
1

VISUAL ESTIMATION AND COMPRESSION OF FACIAL MOTION PARAMETERS
 ELEMENTS OF A 3D MODEL-BASED VIDEO CODING SYSTEM

Hai Tao

Department of Computer Engineering
University of California, Santa Cruz, CA 95063

Thomas S. Huang

Image Processing and Formation Laboratory, Beckman Institute
University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

The MPEG4 standard supports the transmission and composition of facial animation with natural video

by including a facial animation parameter (FAP) set that is defined based on the study of minimal facial

actions and is closely related to muscle actions. The FAP set enables model-based representation of

natural or synthetic talking head sequences and allows intelligible visual reproduction of facial

expressions, emotions, and speech pronunciations at the receiver. This paper describes two key

components we have developed for building a model-based video coding system: (1) a method for

estimating FAP parameters based on our previously proposed piecewise Bézier volume deformation

model (PBVD), and (2) various methods for encoding FAP parameters. PBVD is a linear deformation

model suitable for both the synthesis and the analysis of facial images. Each FAP parameter is a basis

function in this model. Experimental results on PBVD-based animation, model-based tracking, and

spatial-temporal compression of FAP parameters are demonstrated in this paper

1 INTRODUCTION

Many applications in human-computer interface, 3D games, model-based video coding, talking agent, and

distance learning demand communication of talking head videos. There are at least two possible solutions

2

to this problem: transmitting the image pixel directly or transmitting the geometric model, the

deformation method, and some deformation parameters to synthesize the images on the other end of the

transmission. The latter approach is called the model-based video coding method [1,2,8,9]. As shown in

Figure 1, a model-based facial image communication system consists of three main components: (a)

analysis of nonrigid facial motions, (b) compression and transmission of the face geometry model and the

motion parameters, and (c) synthesis of facial images. The core of a model-based coding system is the

model of the object under consideration. Two key elements comprise of a face model: the geometric face

model and the face deformation model. They are described in MPEG-4 SNHC by the facial definition

parameters (FDP) and the facial animation parameters (FAP) respectively.

Face Motion Analysis

Face Motion Parameter
Compression and Transmission

Face Image Synthesis

Figure 1. A model-based video coding system.

The geometric model defines the shape and the texture of a face. It is usually in the form of a 3D

polygonal mesh. We have developed system to obtain 3D mesh models of faces from 3D CyberWare

scanner data (Figure 2). The deformation model, on the other hand, describes how the face changes its

shape and is used to generate various dynamic effects for intelligible reproduction of facial expressions.

Four categories of facial deformation models have been proposed. They are parameterized models [3],

physical muscle models [4], free-form deformation models [10], and performance-driven animation

models [11]. In the motion analysis phase, these models are applied as constraints that regulate the facial

3

movements. We have proposed a linear free-form facial deformation model called piecewise Bézier

volume deformation (PBVD) in [5]. This method is suitable for both realistic facial animation and robust

facial motion analysis. The differences between this approach and Kalra’s method [10] are twofold. By

using nonparallel volumes, irregular 3D manifolds are formed. As a result, fewer deformation volumes

are needed and the number of control points is reduced. This is a desired property for tracking algorithms.

Further, based on facial feature points, this model is mesh independent and can be easily adopted to

articulate any face model. In addition, the MPEG-4 facial animation parameters, which are defined based

on the study of minimal facial actions and that are closely related to muscle movements [3,4], can also

easily built upon the PBVD model.

Figure 2. A face mesh model constructed using the CyberWare scanner data. Left: the mesh model.

Right: the texture-mapped model.

After being estimated, the facial motion parameters need to be transmitted over various communication

channels to drive the facial animation program at the remote locations. How to transmit these parameters

efficiently is an interesting research problem. We have developed several compression algorithms for

encoding the estimated MPEG4 FAP parameters. These algorithms exploit the spatial and temporal

redundancy among FAP parameters. Combinations of these techniques dramatically reduce the amount of

data needs to be transmitted. The three algorithms we have developed are: (1) face animation parameter

4

interpolation scheme, (2) spatial FAP compression method based on principal component analysis, and

(3) temporal transformation coding of FAP. The efficacy of these methods is demonstrated by both

subjective and objective results.

2 FACE TRACKING BASED ON PBVD

2.1 Piecewise Bézier volume deformation model

In [5], we have introduced a new piecewise Bézier volume deformation (PBVD) model. This model

describes the mapping function between some face motion control parameters and the 3D displacements

of the face mesh nodes. The PBVD model consists of a collection of 3D Bézier volumes [7,10] in which

the face mesh model is completely embedded (Figure 3a). As described in [5], the linear relationship

between the displacements of the face mesh nodes V and the magnitudes of the various control

parameters t
mpppP][,,1,0 K= is

LP=V (1)

where the matrix L describes the basis functions composed of some linear combinations of Bernstein

polynomials. Each column of L represents an expression, a viseme (visual phoneme), or a FAP action

unit that can be derived through manipulating the control points through an interactive tool. In Figure 3,

the real control mesh and the rendered expression smile are illustrated. We have created 23 visemes to

implement a talking head system. Six of them are shown in Figure 4. Basis functions for various

expressions (see Figure 5) as well as some FAP-like action units have also been implemented. Once

visemes and expressions are created, animation sequences can be generated by assigning appropriate

values to the magnitudes of these visemes and expressions at each time instance. Figure 6 shows some

frames from a synthetic visual speech sequence. A full deformation model that includes the rigid head

motion is estimated in our tracking algorithm. The motion model is described as

5

TLPR ++)(0V (2)

where 0V is the neutral facial mesh, R is the rotation decided by the three rotation angles Ω , and T is

the 3D translation.

(a) (b)

Figure 3. (a) The PBVD volumes (b) the expression smile.

Figure 4. Action units around the mouth region. Top: the control nodes. Bottom: the action units.

6

Figure 5. Expressions and visemes created using the PBVD model. The expressions and visemes (bottom

row) and their corresponding control meshes (top row). The facial movements are, from left to right,

neutral, anger, smile, vowel_or, and vowel_met.

Figure 6. An animation sequence with smile and speech I am George McConkie.

2.2 PBVD model-based tracking algorithm

2.2.1 Video analysis of the facial movements

Several algorithms for extracting face motion information from video sequences have been proposed

[1,2,8,9]. Most of these methods are designed to detect action-unit level animation parameters. The

7

assumption is that the basic deformation model is already given and will not change. In this section, we

propose a tracking algorithm in the same flavor but using the PBVD model. The algorithm adopts a

coarse-to-fine framework to integrate the low-level motion field information with the high-level

deformation constraints. Since the PBVD model is linear, an efficient optimization process using lease

squares estimator is formulated to incrementally track the head poses and the facial movements. The

derived motion parameters can be used for facial animation, expression recognition, and bimodal speech

recognition.

LSE model
 fitting

Template
matching

Dd 2V̂Deform model

PddTd ˆ,ˆ,ˆ Ω

nnn TPLR ˆ)ˆ(ˆ
0 ++V

nnn PT ˆ,ˆ,ˆ Ω

∂++∂=
Pd

d
Td

PTTLPRMd
nnn PTD

ˆ
ˆ

ˆ

|],,[/)])(([ˆ
ˆ,ˆ,ˆ02 ΩΩ ΩVV

1−Z

Figure 7. Block diagram of the model-based PBVD tracking system.

2.2.2 Model-based tracking using the PBVD model

The changes of the motion parameters between two consecutive video frames are computed based on the

motion field. The algorithm is shown in Figure 7. We assume that the camera is stationary. At the

initialization stage, the face needs to be approximately frontal view so that the generic 3D model can be

fitted. The inputs to the fitting algorithms are the positions of facial feature points, which are manually

picked. All motion parameters are set to zeroes (i.e., 0)ˆ,ˆ,ˆ(000 =Ω PT), which means a neutral face is

8

assumed. The intrinsic camera parameters are known in our implementation. Otherwise, a small segment

of the video sequence should be used to estimate these parameter using photogrammetry techniques.

From the video frames n and 1+n , the 2D motion vectors of many mesh nodal points are estimated

using the template matching method. In our implementation, the template for each node consists of

1111 × pixels and the searching region is 1717 × pixels. To deal with the drifting problem, both the

templates from the previous frame and the templates from the initial frame are used: the even nodes of a

patch are tracked using the templates from the previous frame and the odd nodes are tracked using those

of the initial frame. Our experiments showed that this approach is very effective.

From the resulted motion vectors, 3D rigid motions and nonrigid motions (intensities of

expressions/visemes or action units) are computed simultaneously using a least squares estimator. Since

the PBVD model is linear, only the perspective projection and the rotation introduce non-linearity. This

property makes the algorithm simpler and more robust. The 2D interframe motion for each node is

)
ˆ
ˆ

ˆ

][/][
][/][

/
/

/10

/01
(

ˆ

ˆ
ˆ

],,[
)])(([ˆ

21

20

21

20

ˆ,ˆ,ˆ
0

2 111

Ω

−
−

−
−

−

−
=

Ω
Ω∂

++∂≈
+++ Ω

Pd
d

Td

RLzyRL
RLzxRL

zGyG
zGxG

zy

zx
M

Pd

d
Td

PT
TLPRMd

nnn PTD
VV

 (3)

where Dd 2V̂ is the 2D interframe motion, and

−
−

−
=

0
0

0

11

11

11

xy
xz

yz

G . (4)

The projection matrix M is

=

0/0
00/

zfs
zfs

M (5)

9

where f is the focal length of the camera, s is the scale factor, and z is the depth of the mesh node. The

vector),,(zyx represents the 3D mesh nodal position after both rigid and nonrigid deformation, or

TLPR ++)(0V . The vector),,(111 zyx represents the 3D mesh nodal position after only nonrigid

deformation, but without translation and rotation (i.e., LP+0V). Matrix iG and iRL][denote the i th

row of the matrix G and the matrix RL , respectively.

An overdetermined system is formed because many 2D inter-frame motion vectors are calculated. As the

result, changes of the motion parameters)ˆ,ˆ,ˆ(PddTd Ω can be estimated using the least squares estimator.

By adding these changes to the previously estimated motion parameters)ˆ,ˆ,ˆ(nnn PT Ω , new motion

parameters)ˆ,ˆ,ˆ(111 +++ Ω nnn PT are derived.

2.2.3 Coarse-to-fine framework

Two problems with the above algorithm are the computationally expensive template matching and the

noisy motion estimation. The first problem is obvious because the computational complexity for each

motion vector is approximately 907,1043)1111()1717(=×××× integer multiplication. The second

problem is partially caused by the fact that in the above algorithm, the computation of the motion field is

totally independent of the motion constraints, which makes it vulnerable to various noises. If the lower-

level motion field measurements are very noisy, good estimation of motion parameters can never be

achieved, even with the correct constraints.

A coarse-to-fine framework is proposed in this section to partially solve the above problems. The block

diagram of this new algorithm is illustrated in Figure 8. An image pyramid is formed for each video

frame. The algorithm proposed in the previous section is then applied to the consecutive frames

sequentially from lowest resolution to the original resolution. For the diagram depicted in Figure 8,

changes of motion parameters are computed in quarter-resolution images as)ˆ,ˆ,ˆ()0()0()0(PddTd Ω . By

10

adding these changes to)ˆ,ˆ,ˆ(nnn PT Ω , the estimated new motion parameters are derived as

)ˆ,ˆ,ˆ()0(
1

)0(
1

)0(
1 +++ Ω nnn PT . Similarly, changes of motion parameters are computed in the half-resolution images

as)ˆ,ˆ,ˆ()1()1()1(PddTd Ω based on the previous motion parameter estimation)ˆ,ˆ,ˆ()0(
1

)0(
1

)0(
1 +++ Ω nnn PT . This

process continues until the original resolution is reached.

LSE model
 fitting

Template
matching

Deform model

)0()0()0(ˆ,ˆ,ˆ PddTd Ω

nnn TPLR ˆ)ˆ(ˆ
0 ++V

nnn PT ˆ,ˆ,ˆ Ω

LSE model
 fitting

Template
matching

Deform model)0(
1

)0(
10

)0(
1

ˆ)ˆ(ˆ
+++ ++ nnn TPLR V

)0(
1

)0(
1

)0(
1

ˆ,ˆ,ˆ
+++ nnn PT Ω

LSE model
 fitting

Template
matching

Deform model

)1(
1

)1(
1

)1(
1

ˆ,ˆ,ˆ
+++ nnn PT Ω

)1()1()1(ˆ,ˆ,ˆ PddTd Ω

)2()2()2(ˆ,ˆ,ˆ PddTd Ω

)1(
1

)1(
10

)1(
1

ˆ)ˆ(ˆ
+++ ++ nnn TPLR V

111
ˆ,ˆ,ˆ

+++ nnn PT Ω
original
 frames

1/2-resolution
 frames

1/4-resolution
 frames

Figure 8. The coarse-to-fine PBVD tracking algorithm.

In this coarse-to-fine algorithm, motion vector computation can be achieved with smaller searching

regions and smaller templates. In our implementation, for each motion vector, the number of

multiplication is 4]3)77()55[(××××× 700,14= , which is about seven times fewer than the model-

based scheme. A more important property of this method is that, to certain extent, this coarse-to-fine

framework integrates motion vector computation with high-level constraints. The computation of the

motion parameter changes is based on the approximated motion parameters at low-resolution images. As

the result, more robust tracking results are obtained.

11

2.2.4 Implementation and experimental results

The PBVD model has been implemented on a SGI ONYX machine with a VTX graphics engine. Real-

time tracking at 10 frame/s has been achieved using the coarse-to-fine framework. It has also been used

for bimodal speech recognition and bimodal emotion recognition. Explanation-based method has been

implemented to improve the facial image synthesis.

In PBVD tracking algorithm, the choice of deformation units iD depends on the application. In a bimodal

speech recognition application, 6 action units are used to describe the motions around the mouth. The

tracking result for each frame is twelve parameters including the rotation, the translation, and the

intensities of these action units.

For the bimodal emotion recognition and the real-time tracking system, 12 action units are used. Users

can design any set of deformation units for the tracking algorithm. These deformations can be either at

expression level or at action unit level. Lip tracking results are shown in Figure 10. Figure 9 shows the

results of the real-time tracker.

Facial animation sequences are generated from the detected motion parameters. Figure 11 shows the

original video frame and the synthesized results. The synthesized face model uses the initial video frame

as the texture. The texture-mapped model is then deformed according to the motion parameters.

12

(a) (b)

(c) (d)

Figure 9. Snapshots of the real-time demonstration system. The ratio between the heights of the two color

bars indicates the quality of the tracking result.

(a) (b)

(c) (d)

Figure 10. Lip tracking for bimodal speech recognition.

13

Figure 11. The original video frames (top) and the image synthesis results(bottom).

3 COMPRESSION OF THE FACIAL ANIMATION PARAMETERS

In this section, data compression methods for facial motion parameters will be described. The three

algorithms we have developed are: (1) face animation parameter interpolation scheme, (2) spatial FAP

compression method based on principal component analysis, and (3) temporal transformation coding of

FAP. The efficacy of these methods is demonstrated by both subjective and objective results.

3.1 FAP Interpolation Table (FIT)

FAP interpolation scheme achieves data reduction by sending only a subset of the active FAPs. This

subset is then employed to determine the values of other FAPs. It exploits the symmetry of human face or

the articulation functions known a priori. For example, the top inner lip FAPs can be used to determine

the top outer lip FAPs. FAP interpolation is a desirable tool to overcome channel bandwidth limitation. It

is suitable for recovering missing FAPs caused by, for example, imperfect face feature extraction at the

encoder or packet loss during data transmission.

14

In practice, it is also critical for the decoder to interpolate FAPs the same way as the encoder does.

Otherwise, unpredictable results may be generated. A seemingly convenient solution is to predefine

interpolation rules in a standard with which all FAP encoders and decoders comply. However,

considering the a priori knowledge about the relations among FAPs are approximate and varies for

individual persons, it is generally difficult to decide a set of fixed interpolation rules that fit all faces.

Further, there are many possible ways of interpolating FAPs, both in terms of which FAPs need

interpolation and how the interpolation is performed, that it is virtually impossible to exhaustively define

all of them. A more feasible and efficient approach called FAP interpolation table (FIT) is proposed in

[12]. The basic idea is to allow users to define interpolation methods and send this information at the

setup stage of each FAP transmission session. FIT encodes both the interpolation syntax and the

interpolation functions. An interpolation syntax indicates from which other FAPs a FAP can be

interpolated. An interpolation function describes the exact numerical relations. The two major elements in

FIT are the FAP interpolation graph (FIG), which describes the interpolation syntax, and the rational

polynomials, which specify the interpolation functions. FIG is an efficient scheme that easily describes

complicated relations between FAPs, while the multivariable rational polynomial is capable of

representing both linear and nonlinear interpolations. The FAP interpolation table is also sent in the setup

stage when FAP interpolation is required in the face animation session.

The FAP interpolation graph is a graph with directed links. Each node contains a set of FAPs. Each link

from a parent node to a child node indicates that the FAPs in child node can be interpolated from parent

node provided that all the FAPs in the parent node are available. An FAP may appear in several nodes,

and a node may have multiple parents. For a node that has multiple parent nodes, the parent nodes are

ordered as first parent node, second parent node, etc. During the interpolation process, if this child node

needs to be interpolated, it is first interpolated from its first parent node if all required FAPs in that parent

node are available. Otherwise, it is interpolated from its second parent node, and so on.

15

Figure 12: FAP interpolation results for the expression Surprise. Only the expression FAP is sent for each

frame, and the 27 low-level FAPs are interpolated.

Each directed link in FIG represents a set of interpolation functions. Suppose 1F , 2F , …, nF are the

FAPs in a parent node and 1f , 2f , …, mf are the FAPs in a child node. Then, there are m interpolation

functions denoted as

).,...,,(

...

),,...,,(

),,...,,(

21

2122

2111

nmm

n

n

FFFIf

FFFIf

FFFIf

=

=
=

 (6)

Each interpolation function ()tI is in a rational polynomial form

 ∑ ∏∑ ∏
−

= =

−

= =

=
1

0 1

1

0 1
21)()(),...,,(

P

i

n

j

m
ji

K

i

n

j

l
jin

ijij FbFcFFFI , (7)

where K and P are the numbers of polynomial products, ic and ib are the coefficient of the ith product,

and ijl and ijm are the power of jF in the ith product. The encoder should send an interpolation function

table which contains all K , P , is , ic , ib , ijl , ijm to the decoder for each child FAP. Because rational

polynomials form a complete functional space, any possible finite interpolation function can be

represented in this form to any given precision.

16

Figure 12 illustrates the results of applying the FAP interpolation scheme to an MPEG4 test sequence.

Only the magnitude of the expression parameter is transmitted and the rest of the FAPs are generated

using the pre-transmitted interpolation method.

3.2 Compression of FAPs Using PCA

The aforementioned FIT approach encodes the fixed relationships among FAPs valid in all individual

frames. The original FAP data is represented by its smaller subset. A more general tool for exploiting

both deterministic and statistical correlation among FAPs is the principal component analysis method

(PCA) [13], which converts the original FAP data to a new compact form. This method is motivated by

the observation that different parts of a human face are articulated harmoniously and, though fixed

relations may be absent or difficult to derive, statistically strong correlation does exist.

To apply PCA technique, major axes are computed as the eigenvectors of the covariance matrix computed

from FAP vectors. Each FAP vector is formed by FAPs at a particular frame. The eigenvalues of the

covariance matrix indicate the energy distribution. The major axes corresponding to significant

eigenvalues form a new low-dimensional subspace. Compact representation is obtained by projecting the

original FAP vector into this subspace. Re-projecting the compact representations back to the original

FAP space produces good approximations of the original FAP vectors. This process is also called

Karhunen Loeve transform (KLT) [14].

Suppose the original FAP vectors are 1v , 2v ,…, nv , and each iv is a column vector contains m FAPs in

a particular frame. Then, the mm × covariance matrix is computed as:

t
i

n

i
i vvvv

n
C)()(

1
1

1

−−
−

= ∑
=

, (8)

where v is the mean of iv . Since for most FAPs, the average positions are at neutral expression, or 0, the

covariance matrix is:

17

t
i

n

i
ivv

n
C ∑

=−
=

11
1

. (9)

Since C is a nonnegative definite matrix, all eigenvalues are nonnegative real values. We denote the

eigenvalues in a scending order as 1λ , 2λ , … , mλ and their corresponding igenvectors as 1u , 2u , … ,

mu . Suppose that the first k eigenvalues are significantly large, or that the percentage of energy

∑∑ ==
=

m

i i
k

i i 11
λλα exceeds a certain threshold; these k eigenvectors then form a subspace that

preserves most of the information in iv . Each iv is projected into this new subspace by performing a

linear transformation

i

t
k

t

t

i v

u

u
u

q

=
M
2

1

. (10)

The derived k -dimensional vector iq is encoded and transmitted through the channel. To approximate

iv from iq , the following linear transformation is performed at the decoder side:

[] iki quuuv K21ˆ = . (11)

PCA reduces the dimension of FAP data dramatically. Although some new components of iq may

possess larger data ranges and need more bits for coding, still significant bit savings are achieved. It

should be noted that the eigen-vectors kju j ,,1, K= , for each FAP sequence also need to be sent in the

setup stage to ensure that the decoder correctly recovers iv) . For a low-bandwidth system with limited

resources for downloading, a set of universal major axes ju defined so that both encoder and decoder

include this KLT and no explicit setup is necessary for each sequence. This universal transform can be

obtained by applying PCA to large amounts of training data with various facial motions.

18

3.3 Reduction of FAP Temporal Redundancy

In temporal sequence of each single FAP parameter or each PCA major component iq , strong interframe

correlation exists. Actually, the similarity of values between consecutive temporal frames appears in most

animation parameters and can be explained as the result of the inertia forces in all mechanical systems.

Compression techniques on temporal domain benefit from this characteristic to achieve bit savings. We

describe two schemes in this section. They are the predictive coding (PC) method and the discrete cosine

transform (DCT) method [15].

3.3.1 Predictive coding method (PC)

Instead of transmitting the parameters themselves, the differences between consecutive frames are

encoded and transmitted. Because neighboring frames for each parameter contain similar values, the

differences between the parameters tend to be small. Fewer bits are needed for representing these

differences. For each FAP, its encoded value in the previous frame is used as the prediction for its current

value. Because both the decoder and the encoder use the same prediction method, error accumulation is

avoided. The prediction error (i.e., the difference between the current FAP value and its prediction) is

then quantized and coded using an adaptive arithmetic coding algorithm. This process is also called

interframe coding.

Intraframe coding, on the contrary, directly encodes the quantized FAP value. It is equivalent to setting

the value in “Memory” to 0. A typical transmission session applies intraframe coding for the first frame

or a frame that is not closely related to its previous frame.

A noteworthy problem in FAP predictive coding scheme is how to set appropriate quantization step for

each FAP. The perceptual sensitivity of each FAP and their value range need to be considered

simultaneously. For example, the jaw movements can be quantized more coarsely than the lip movements

without affecting the perceptual quality of the resulted animation. This problem can also be addressed as:

19

for a given transmission bandwidth how to achieve the best visual animation results by adjusting the bit

distributions on each parameters through setting its quantization step. Extensive empirical results are

indispensable to derive a plausible solution.

Because there is no temporal latency for predictive coding, this scheme is suitable for real-time

applications where long delay is a major concern. In many other situations, however, a small decoding

latency is tolerable. An example of this type of applications is a multimedia mailing system with a front-

end talking agent. The FAP sequences for this type of applications are usually stored in a disk, and

compression efficiency has higher priority. Transformation coding method should be used for such

applications.

3.3.2 FAP coding using DCT

Constrained by the physical properties of human faces, most motions in expressions or visemes are of

frequency less than 10 Hz. Usually, visual speech motions are faster than emotional expressions. To

guarantee satisfactory animation results, actual FAP data are often sampled at 30 Hz or 25 Hz.

Consequently, strong correlation not only exists between consecutive frames, but also presents among

multiple neighboring frames. To take advantage of this characteristic of FAP data, DCT compression

method is employed. Similar to Fourier transform, DCT converts the original data into their frequency

domain representations, namely, dc coefficients and ac coefficients. Since FAP data has relative low

frequencies, most high-frequency ac coefficients are small and can be discarded. This dramatically

reduces the amount of data need to be transmitted.

To perform DCT compression on each FAP parameter or PCA component, the temporal sequence is first

decomposed into segments of 16 frames. A one-dimensional DCT is then applied to these individual

segments. After DCT, the resulted 1 dc and 15 ac coefficients are quantized. Similar to the predictive

coding scheme, for each FAP parameter, a particular quantization step is specified according to its

20

perceptual sensitivity to error. Because dc coefficient is the mean value of the segment and is prone to

error, its quantization step is three times smaller than that of ac coefficients.

For quantized dc coefficients, predictive coding method is applied between segments to take advantage of

the correlation between them. In an intrasegment, the quantized dc coefficient value is directly stored. For

intersegment, the quantized dc coefficient of the previous segment is used as a prediction and the

prediction error is encoded using Huffman coding method.

For the nonzero ac coefficients in each segment, their positions and values need to be encoded. To encode

their positions, for each ac coefficient, a run-length encoder is applied to record the number of leading

zeros. A special symbol is defined to indicate the last nonzero ac coefficient in a segment. Since the

segment length is 16, possible run-length values range from 0 to 14. Therefore, taking the

“end_of_segment” symbol into account, the Huffman table of the run-length encoder contains 16

symbols. The values of nonzero ac coefficients are then encoded using a Huffman encoder.

As in a predictive FAP coding scheme, quantization steps need to be carefully assigned to each

parameter. Since the property of DCT coefficients are different from that of the original data, different

values need to be deduced. Again, empirical results are crucial for justifying these values. To further

exploit the human perceptual properties, different quantization steps should be designed for ac

coefficients of different frequencies. Subjective experiments need to be conducted on resulted animation.

From careful examination, we proposed a set of DCT quantization steps, which is included in the MPEG-

4 visual committee draft [16].

3.4 Reduction of FAP Spatial and Temporal Redundancy

Compression methods in spatial domain (among FAPs) are orthogonal to methods in temporal domain.

The first approach benefits from the correlation among FAPs in a single frame, whereas the latter one

21

takes advantage of the temporal correlation of each FAP parameter. Combining these two approaches

results in a hybrid scheme that can achieve much better compression performance.

Based on predefined rules, the FIT method allows inputs with different number of FAPs in each frame.

For example, in one frame, FAP for raising the left eyebrow presents but FAP for right eyebrow does not;

in another frame, FAP for raising right eyebrow appears but the FAP for left eyebrow does not. A FIT for

left-right duplication will easily handle both situations and interprets both frames correctly. The PCA

method, on the other hand, requires no a priori knowledge about the data but accepts only one type of

inputs. The same set of FAPs must appear in all frames. Neither FIT nor PCA introduces temporal

latency. Different applications may choose the appropriate one for FAP dimension reduction.

Because predictive coding method can be lossless, it is the first candidate for temporal compression when

fidelity is the major concern. However, because predictive coding only invests on de-correlating two

consecutive frames, when FAP sampling rate is relatively high (≥ 10 Hz) and therefore strong correlation

exist in each temporal segment, predictive method is much less efficient than DCT method.

Figure 13 shows the compression performance of various coding methods. We concluded that a

combination of the PCA method and the DCT method gives the best performance at very low bit rates

while the DCT method is superior to other methods at higher bit rates.

22

Compression of Marco30 sequence using PC, PCA+PC,
DCT, and PCA+DCT

15

20

25

30

35

40

45

50

0 10000 20000 30000 40000 50000 60000 70000 80000

Total Bits

pc
pca+pc
dct
pca+dct

Figure 13: Compression results of the Marco30 sequence.

4 CONCLUSIONS

In this paper, we described a model based video coding system based on the PBVD facial animation

model. We described a PBVD model-based tracking algorithm and various compression techniques for

encoding facial motion parameters. Our future research will focus on enabling more realistic facial

animation and improving the accuracy and the robustness of the nonrigid motion estimation.

ACKNOWLEDGMENTS

This work was supported in part by the Army Research Laboratory Cooperative Agreement No.

DAAL01-96-0003.

23

REFERENCES

[1] H. Li, P. Roivainen, and R. Forchheimer, “3-D motion estimation in model-based facial

image coding,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 6, pp.

545-555, June 1993.

[2] C. S. Choi, K. Aizawa, H. Harashima, and T. Takebe, “Analysis and synthesis of facial

image sequences in model-based image coding,” IEEE Trans. Circuit Sys. Video Technol.,

vol. 4, no. 3, pp. 257-275, June 1994.

[3] F. I. Parke, “Parameterized models for facial animation,” IEEE Comput. Graph. and Appl.,

vol. 2, no. 9, pp. 61-68, Nov. 1982.

[4] Y. Lee, D. Terzopoulos, and K. Waters, “Realistic modeling for facial animation,” in Proc.

SIGGRAPH 95, 1995, pp. 55-62.

[5] Hai Tao and Thomas S. Huang, Explanation-based facial motion tracking using a

piecewise Bézier volume deformation model, in Proc. IEEE Comput. Vision and Patt.

Recogn. (CVPR99), vol. 1, pp. 611-617, 1999.

[6] Hai Tao, Homer H. Chen, Wei Wu, and Thomas S. Huang, Compression of MPEG-4 facial

animation parameters for transmission of talking heads, IEEE Trans. Circuit and Sys. for

Video Technol., vol. 9, no. 2, pp. 264-276, March 1998.

[7] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric models,” in

Proc. SIGGRAPH 86, 1986, pp. 151-160.

[8] I. Essa and A. Pentland, “Coding, analysis, interpretation and recognition of facial

expressions," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp.

757-763, July 1997.

[9] D. DeCarlo and D. Metaxas, “The integration of optical flow and deformable models with

applications to human face shape and motion estimation,” in Proc. CVPR '96, 1996, pp.

231-238.

[10] P. Kalra, A. Mangili, N. M. Thalmann, and D. Thalmann, ”Simulation of facial muscle

actions based on rational free form deformations,” in Proc. EUROGRAPHICS'92, Sept.

1992, pp. 59-69.

24

[11] L. Williams, “Performance-driven facial animation,” in Proc. SIGGRAPH 90, Aug. 1990,

pp. 235-242.

[12] “FAP Interpolation Table (FIT),” ISO/IEC JTC1/SC29/WG11 MPEG97/M2599, Aug.

1997.

[13] L. Sirovich and R. Everson, “Management and analysis of large scientific datasets,” Int. J.

Supercomput. Appl., vol. 6, no. 1, pp. 50-68, Spring 1992.

[14] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York, NY:

John Wiley & Sons, 1973.

[15] K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall,

1989.

[16] “Text for CD 14496-2 Video,” ISO/IEC JTC1/SC29/WG11 N1902, Nov. 1997.

