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Abstract

In this paper, we present a novel image-based rendering technique, which we call manifold

hopping. Our technique provides users with perceptually continuous navigation by using only a

small number of strategically sampled manifold mosaics or multiperspective panoramas. Manifold

hopping has two modes of navigation: moving continuously along any manifold, and discretely be-

tween manifolds. An important feature of manifold hopping is that significant data reduction can

be achieved without sacrificing output visual fidelity, by carefully adjusting the hopping intervals.

A novel view along the manifold is rendered by locally warping a single manifold mosaic using

a constant depth assumption, without the need for accurate depth or feature correspondence. The

rendering errors caused by manifold hopping can be analyzed in the signed Hough ray space. Ex-

periments with real data demonstrate that we can navigate smoothly in a virtual environment with

as little as 88k data compressed from 11 concentric mosaics.

Keywords: Manifold mosaic, concentric mosaic, perceptually smooth navigation, warping,

plenoptic functions, image-based rendering, video computing.



1 Introduction

Image-based rendering (IBR) in general simulates a continuous range of camera viewpoints from

a discrete set of input images [15, 10]. Much of the work on image-based rendering has depended

on view interpolation (e.g., [6, 15, 20, 2]). View interpolation is, however, a difficult task because

feature correspondence needs to be accurately established. Correspondence is particularly difficult

if it involves two images which are taken from distant viewpoints.

When accurate depth information of an image is available, the image can be rendered from a

nearby view by directly warping the input image according to its depth [13, 14]. To deal with the

occlusion problems, Layered depth images (LDI) [21] maintain multiple depth values for each pixel

in a single image so that warping may be computed with a single image. The sampling issues in LDI

are considered in an LDI tree [5] by adaptively selecting an LDI for each pixel. However, recovering

precise depth information is still very difficult.

Many IBR techniques avoid the difficult correspondence problem or the need for accurate depth

information by employing a substantial number of images. Techniques such as Light Field [11],

Lumigraph [8], and Concentric Mosaics [22] densely sample rays in the space based on the plenoptic

function [1]. To render an image at any novel viewpoint using these techniques, nearby rays are

chosen and interpolated from the sampled plenoptic functions. For example, concentric mosaics are

constructed from a dense sequence of video images, and constant depth assumptions are made about

the scene depth in order to locate the best “nearby” rays for optimal rendering quality. Applications

of light fields are limited because of the large amount of data needed.

An effective way to reduce the amount of data needed for IBR is to constrain the motion or the

viewpoints of the rendering camera. For example, the movie-map system [12] and the QuickTime

VR system [7] allow a user to explore a large environment only at pre-specified locations. Even

though a continuous change in viewing directions at each node is allowed, these systems can only

jump between two nodes that are far apart, thus causing visual discontinuity and discomfort to the

user. However, perceived continuous camera movement is very important for a user to smoothly

navigate in a virtual environment. Recently, panoramic video systems (e.g., www.behere.com) have

been built to provide a dynamic and immersive “video” experience by employing a large number of

panoramic images.

In this paper, we propose a novel image-based rendering technique, which we call manifold
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hopping. In our work, scene appearance is represented by a collection of manifold mosaics. A

manifold mosaic [17], similar to a multiperspective panorama [24], is assembled from rays that are

captured from multiple viewpoints [18, 24, 9, 25]. Furthermore, we assume in this paper that a

manifold mosaic has a one-to-one mapping between each pixel and its corresponding scene point.

The term manifold hopping is used to indicate that while motion is continuous within a manifold,

motion between manifolds is discrete, as shown in Figure 1.

Manifold hopping significantly reduces the amount of input data without sacrificing output vi-

sual quality, by employing only a small number of strategically sampled manifold mosaics. Our

technique is based on the observation that, for human visual systems to perceive continuous motion,

it is not essential to render novel views at infinitesimal steps. Moreover, manifold hopping does

not require accurate depth information or correspondence between images. At any point on a given

manifold, a novel view is generated by locally warping the manifold mosaic with a constant depth

assumption, rather than interpolating from two or more mosaics. Although warping errors are in-

evitable because the true geometry is unknown, local warping does not introduce structural features

such as double images which can be visually disturbing.

The remainder of this paper is organized as follows. After reviewing the concepts of manifold

mosaics and concentric mosaics, we present an overview of manifold hopping in Section 2. Detailed

analysis of manifold hopping (with lateral movements) is presented in Section 3. In particular,

using the signed Hough ray space, the hopping interval and field of view are analyzed for radial

hopping using concentric mosaics. In Section 4, manifold hopping with looming movements is

discussed in terms of the extended signed Hough ray space. In Section 5, we use parallel mosaics

for hopping from outside. Continuous close-up views of objects can be seen using parallel mosaics,

while hopping around the objects. Experiments using real and synthetic images are shown in Section

6. Other hopping choices are discussed in Section 7. Finally, we conclude and propose future

research directions in Section 8.

2



2 Overview of manifold hopping

In this section, we introduce manifold mosaics, view interpolation using manifold mosaics, warping

manifold mosaics, and manifold hopping. Throughout this section, concentric mosaics are used as

examples of manifold mosaics to illustrate these concepts.

2.1 Manifold mosaics

A multiperspective image is assembled from rays captured from multiple viewpoints (e.g., [25]).

Multiperspective images have also been called MCOP images [18], multiperspective panoramas

[24], pushbroom images [9], and manifold mosaics [17], among other names. In this paper, we de-

fine a manifold mosaic as a multiperspective image where each pixel has a one-to-one mapping with

a scene point1. Therefore, a conventional perspective image, or a single perspective panorama, can

be regarded as a degenerate manifold mosaic in which all rays are captured at the same viewpoint.

We adopt the term manifold mosaic from [17] because the viewpoints are generally taken along

a continuous path or a manifold (surface or curve). For example, concentric mosaics are manifold

mosaics constructed from rays taken along concentric circles [22]. Specifically, at each point on a

circle, a slit image of single pixel width is taken. By assembling all slit images captured along a

circle, a concentric mosaic is formed. Two kinds of concentric mosaics are shown in Figure 2 where

rays are taken in the tangential direction (Figure 2(a)), and in the normal direction (Figure 2(b)),

respectively. Concentric mosaics constitute a 3D plenoptic function because they are sampled natu-

rally by three parameters: rotation angle, radius, and vertical elevation. Clearly there is a one-to-one

mapping between pixels in a concentric mosaic and their corresponding scene points.

Although many previous image-based rendering techniques (e.g., view interpolation, 3D warp-

ing, etc.) are developed for perspective images, they can be applied to manifold mosaics as well.

For example, 3D warping has been used to reproject a multiple-center-of-projection (MCOP) image

in [18, 16] where each pixel of an MCOP image has an associated depth. Stereo reconstruction from

multiperspective panoramas has also been studied [23].

It has been shown [22] that a novel view inside the capturing circle can be rendered from the

concentric mosaics without any knowledge about the depth of the scene. From densely sampled con-

centric mosaics, a novel view image can be rendered by linearly interpolating nearby rays from two

1By this definition, MCOP images are not manifold mosaics.
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(a) (b)

Lateral hopping

(c) (d)

Looming hopping

Figure 1: Manifold hopping using concentric mosaics: a plan view. Manifold hopping has two

modes of navigation: (a)(c) move continuously along any manifold, and (b)(d) discretely across

manifolds. The arrows in (b)(d) indicate that the user can only hop to the viewpoints on the cir-

cle, but not stop anywhere in between. Two classes of manifold hopping are shown here: lateral

hopping whose discrete mode of navigation is perpendicular to the viewing direction, and looming

hopping whose discrete mode of navigation is along the viewing direction. Lateral hopping uses tan-

gent concentric mosaics (Figure 2(a)), while looming hopping employs normal concentric mosaics

(Figure 2(b)).

P'

P

(a) (b)

Figure 2: Capturing two kinds of concentric mosaics: a plan view. A concentric mosaic is as-

sembled by unit width slit images (a) tangent to the circle; and (b) normal to the circle. We call

(a) tangent concentric mosaics and (b) normal concentric mosaics. Tangent concentric mosaics are

called concentric mosaics in [22].
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neighboring concentric mosaics. In addition, a constant depth is assumed to find the best “nearby”

rays for optimal rendering quality [4]. Figure 3(a) illustrates a rendering ray that is interpolated by

two rays captured in nearby concentric mosaics. Despite the inevitable vertical distortion, concentric

mosaics are very useful for wandering around (on a plane) in a virtual environment. In particular,

concentric mosaics are easy to capture by using an off-centered video camera rotating along a circle.

2.2 Warping manifold mosaics

View interpolation can create high quality rendering results when the sampling rate is higher than

Nyquist frequency for plenoptic function reconstruction [4]. However, if the sampling interval be-

tween successive camera locations is too large, view interpolation will cause aliasing artifacts, cre-

ating double images in the rendered image. Such artifacts can be reduced by the use of geometric

information (e.g., [8, 4]), or by pre-filtering the light fields [11, 4] (thus reducing output resolution).

A different approach is to locally warp manifold mosaics, which is similar to 3D warping of a

perspective image. An example of locally warping concentric mosaics using an assumed constant

depth is illustrated in Figure 3(b). Any rendering ray that is not directly available from a concentric

mosaic (i.e., not tangent to a concentric circle) can be retrieved by first projecting it to the constant

depth surface, and then re-projecting it to the concentric mosaic. Therefore, a novel view image can

be warped using the local rays captured on a single concentric mosaic, rather than interpolated by

collecting rays from two or more concentric mosaics.

For humans to perceive a picture correctly, it is essential that the image of an object should not

contain any structural features that are not present in the object itself [26]. Double images, which are

common artifacts from view interpolation with poor correspondence, unfortunately result in mistak-

enly perceived structural features in the observed objects, e.g., more noticeable edges. On the other

hand, locally warping a multiperspective image preserves structural features. An example of locally

warping a concentric mosaic is shown in Figure 4, with images of different FOV’s. The projection

error in the rendered image caused by warping the concentric mosaic with (incorrect) constant depth

assumption increases as the field of view becomes larger. Note the distortion toward the right edge

in Figure 4(b). The geometric distortions introduced by local warping methods because of imprecise

geometric information are, however, tolerated by human visual perception when the field of view

(FOV) of the rendering image is small (e.g., Figure 4(a)).
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O

(a) (b)

Figure 3: Rendering concentric mosaics with (a) view interpolation and (b) local warping. (a) A ray

from viewpointA is projected to the constant depth surface (represented as a dotted circle) at B, and

interpolated by two rays BC and BD that are retrieved from neighboring concentric mosaics. (b) A

ray from viewpoint A is projected to the constant depth surface at B, and reprojected to the nearest

concentric mosaic by the ray BC.

(a)

(b) (c)

Figure 4: Local warping with an assumed constant depth: (a) part of a concentric mosaic; (b) a

rendered view with FOV = 45; and (c) another rendered view with FOV = 90. The distortion error

towards the right edge of (c) can be clearly seen as straight lines become curved.
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2.3 Hopping classification and issues

We now introduce the idea of manifold hopping using a small number of concentric mosaics to

observe an environment from the inside looking out. Manifold hopping has two modes of navigation:

moving continuously along any of the concentric circles as shown in Figure 1(a)(c), but discretely

along the radial direction as in Figure 1(b)(d).

Manifold hopping works because moving continuously along any concentric circle uses local

warping, which preserves structural features. In addition, moving discretely along the radial direc-

tion can be made perceptually smooth if the interval can be made reasonably small. A key observa-

tion is that there exists a critical hopping interval for users to perceive a smooth navigation. In other

words, manifold hopping is able to provide users with perceived continuous camera movement,

without continuously rendering viewpoints at infinitesimal steps. As a result, manifold hopping

significantly reduces the input data size without accurate depth information or correspondence.

Figure 1(a) also shows that, at any point on a circle, the rendering view is constrained to be on

the circle and the viewing direction along the tangent line to minimize the rendering errors caused

by local warping. Note that no parallax is observed from these views generated on the same circle

using the same concentric mosaic. Parallax and lighting changes are captured in manifold hopping

because of the viewpoint variations across different concentric circles, as shown in Figure 1(b).

In this paper, we describe two types of manifold hopping with concentric mosaics: lateral hop-

ping, whose discrete mode of navigation (Figure 1(b)) is perpendicular to the viewing direction; and

looming hopping, whose discrete mode of navigation (Figure 1(d)) is along the viewing direction.

Note that for each type of hopping, there are two modes of navigation, namely the continuous mode

along the manifold and discrete mode between manifolds. The type of hopping is named after the

direction of discrete navigation.

Detailed analysis of manifold hopping is needed to address the following important questions.

� What is the largest field of view that still produces acceptable local warping error?

� How large can the hopping interval be so that continuous motion can be perceived?

These questions are answered in detail for lateral hopping in the next section after we introduce

the signed Hough ray space. In Section 4, we introduce the extended signed Hough ray space to

analyze looming hopping.
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3 Analysis of lateral hopping using the signed Hough ray space

The Hough transform is known to be a good representation for lines. However, it is not suitable for

representing rays that are directional. The conventional Hough space can be augmented to a signed

Hough ray space [3], or an oriented line representation [11], by using the following right-hand rule:

a ray that is directed in a counter-clockwise fashion about the coordinate center is labeled positive,

otherwise is labeled negative. A “positive” ray is represented by (r; �), whereas its “negative” coun-

terpart is (�r; �) where r is always a positive number. Figure 5 shows four different rays in a 2D

space and their corresponding points in the signed Hough space.

Figure 6 shows three typical viewing setups and their representations in the signed Hough space.

For example, a panoramic image (i.e., rays collected at a fixed viewpoint in Cartesian space) is

represented as a sampled sinusoidal curve in the parameter space, located at (r0; �0) as shown in

Figure 6(a). A concentric mosaic shown in Figure 6(b) is mapped to a horizontal line, whereas par-

allel projection rays (Figure 6(c)) are mapped to a vertical line in the signed Hough space. Thus,

captured perspective images can be easily transformed into samples in the parameter space. Render-

ing a novel view in the scene is equivalent to extracting a partial or complete sinusoidal curve from

the signed Hough space.

When the hopping direction is perpendicular to the viewing direction, as shown in Figure 1, we

call it lateral hopping. In the signed Hough space, such a hopping is illustrated in Figure 7 where

a segment of a sinusoidal curve is approximated by a line segment. Equivalently, at each rendering

viewpoint, a perspective image is approximated by part of a concentric mosaic.

Obviously, the smaller the hopping interval, the smaller the rendering error. On the other hand,

the larger the hopping interval, the less data needed for wandering around an environment. We argue

that a fairly large hopping interval for manifold hopping can be perceptually acceptable.

3.1 When is local warping good enough?

When moving on a concentric mosaic, the horizontal field of view should be constrained within a

certain range so that the distortion error introduced in local warping from a multiperspective image

to a perspective image will not cause much visual discomfort to the user.

The distortion threshold �d is defined as the maximum allowable distance between point A and

point B in Figure 9. These two points are projections of the rightmost pixel that are locally warped
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Figure 5: Definition of the signed Hough ray space: each oriented ray in Cartesian space at the left

is represented by a sampled point in the signed Hough space on the right.
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Figure 6: Three typical viewing setups and their respective sampled curves in the signed Hough

space: (a) a panorama at a fixed point; (b) a concentric mosaic; (c) a parallel projection mosaic; and

(d) their respective sampled curves in the signed Hough space. Two concentric mosaics (straight

lines at r0 and �r0) are shown in (d) to represent rays captured at opposite directions along the

circle. Note that a perspective image is only part of a panorama, thus represented by a segment of a

sinusoidal curve in the signed Hough space.
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Figure 7: Hopping between concentric mosaics along a radial direction in the signed Hough space.

Continuous rotation is achieved along any of the concentric circles, but hopping is necessary across

any radial direction.
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Figure 8: Analysis of hopping size: horizontal parallax change due to viewpoint change.
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Figure 9: Analysis of maximum FOV: warping error due to the incorrect depth value.
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with distance R1 (assumed distance) and R2 (corrected distance), respectively. A radial hopping

camera must satisfy the following:

�� = �B � �A � �d; (1)

or

sin�1
rn
R2

� sin�1
rn ��r

R2

� sin�1
rn
R1

+ sin�1
rn ��r

R1

� �d (2)

If parallel interpolation is applied to local warping by assuming the depth R1 at infinity, we can

simplify the above constraint to

sin�1
rn
R2

� sin�1
rn ��r

R2

� �d (3)

1� cos(
Fov

2
) =

�r

rn
(4)

From the above two equations, we can derive the maximum FOV under parallel interpolation as

cos(
FOV

2
) � cos �d �

s
(
R2

rn
)2 � 1 sin �d (5)

The above equation shows that, under parallel interpolation, the maximum FOV for a hopping

camera depends on the radius of the concentric mosaic, the scene depth, and the distortion error

threshold. The field of view can be significantly increased when the object moves farther away. A

smaller radius enables a larger FOV. For example, a panorama with a very large FOV can be rendered

as the radius goes to zero. In addition, warping with constant depth (rather than infinite depth) can

further increase the maximum FOV.

Consider a scene that is located along a circle whose radius is four times that of the outermost

concentric mosaic. If we assume that the distortion threshold is 1Æ (that is a flow of 5 pixels for a

mosaic with width 1800), the maximum allowable FOV is 42:42Æ.

Fortunately human visual perception does not require a very large field of view for a hopping

camera when wandering in a virtual environment. It has also been shown that 36Æ is close to per-

ceptually optimal for most people [26]. It is well known that small FOV perspective images are

generated from a large multiperspective panorama for the purpose of animation [24].
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3.2 How large can the hopping interval be?

The efficiency and effectiveness of hopping depend on the size of sample intervals along both the

radial and angular directions. The angular direction is sampled uniformly and densely to ensure a

continuous rotation. The maximum hopping interval �r allowed for smooth visual perception is

determined by the threshold of the horizontal pixel flow D0 (in angular measurement) between two

neighboring frames. The analysis of vertical parallax is ignored in our analysis due to the nearly

horizontal epipolar geometry between neighboring concentric mosaics [23].

Suppose that a point at a distance R0 is seen in two concentric mosaics rn and rn+1, respectively.

As shown in Figure 8, the horizontal parallax �� between two observed pixels A and B at the two

concentric mosaics satisfies

�� = sin�1(
rn +�r

R0

)� sin�1(
rn
R0

) � D0 (6)

which leads to the maximum hopping size

�r =
q
R2
0 � r2

n
sinD0 + rn cosD0 � rn (7)

= R0 sin(D0 + sin�1
rn
R0

)� rn: (8)

The above equation reveals that the sample interval along the radial direction depends on the

depth (R0), the smooth perception threshold (D0), and the radius (rn) of the concentric mosaic.

Specifically, we observe:

� Sampling along the radial direction is nonlinear. The smaller the radius, the larger the hopping

intervals should be .

� The hopping interval can be increased with object distance. When objects are located at

infinity, all concentric mosaics degenerate to the same panorama.

� A larger threshold D0 allows for a larger hopping interval along the radial direction. As

�r ! 0, the hopping interval D0 ! 0. This is equivalent to rendering with concentric

mosaics [22]. On the other hand, if it is not required to observe parallax, a single manifold

mosaic is enough for a user to look at any viewing direction.

The choice of threshold D0 is closely related to the human visual system. It is well known that,

for a human to observe smoothly moving pictures, the frame rate is 24 frames/second. Suppose that
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the average speed of rotation for a person to observe an environment is below 48Æ/second, then D0

should be 2Æ. In other words, a person can tolerate 2Æ of average pixel flow for two neighboring

frames and still observe smooth and continuous motion.

Consider a particular scene in which the radius of the outermost concentric mosaic is 1 unit and

the objects are located at a distance of 4 units. If D0 is 1:5Æ, we have �r = 0:1. Therefore, we

need only 21 concentric mosaics (two for each concentric circle and one for the center). This is

a significant reduction from 320 rebinned concentric mosaics needed in rendering with concentric

mosaics [22].

4 Analysis of looming hopping using the extended signed Hough

space

In the previous section, we have analyzed manifold hopping where the hopping direction is perpen-

dicular to the viewing direction. If the hopping direction is along the viewing direction, i.e., if the

user moves forward and backward, we cannot use the conventional concentric mosaics assembled

by rays along the tangent lines of the concentric circle. Instead, hopping with a looming motion can

be achieved if we construct normal concentric mosaics that are formed by slit images with unit pixel

width along the normal directions of the concentric circle, as shown in Figure 2(b). A novel view

at any point on a circle can be rendered by locally warping rays from the normal concentric mosaic

near the viewpoint, as shown in Figure 1(c).

The signed ray space is no longer adequate for analyzing looming hopping. For a looming

motion, we need to represent points along the same ray differently. Therefore, we introduce the

extended signed Hough space, defined by a 3-tuple (r; �; d) where d is the distance from the origin

to the location where the ray is captured. Two points (P and P 0) along the same ray have identical

(r; �) but different values of d, as shown in Figure 10. And d will take the same sign as r to

differentiate a “positive” ray from a “negative” one, similar to the signed Hough space. Although

rays captured at P and P 0 are the same in the plan view of Figure 2(b), slit images captured at these

two points are different.

Figure 10 also shows three different mosaics represented in the extended Hough space.

� A panorama: r = d sin(� � �);
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Figure 10: (a) The extended signed Hough ray space is defined by three parameters (r; �; d). Dif-

ferent points on the same ray have different d values. (b)(c)(d) A panorama, a tangent concentric

mosaic, and a normal concentric mosaic are represented in the extended signed Hough space.

� A tangent concentric mosaic: r = d = rn;

� A normal concentric mosaic: r = 0 and d = rn.

Note that � is the constant angle for the viewpoint, and rn is the diameter of one of the concentric

circles. It becomes evident now why the location of the ray, which was ignored in lateral hopping (in

the signed Hough space), should be considered in looming hopping because r is always zero under

looming. Therefore, the (r; �; d) representation is necessary and sufficient to index rays in 2D (plan

view in Figure 2(b)) to capture the looming effect as the user moves forward and backward.

Figure 11 illustrates looming hopping in the extended signed Hough space. Similar to lateral

hopping in the signed Hough space (Figure 7), rendering a novel view in looming hopping is also

equivalent to approximating a partial sinusoidal curve by a line segment of a normal concentric

mosaic. Unlike lateral hopping, however, each sinusoidal curve is constructed at a different d. For

clarity, we skip the looming hopping interval analysis in the extended signed Hough space, which is

similar to the analysis in the signed Hough space in the previous section.

Lateral hopping is also illustrated in Figure 11. In the (r; �; d) space, the plane for lateral hopping

is r = d, but r = 0 for looming hopping. The sinusoidal curve segment is approximated around

the maximum r in lateral hopping, and around r = 0 for looming hopping. If we project the lateral

hopping plane in (r; �; d) space onto the d = 0 plane, we obtain the (r; �) counterpart for lateral

hopping. There is therefore a duality between lateral hopping (r; �) and looming hopping (d; �).
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Looming hopping plane

Lateral hopping plane Tangent concentric mosaic

Normal concentric mosaic

Panorama

r

d

θ

Figure 11: Looming hopping with normal concentric mosaics, and lateral hopping with tangent

concentric mosaics in the extended signed Hough space. Rendering a novel perspective view is

equivalent to approximating a sinusoidal curve segment by a straight line segment representing part

of a concentric mosaic. In looming hopping, green segments are used to approximate the sine curve

at different d values on the brown r = 0 plane. In lateral hopping, black segments are used to

approximate the sine curve at different r (and d) values on the blue r = d plane.
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5 Hopping from outside

Concentric mosaics is suitable for wandering around in an environment when a user is looking

outwards. When the user is looking at an object, it is desirable to observe the object from outside at

different viewing angles. In addition, it is important to have close-up views.

For simplicity of analysis and capturing, we consider camera motion on a plane as an object

rotates in front of a camera. A sequence of perspective images are then taken along the camera path

(i.e., a circle). We also constrain the rendering camera to have continuous motion along the radial

direction (moving towards and away from the object along a line) as shown in Figure 12(a), and

discrete hopping motion in the angular direction as shown in Figure 12(b).

5.1 Hopping between perspective images

This rendering camera motion can be achieved by simply using the perspective images captured in

the original sequence. Assuming a constant depth for the object, we can reproject perspective images

to any novel views along the radial direction. However, only zooming effect, not the parallax effect,

can be observed when the camera moves along the radial direction. When the camera moves away

from the object, we can not observe any additional part of the object around the boundary other than

what is in the original image.

5.1.1 Angular hopping interval

Many previous systems have used multiple images to observe a single object from outside. It is,

however, important to study how large the hopping interval should be to ensure a perceived smooth

transition between the images.

As shown in Figure 13, two neighboring cameras A and B are located along the circle (with

radius R) of camera path. The object is assumed to be at the circle (with radius r) of constant depth.

OA = OB = R, and OA1 = OB1 = r. The camera spacing is � = AOB = A1OB1. Let

� = A1AO, and sin � = r=R. The angular flow between two images can be approximated as

�� � 2�
dABdAC = 2�

�

� � 2�
: (9)

Therefore, given the pixel flow threshold D0, we obtain the camera spacing as

16



(a) (b)

Figure 12: Hopping from outside: (a) translating continuously in the radial direction (toward the

object); (b) hopping discretely in the angular direction (around the object).

Figure 13: Hopping interval between two perspective images viewed from outside an object.
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� = (
�

2�
� 1)D0: (10)

For example, if D0 is 1Æ, and R = 3r, then � is computed as 4Æ. In other words, we need to

capture 90 images along the circle.

5.2 Hopping between parallel projection mosaics

Another way to achieve continuous radial motion is to use parallel projection mosaics. Parallel

mosaics are formed by collecting all parallel rays in the same direction. We call this angular hopping

with parallel mosaics.

Because parallel projection cameras are not commonly available, we rebin parallel mosaics by

taking the parallel rays from a dense sequence of perspective images taken along a circle outside

the object. Figure 15 shows a projective image from the original sequence and the rebinned parallel

mosaic. Note that the rebinned mosaic is called 1D parallel mosaic because the vertical direction is

still perspective, only the horizontal direction is under parallel projection.

Assuming a constant depth for the object, we can reproject parallel mosaics to any novel view

along the radial direction, as shown in Figure 14. Warping 1D parallel mosaic in Figure 15(b) using

constant depth is shown in Figure 15(c). Even though warping errors are created, such as those

around the boundary of the object, they are small enough to cause little visual distortion.

5.2.1 Close-up views

Rendering a novel view with angular hopping using parallel mosaics can again be explained in the

signed Hough space. Continuous motion along the angular direction is obtained by approximat-

ing a cosine segment using a line segment. When the viewpoint is far away, the parallel mosaic

approximates the perspective view very well. The reprojection or warping error increases as the

viewpoint approaches the object. In addition, the image size of the parallel mosaic determines how

closely the rendering camera can get to the object. Hopping using parallel mosaics and hopping

using perspective images have similar warping errors, especially if constant depth is assumed.

However, rebinned parallel mosaics can have a much higher resolution than the original image

if a very dense sequence is captured. For example, we can obtain a 1D parallel mosaic of 640� 240

from 640 original images with size 320 � 240. Close-up views rendered from rebinned parallel

mosaics have better quality than simply zooming-in the original images.
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Figure 14: Reprojecting a parallel mosaic to different perspective images along the radial direction

using constant depth assumption.

(a) (b) (c)

Figure 15: Warping parallel projection images: (a) a perspective image; (b) a 1D parallel projection

mosaic; (c) 1D mosaic of (b) warped with constant depth;
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6 Experiments

6.1 Synthetic environments

We represent a synthetic environment with 41 concentric mosaics (with size 2400 � 288) on 11

concentric circles. There are 21 tangent concentric mosaics, and 21 normal concentric mosaics.

Note that the center mosaic degenerates to a single perspective panorama, as shown in Figure 17(a).

At the outermost circle, the tangent concentric mosaic is shown in Figure 17(b), while the normal

concentric mosaic is shown in Figure 17(c). By hopping between these mosaics, we render five

images from the left, right, center, front and back viewpoints shown in Figure 17(d). Parallax effects

(both lateral and looming) are clearly visible from the rendered images. And hopping between these

mosaics provides a smooth navigation experience. However, one can only switch lateral motion and

looming motion at the center. In conventional rendering with concentric mosaics, we would have

used 720 such mosaics. Therefore, manifold hopping requires much less data for a similar viewing

experience.

A much larger environment can be constructed by combining more mosaics captured at different

locations. By carefully adjusting constant depths used for different sets, we can hop smoothly from

one circle to another, in addition to inside a circle.

6.2 Real environments

We have used a Sony Mini DV digital video camera to capture concentric mosaics of a real environ-

ment. The camera rotates along a circle. The video is digitized at the resolution of 720 � 576. A

total of 5726 frames are captured for a full circle. The raw data for the video sequence amounts to a

total of 7 Gigabytes. Instead of using 720 rebinned concentric mosaics of size 5726� 576, we select

only a small subset (typically 21) of resampled concentric mosaics.

Three rebinned concentric mosaics are shown in Figure 18(a). Two high resolution images (with

display size 500 � 400) rendered from 21 concentric mosaics are shown in Figures 18(b) and (c).

Horizontal parallax around the tree and lighting change reflected from the window can be clearly

observed. Constant depth correction is used in all our experiments.

To reduce the amount of data used in manifold hopping, we can resize the original concentric

mosaics. As shown in Figures 18(d) and (e), two images with low resolution 180� 144 are rendered
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from 11 resized smaller concentric mosaics. It is important to note that simply resizing the original

11 concentric mosaics does not generate the expected concentric mosaics. Instead, mosaics of such

small size should be resampled from the original dense sequence.

We have also developed a predictive coding compression algorithm for compressing concentric

mosaics with fast selective decoding and random access. As a result, the above 11 concentric mo-

saics can be compressed to 88k with a compression ratio of 78. Two corresponding rendered images

using the compressed data are shown in Figures 18(f) and (g).

6.3 Hopping around objects

We have also captured a sequence of images for an object that rotates in front of a camera. From the

input sequence of 5277 images of size 360� 288, we rebin 90 parallel mosaics with size 645� 288.

These parallel mosaics have an angular hopping interval of 4 degrees. A perspective image from the

input sequence is shown in Figure 19(a). Using the Lagrange interpolation, the rebinned 1D parallel

mosaics are rather smooth, as shown in Figure 19(b).

Figures 19(c) and (d) show two warped images from the 1D parallel mosaics. The parallax

and lighting change can be seen very clearly in the accompanying videotape. In our experiments,

we have found that hopping angularly at an interval of 4 degrees indeed provides a very smooth

perceived camera movement. Two close-up views along the same viewing direction of Figure 19(c)

are also shown in Figures 19(e) and (f). Because parallel mosaics have a higher resolution than the

original images, close-up views provide details that would not be possible by simply zooming-in on

the original images.

With angular hopping interval of 4 degrees in both longitudinal and latitudinal directions, we

have also rendered synthetically a sequence of 2D parallel mosaics. Hopping between this collection

of parallel mosaics again provides perceived smooth camera movements in two dimensions.
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(a) (b)

(c) (d)

Figure 16: Hopping between panoramas: (a) along a line of 11 panoramas; (b) ray distribution of

(a) in signed Hough space; (c) along a circle of 10 panoramas; (d) ray distribution of (c).

7 Discussion

While reducing data significantly, manifold hopping limits the freedom of user movement. In hop-

ping with concentric mosaics, for instance, a user can only rotate along one of the concentric circles.

The user is not allowed to rotate at any given viewpoint except in the center. As shown in the syn-

thetic experiments, the user can only change from lateral hopping to looming hopping at the center.

If the number of concentric mosaics is sufficiently large, it is also possible to hop around any fixed

point in the angular direction by warping different concentric mosaics. In the signed Hough space,

it is equivalent to finding segments from different r lines that approximate a sinusoidal curve.

Manifold hopping is not restricted to hopping with concentric mosaics or with lateral or looming

movements. There are many other choices for manifolds and hopping directions. For example, hop-

ping between panoramas has been used in QuickTime VR [7] using “hotspots”. When panoramas

are closely spaced, hopping between them can also achieve a smooth transition. Figure 16 shows

two examples of hopping between panoramas. Figure 16(b) shows the signed Hough representation

of a line of panoramas as in Figure 16(a), and Figure 16(d) shows the signed Hough representation

of a circle of panoramas as in Figure 16(c).
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There are two major differences between manifold hopping with concentric mosaics and hopping

with panoramas. The first difference is in capturing. As shown in Figure 16, panoramas can capture

similar rays to concentric mosaics as the number of panoramas increases. However, the same result

will require capturing panoramas many times at different locations, as opposed to rotating the camera

only once for capturing concentric mosaics.

The second and perhaps more important difference is in sampling. Each manifold mosaic is mul-

tiperspective, while each panorama has only a single center of projection. Since different viewpoints

can be selected as the desired path for the user, a multiperspective panorama could be more repre-

sentative of a large environment than a single perspective panorama. If the multiperspective image

is formed by rays taken along the desired path of the user, the warping error from a multiperspective

image is, on average, smaller than that from a perspective image (e.g., a panorama).

Concentric mosaics are suitable for the inside looking out. To observe objects from the outside

looking in, parallel mosaics can be used for manifold hopping. For concentric mosaics, the mani-

fold is a cylindrical surface. For parallel mosaics, the manifold is a plane originating from the object

center. In this paper, we have discussed manifold hopping in two dimensional space by constraining

the rendering camera on a plane. The concept of manifold hopping can be generalized to higher di-

mensions. The analysis in higher dimensions is very similar to the two-dimensional cases. However,

it is difficult to capture such manifold mosaics in practice.

8 Conclusion and future work

We have described a new image-based rendering technique which we call manifold hopping. In

summary, our technique has the following properties:

� It does not require a large amount of image data, and yet

the user can perceive continuous camera movement.

� It requires neither accurate depth nor correspondence,

yet generates perceptually acceptable rendered images.

Specifically, manifold hopping renders a novel view by locally warping a single manifold mo-

saic, without the need for interpolating from several images. We have shown that warping a sin-

gle multiperspective image to a perspective image with a regular field of view causes insignificant
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Geometry Images Rendering Viewpoints Perceived Motion

Light fields [11, 8, 22] no/approximate very large (100 � 10000+) continuous continuous

3D Warping [13, 14, 21, 5] accurate small (1 � 10+) continuous continuous

View interpolation [6, 15, 20, 2] accurate small (2 � 10+) continuous continuous

Hopping [12, 7] no moderate (10 � 100+) discrete discrete

Manifold hopping no/approximate moderate (10 � 100+) discrete continuous

Table 1: A table of comparison for different IBR techniques: geometry requirements, number of

images, rendering viewpoints and perceived camera movement. The citations are for reference only,

not meant to be complete.

distortion to human beings, even with warping errors resulting from incorrect depth information.

Furthermore, local warping does not introduce structural errors such as double images which are

perceptually disturbing.

Most importantly, manifold hopping requires relatively little input data. Capturing manifold

mosaics such as concentric mosaics is also easy. By sparsely sampling the concentric mosaics, we

can reduce the amount of data from the original concentric mosaics by more than 10-fold. While

manifold hopping provides only discrete camera motion in some directions, it provides reasonably

smooth navigation by allowing the user to move in a circular region and to observe significant

horizontal parallax (both lateral and looming) and lighting changes. The ease of capture and the

very little data requirement make manifold hopping very attractive and useful for many virtual reality

applications, in particular those on the Internet.

Table 1 compares how manifold hopping differs from previous IBR systems, in terms of their

geometric requirements, number of images, rendering viewpoints and perceived camera movement.

Manifold hopping stands out in that it ensures a perceived continuous camera movement even though

rendering viewpoints are discrete. It builds on the observation that a fairly large amount of view-

point change is allowed, while maintaining perceptually continuous camera movement to humans.

This observation of “just-enough hopping” for reducing image samples is, in spirit, similar to the

“just-necessary effort” adopted by perceptually based techniques [19] on realistic image synthesis

to reduce computational cost. While we have experimentally demonstrated the feasibility of our

choices (e.g., 21 concentric mosaics used in most of our experiments), we plan to conduct a more

comprehensive study on the psychophysics of visualization for our technique.
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(a)

(b)

(c)

(d)

Figure 17: Lateral and looming hopping between concentric mosaics of a synthetic environment: (a)

a tangent concentric mosaic; (b) the middle panorama; (c) a normal concentric mosaic; each mosaic

has the size of 2400� 288. (d) five rendered views from manifold hopping at the left, center, right,

forward and backward locations. Note that the horizontal parallax is clearly visible between the left

and right views; the looming effect can be seen from the forward and backward views.
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(b) (c)

(d) (e) (f) (g)

(a)

Figure 18: Hopping between concentric mosaics: (a) three concentric mosaics projected onto cylin-

ders; (b)(c) two rendered images at a high resolution 500� 400; (d)(e) rendered images with a low

resolution 180� 144; (f)(g) low resolution rendered images using 88k compressed data.
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(a) (b)

(c) (d)

(e) (f)

Figure 19: Hopping between parallel mosaics: (a) a perspective image from the original sequence;

(b) a rebinned 1D parallel mosaic with higher resolution; (c)(d) two rendered images from different

viewing directions; (e)(f) close-up views along the viewing direction of (c).
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