̂u(y)gu=1:::m (with

Pm
u=1 p̂u = 1) is estimated

at a given location y from the m-bin histogram of the
target candidate. Hence, the sample estimate of the
Bhattacharyya coe�cient is given b y

�̂(y) � � [p̂(y); q̂] =

mX
u=1

p
p̂u(y)q̂u: (17)

The geometric interpretation of (17) is the cosine of
the angle betw een the m-dimensional, unit vectors�p

p̂1; : : : ;
p
p̂m
�>

and
�p

q̂1; : : : ;
p
q̂m
�>

.
Using no w (17) the distance between tw odistribu-

tions can be de�ned as

d(y) =
p
1� � [p̂(y); q̂] : (18)

The statistical measure (18) is well suited for the
task of target localization since:

1. It is nearly optimal, due to its link to the Bayes
error. Note that the widely used histogram inter-
section technique [26] has no such theoretical foun-
dation.

2. It imposes a metric structure (see Appendix). The
Bhattacharyya distance[15 , p.99] or Kullback di-
vergence [8, p.18] are not metrics since they violate
at least one of the distance axioms.

3. Using discrete densities, (18) is invarian tto the
scale of the target (up to quantization e�ects). His-
togram intersection is scale varian t [26].

4. Being valid for arbitrary distributions, the dis-
tance (18) is superior to the Fisher linear discrim-
inant, which yields useful results only for distri-
butions that are separated by the mean-di�erence
[15 , p.132].

Similar measures were already used in computer vi-
sion. The Cherno� and Bhattacharyya bounds have
been employed in [20] to determine the e�ectiveness of
edge detectors. The Kullback divergence has been used
in [27] for �nding the pose of an object in an image.

The next section shows ho wto minimize (18) as a
function of y in the neighborhood of a given location,
by exploiting the mean shift iterations. Only the distri-
bution of the object colors will be considered, although
the texture distribution can be integrated into the same
framework.

4 Tracking Algorithm

We assume in the sequel the support of two modules
which should provide (a) detection and localization in
the initial frame of the objects to track (targets) [21, 23],
and (b) periodic analysis of each object to account for
possible updates of the target models due to signi�cant
changes in color [22].

4.1 Color Representation

Target Model Let fx?i gi=1:::n be the pixel loca-
tions of the target model, centered at 0. We de�ne a
function b : R2 ! f1 : : :mg which associates to the
pixel at location x?i the index b(x?i ) of the histogram
bin corresponding to the color of that pixel. The prob-
ability of the color u in the target model is derived b y
employing a con vexand monotonic decreasing kernel
pro�le k which assigns a smaller weight to the locations
that are farther from the cen ter of the target. The
weighting increases the robustness of the estimation,
since the peripheral pixels are the least reliable, be-
ing often a�ected by occlusions (clutter) or background.
The radius of the kernel pro�le is tak en equal to one,
by assuming that the generic coordinates x and y are
normalized with hx and hy, respectively. Hence, we can
write

q̂u = C

nX
i=1

k(kx?i k2)� [b(x?i )� u] ; (19)

where � is the Kronecker delta function. The normal-
ization constant C is deriv ed b y imposing the conditionPm

u=1 q̂u = 1, from where

C =
1Pn

i=1 k(kx?i k2)
; (20)

since the summation of delta functions for u = 1 : : :m
is equal to one.

Target Candidates Let fxigi=1:::nh be the pixel
locations of the target candidate, centered at y in the
current frame. Using the same kernel pro�le k, but with
radius h, the probability of the color u in the target
candidate is given b y

p̂u(y) = Ch

nhX
i=1

k

 y � xih


2
!
� [b(xi)� u] ; (21)

where Ch is the normalization constant. The radius of
the k ernel pro�le determines the number of pixels (i.e.,
the scale) of the target candidate. By imposing the
condition that

Pm
u=1 p̂u = 1 we obtain

Ch =
1Pnh

i=1 k(ky�xih k2)
: (22)

Note that Ch does not depend on y, since the pixel lo-
cations xi are organized in a regular lattice, y being one
of the lattice nodes. Therefore, Ch can be precalculated
for a given k ernel and di�erent values of h.
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4.2 Distance Minimization

According to Section3, the most probable location
y of the target in the current frame is obtained by min-
imizing the distance (18), which is equivalent to maxi-
mizing the Bhattacharyya coe�cient �̂(y). The search
for the new target location in the current frame starts at
the estimated location ŷ0 of the target in the previous
frame. Thus, the color probabilities fp̂u(ŷ0)gu=1:::m
of the target candidate at location ŷ0 in the current
frame have to be computed �rst. Using Taylor expan-
sion around the values p̂u(ŷ0), the Bhattacharyya co-
e�cient (17) is approximated as (after some manipula-
tions)

� [p̂(y); q̂] � 1

2

mX
u=1

p
p̂u(ŷ0)q̂u +

1

2

mX
u=1

p̂u(y)

s
q̂u

p̂u(ŷ0)

(23)

where it is assumed that the target candidate
fp̂u(y)gu=1:::m does not change drastically from the
initial fp̂u(ŷ0)gu=1:::m, and that p̂u(ŷ0) > 0 for all
u = 1 : : :m. Introducing no w (21) in (23) w eobtain

� [p̂(y); q̂] � 1

2

mX
u=1

p
p̂u(ŷ0)q̂u+

Ch

2

nhX
i=1

wik

 y � xih


2
!

(24)
where

wi =

mX
u=1

� [b(xi)� u]

s
q̂u

p̂u(ŷ0)
: (25)

Thus, to minimize the distance (18), the second term
in equation (24) has to be maximized, the �rst term
being independent of y. The second term represents
the density estimate computed with kernel pro�le k at
y in the current frame, with the data being weigh ted by
wi (25). The maximization can be e�ciently ac hieved
based on the mean shift iterations, using the following
algorithm.

Bhattacharyya Co e�cient� [p̂(y); q̂] Maximization

Given the distribution fq̂ugu=1:::m of the target model
and the estimated location ŷ0 of the target in the pre-
vious frame:

1. Initialize the location of the target in the cur-
rent frame with ŷ0, compute the distribution
fp̂u(ŷ0)gu=1:::m, and evaluate

� [p̂(ŷ0); q̂] =
Pm

u=1

p
p̂u(y0)q̂u :

2. Derive the weights fwigi=1:::nh according to (25).

3. Based on the mean shift vector, deriv e the new
location of the target (14)

ŷ1 =

Pnh
i=1 xiwig

� ŷ0
�xi

h

2�
Pnh

i=1 wig

� ŷ0
�xi

h

2� : (26)

Update fp̂u(ŷ1)gu=1:::m, and evaluate

� [p̂(ŷ1); q̂] =
Pm

u=1

p
p̂u(y1)q̂u :

4. While � [p̂(ŷ1); q̂] < � [p̂(ŷ0); q̂]
Do ŷ1  1

2
(ŷ0 + ŷ1).

5. If kŷ1 � ŷ0k < � Stop.
Otherwise Set ŷ0  ŷ1 and go to Step 1.

The proposed optimization employs the mean shift vec-
tor in Step 3 to increase the value of the approximated
Bhattacharyya coe�cient expressed by (24). Since this
operation does not necessarily increase the value of
� [p̂(y); q̂], the test included in Step 4 is needed to vali-
date the new location of the target. However, practical
experiments (tracking di�erent objects, for long peri-
ods of time) show ed that the Bhattacharyya coe�cient
computed at the location de�ned by equation (26) was
almost always larger than the coe�cient corresponding
to ŷ0. Less than 0:1% of the performed maximizations
yielded cases where the Step 4 iterations were necessary.
The termination threshold � used in Step 5 is derived
by constraining the vectors representing ŷ0 and ŷ1 to
be within the same pixel in image coordinates.

The tracking consists in running for each frame the
optimization algorithm described above. Thus, given
the target model, the new location of the target in the
current frame minimizes the distance (18) in the neigh-
borhood of the previous location estimate.

4.3 Scale Adaptation

The scale adaptation scheme exploits the property
of the distance (18) to be invariant to changes in the
object scale. We simply modify the radius h of the
kernel pro�le with a certain fraction (we used �10%),
let the tracking algorithm to converge again, and choose
the radius yielding the largest decrease in the distance
(18). An IIR �lter is used to deriv ethe new radius
based on the current measurements and old radius.

5 Experiments

The proposed method has been applied to thetask
of trac king a football player marked b ya hand-drawn
ellipsoidal region (�rst image of Figure 1). The se-
quence has 154 frames of 352 � 240 pixels eac h and
the initial normalization constants (determined from
the size of the target model) were (hx; hy) = (71; 53).
The Epanechnikov pro�le (4) has been used for his-
togram computation, therefore, the mean shift itera-
tions were computed with the uniform pro�le. The tar-
get histogram has been derived in the RGB space with
32� 32 � 32 bins. The algorithm runs comfortably at
30 fps on a 600 MHz PC, Java implementation.

The tracking results are presented in Figure 1. The
mean shift based tracker pro ved to be robust to partial
occlusion, clutter, distractors (frame 140 in Figure 1),
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Figure 1: F ootball sequence: T racking thepla yer no.
75 with initial window of 71�53 pixels. The frames 30,
75, 105, 140, and 150 are shown.

and camera motion. Since no motion model has been
assumed, the tracker adapted well to the nonstationary
character of the pla yer's movements, which alternates
abruptly betw een slow and fast action. In addition,
the in tense blurring present in some frames and due to
the camera motion, did not inuence the tracker per-
formance (frame 150 in Figure 1). The same e�ect,
ho w ev er, can largely perturb contour based trackers.
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Figure 2: The number of mean shift iterations function
of the frame index for the F ootball sequence. The mean
number of iterations is 4:19 per frame.

The number of mean shift iterations necessary for
each frame (one scale) in the F ootballsequence is shown
in Figure 2. One can identify tw o central peaks, corre-
sponding to the movement of the pla yer to the cen ter
of the image and bac kto the left side. The last and
largest peak is due to the fast movement from the left
to the right side.
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Figure 3: V alues of the Bhattacharyya coe�cient cor-
responding to the marked region (81 � 81 pixels) in
frame 105 from Figure 1. The surface is asymmetric,
due to the player colors that are similar to the target.
F our mean shift iterations were necessary for the algo-
rithm to converge from the initial location (circle).

T o demonstrate the e�ciency of our approach, Fig-
ure 3 presents the surface obtained by computing the
Bhattacharyya coe�cient for the rectangle marked in
Figure 1, frame 105. The target model (the selected
elliptical region in frame 30) has been compared with
the target candidates obtained by sweeping the ellipti-
cal region in frame 105 inside the rectangle. While most
of the tracking approaches based on regions [3, 14, 21]
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must perform an exhaustive search in the rectangle to
�nd the maximum, our algorithm converged in four it-
erations as shown in Figure 3. Note that since the basin
of attraction of the mode covers the entire window, the
correct location of the target would have been reached
also from farther initial points. An optimized compu-
tation of the exhaustive search of the mode [13] has a
muc h larger arithmetic complexity, depending on the
chosen search area.

The new method has been applied to track people on
subw ay platforms.The camera being �xed, additional
geometric constraints and also background subtraction
can be exploited to improve the tracking process. The
follo wing sequences, how ev er, ha ve been processed with
the algorithm unchanged.

A �rst example is shown in Figure 4, demonstrating
the capability of the tracker to adapt to scale changes.
The sequence has 187 frames of 320 � 240 pixels eac h
and the initial normalization constants were (hx; hy) =
(23; 37).

Figure 5 presents six frames from a 2 minute se-
quence showing the tracking of a person from the mo-
ment she enters the sub w ayplatform till she gets on
the train (� 3600 frames). The tracking performance is
remarkable, taking into account the low quality of the
processed sequence, due to the compression artifacts. A
thorough evaluation of the tracker, ho w ever, is subject
to our current work.

The minimum value of the distance (18) for eac h
frame is shown in Figure 6. The compression noise
determined the distance to increase from 0 (perfect
match) to a stationary value of about 0:3. Signi�cant
deviations from this value correspond to occlusions gen-
erated by other persons or rotations in depth of the tar-
get. The large distance increase at the end signals the
complete occlusion of the target.

6 Discussion

By exploiting the spatial gradient of the statistical
measure (18) the new method achiev es real-time track-
ing performance, while e�ectively rejecting background
clutter and partial occlusions.

Note that the same technique can be employed
to deriv ethe measurement vector for optimal predic-
tion sc hemes such as the (Extended) Kalman �lter [1,
p.56, 106], or multiple hypothesis tracking approaches
[5, 9, 17, 18 ]. In return, the prediction can determine
the priors (de�ning the presence of the target in a given
neighborhood) assumed equal in this paper. This con-
nection is ho wev er bey ondthe scopeof this paper. A
patent application has been �led covering the tracking
algorithm together with the Kalman extension and var-
ious applications [29].

We �nally observe that the idea of centroid compu-
tation is also employed in [22]. The mean shift was
used for tracking human faces [4], by projecting the

Figure 4: Subway1 sequence: The frames 500, 529,
600, 633, and 686 are shown (left-right, top-down).

histogram of a face model on to the incoming frame.
How ev er, the direct projection of the model histogram
on to the new frame can introduce a large bias in the
estimated location of the target, and the resulting mea-
sure is scale varian t.Gradient based region tracking has
been formulated in [2] by minimizing the energy of the
deformable region, but no real-time claims were made.

APPENDIX

Proof of Theorem 1

Since n is �nite the sequence f̂K is bounded, there-

fore, it is su�cient to sho w thatf̂K is strictly monotonic

increasing, i.e., if yj 6= yj+1 then f̂K(j) < f̂K(j + 1),
for all j = 1; 2 : : :.

By assuming without loss of generality that yj = 0

w e can write

f̂K(j + 1)� f̂K(j) =

=
1

nhd

nX
i=1

"
k

 yj+1 � xih


2
!
� k

�xi
h

2�
#
:(A.1)
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Figure 5: Subway2 sequence: The frames 3140, 3516,
3697, 5440, 6081, and 6681 are shown (left-right, top-
down).

The convexit y of the pro�lek implies that

k(x2) � k(x1) + k0(x1)(x2 � x1) (A.2)

for all x1; x2 2 [0;1), x1 6= x2, and since k0 = �g, the
inequality (A.2) becomes

k(x2)� k(x1) � g(x1)(x1 � x2): (A.3)

Using now (A.1) and (A.3) we obtain

f̂K(j + 1)� f̂K(j) �

� 1

nhd+2

nX
i=1

g

�xi
h

2��kxik2 � kyj+1 � xik2�

=
1

nhd+2

nX
i=1

g

�xi
h

2��2y>j+1xi � kyj+1k2� = 1

nhd+2

�
"
2y>j+1

nX
i=1

xig

�xi
h

2�� kyj+1k2 nX
i=1

g

�xi
h

2�
#

(A.4)
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Figure 6: The detected minimum value of distance d
function of the frame index for the 2 minute Subway2
sequence. The peaks in the graph correspond to occlu-
sions or rotations in depth of the target. F or example,
the peak of value d � 0:6 corresponds to the partial
occlusion in frame 3697, shown in Figure 5. At the end
of the sequence, the person being tracked gets on the
train, which produces a complete occlusion.

and by employing (14) it results that

f̂K(j + 1)� f̂K(j) � 1

nhd+2
kyj+1k2

nX
i=1

g

�xi
h

2� :
(A.5)

Since k is monotonic decreasing w e ha ve�k0(x) �
g(x) � 0 for all x 2 [0;1). The sum

Pn
i=1 g

�xi

h

2�
is strictly positive, since it was assumed to be nonzero
in the de�nition of the mean shift vector (10). Thus, as
long as yj+1 6= yj = 0, the right term of (A.5) is strictly

positiv e, i.e.,f̂K(j +1)� f̂K(j) > 0. Consequently, the

sequence f̂K is convergent.
To prove the convergence of the sequence

�
yj
	
j=1;2:::

w erewrite (A.5) but without assuming that yj = 0.
After some algebra we have

f̂K(j+1)�f̂K(j)� 1

nhd+2
kyj+1�yjk2

nX
i=1

g

 yj�xih


2
!

(A.6)
Since f̂K(j + 1) � f̂K(j) con verges to zero, (A.6)
implies that kyj+1 � yjk also converges to zero, i.e.,�
yj
	
j=1;2:::

is a Cauchy sequence. This completes the

proof, since any Cauchy sequence is convergent in the
Euclidean space.

Proof that the distance d(p̂; q̂) =
p
1� �(p̂; q̂) is a

metric

The proof is based on the properties of the Bhat-
tacharyya coe�cient (17). According to the Jensen's
inequality [8, p.25] we have

�(p̂; q̂) =

mX
u=1

p
p̂uq̂u =

mX
u=1

p̂u

s
q̂u
p̂u
�
vuut mX

u=1

q̂u = 1;

(A.7)
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with equality i� p̂ = q̂. Therefore, d(p̂; q̂) =p
1� �(p̂; q̂) exists for all discrete distributions p̂ and

q̂, is positive, symmetric, and is equal to zero i� p̂ = q̂.
The triangle inequality can be pro venas follo ws.

Let us consider the discrete distributions p̂, q̂, and r̂,
and de�ne the associated m-dimensional points �p =�p

p̂1; : : : ;
p
p̂m
�>

, �q =
�p

q̂1; : : : ;
p
q̂m
�>

, and �r =�p
r̂1; : : : ;

p
r̂m
�>

on the unit hypersphere, centered at
the origin. By taking into account the geometric inter-
pretation of the Bhattacharyya coe�cient, the triangle
inequality

d(p̂; r̂) + d(q̂; r̂) � d(p̂; q̂) (A.8)
is equivalent toq
1� cos(�p; �r)+

q
1� cos(�q ; �r) �

q
1� cos(�p; �q):

(A.9)
If we �x the points �p and �q , and the angle between
�p and �r, the left side of inequality (A.9) is mini-
mized when the vectors �p, �q , and �r lie in the same
plane. Thus, the inequality (A.9) can be reduced to a 2-
dimensional problem that can be easily demonstrated
by employing the half-angle sinus formula and a few
trigonometric manipulations.
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