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Abstract

A new, exemplar-based, probabilistic paradigm for vi-
sual tracking is presented. Probabilistic mechanisms are
attractive because they handle fusion of information, espe-
cially temporal fusion, in a principled manner. Exemplars
are selected representatives of raw training data, used here
to represent probabilistic mixture distributions of object
configurations. Their use avoids tedious hand-construction
of object models and problems with changes of topology.

Using exemplars in place of a parameterized model
poses several challenges, addressed here with what we call
the “Metric Mixture” (M?) approach. The M? model has
several valuable properties. Principally, it provides alter-
natives to standard learning algorithms by allowing the use
of metrics that are not embedded in a vector space. Sec-
ondly, it uses a noise model that is learned from training
data. Lastly, it eliminates any need for an assumption of
probabilistic pixelwise independence.

Experiments demonstrate the effectiveness of the M?
model in two domains: tracking walking people using
chamfer distances on binary edge images and tracking
mouth movements by means of a shuffle distance.

1 Introduction

There is, of course, a substantial literature on tracking,
driven either by image features [1, 18] or by raw intensity
[3, 4, 15], or both [7]. Tracking can be formulated in a
probabilistic framework in both the feature-driven [24] and
intensity-driven [23] settings. The probabilistic formulation
has the attraction that uncertainty is handled in a system-
atic fashion, allowing principled handling of sensor fusion
and temporal fusion. Many such tracking algorithms, how-
ever, demand that complex models be defined and trained
for each object class to be tracked — a process that is often
laborious and difficult to automate fully.

Our aim, therefore, is to develop a paradigm which re-
tains the probabilistic setting while avoiding the use of ex-
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plicit models to describe target objects. The use of ex-
emplars offers an alternative that can tackle this problem
[6, 8, 10, 11, 12]. Exemplar-based models can be con-
structed very directly from training sets, without the need
to set up complex intermediate representations, such as pa-
rameterized contour models or 3D articulated models.

Existing tracking algorithms that use exemplar-based
models have certain limitations. Single-frame exemplar-
based tracking [12], though effective, is limited by its in-
ability to incorporate temporal constraints, resulting in jerky
recovered motion and reduced power to recover from oc-
clusion. Full temporal tracking can be obtained via Kalman
filtering or particle filtering, for which a probabilistic frame-
work is needed. Frey and Jojic [11] have demonstrated el-
egantly how exemplars can be embedded in learned prob-
abilistic models by treating them as centers in probabilis-
tic mixtures. Motion-sequence analysis is, in principle,
fully automated, requiring only the structural form of a gen-
erative image-sequence model to be specified in advance.
However, their approach has serious drawbacks:

e inference is done with online expectation-maximiza-
tion (EM), which is computation intensive and lim-
ited, for practical purposes, to low resolution images;

e images have to be represented simply as arrays of
pixels, ruling out nonlinear transformations that can
help with invariance to scene conditions, including
the conversion of images to edge maps that proves so
powerful with non-probabilistic exemplars [12];

¢ finally, image noise is treated as white despite known,
strong statistical correlations between pixels [9].

The problem, therefore, is to combine exemplars in a metric
space [12] with a probabilistic treatment [11], retaining the
best features of each approach. Unfortunately, this com-
bination is not trivial — the very techniques which make
probabilistic treatment possible (i.e., modelling with Gaus-
sians, PCA, K-means, EM, etc.), are not applicable with-
out a vector-space structure for exemplars, which the for-
mer lacks. We propose the Metric Mixture (M?) model, de-
scribed below, to solve this problem. Figure 1 shows the
approach applied to tracking a walking person.
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Figure 1. Cropped, sample frames from a tracked sequence. The overlays represent the maximum a posteriori exemplars. The

person tracked appears in the training sequences.

One note on our terminology: The theory and algorithms
presented were developed for true metrics. A function p is a
metric when (1) p(a, b) > 0, Va,b, (2) p(a,b) = 0iffa = b,
(3) pla,b) = p(b,a), and (4) p(a,b) + p(b,c) > p(a,c).
The M2 theory, however, applies also to certain functions
without axioms (3) and (4). We will refer to these latter
functions as “distance functions.”

2 Pattern-Theoretic Tracking

Test image sequences Z = {z1,..., 2y} are to be anal-
ysed in terms of a probabilistic model learned from a train-
ing image sequence Z* = {zf,...,z}.}. Images may be
preprocessed for ease of analysis, for example by filtering
to produce an intensity image with certain features (e.g.,
ridges) enhanced, or nonlinearly filtered to produce a sparse
binary image with edge pixels marked. A given image z is
to be approximated, in the familiar pattern theoretic manner
[20], as an ideal image or object z € X that has been sub-
jected to a geometrical transformation 7, from a continuous
seta € A, ie.,

z & Tox. (1
2.1 Transformations and Exemplars

The partition of the underlying image space into the
transformation set A and class X of normalized images
could take a variety of forms. For example, in analysis
of face images, A could be a shape space, modelling ge-
ometrical distortions, and X’ could be a space of textures, in
the manner of [7, 25]. Alternatively A could be a space of
planar similarity transformations, leaving X’ to absorb both
distortions and texture/shading distributions. In any case, A

is to be defined analytically in advance, leaving A" to be in-
ferred from the training sequence Z*. A feature of this work
is that the class A" of normalized images is not assumed to
be amenable to straightforward analytical description; in-
stead X is defined in terms of a set {Z, k = 1,..., K} of
exemplars, together with a distance function p, in the spirit
of Gavrila [12]. For example, the face of a particular indi-
vidual, might be represented by a set of exemplars % con-
sisting of normalized (registered), frontal views of that face,
wearing a variety of expressions, and in a variety of poses
and lighting conditions. Crucially, exemplars will be inter-
preted probabilistically, so that the uncertainty inherent in
the approximation (1) is accounted for explicitly. The inter-
pretation of an image z is then as a state vector X = («, k).

2.2 Learning

Aspects of the probabilistic model that must be learned
from Z* include:

1. The set of exemplars {Z, k=1,...,K}.

2. Component distributions, centered on each of the
T, %, for some « for observations z; i.e., each com-
ponent is a distribution p(z|X), where X = (o, k)
The details of this density, and the algorithm for
learning it, constitute a new approach to the vexed
question of how to model image observations proba-
bilistically without tripping over the issue of statisti-
cal independence.

3. A predictor in the form of a conditional density
p(X¢|X¢—1) to represent the (typically strong) prior
dependency between states at successive timesteps.

These elements (together with a prior p(X1)) form a struc-
tured prior distribution for a randomly sampled image se-
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quence z1, ..., 2T, wWhich can be tested for plausibility by
random simulation (see Figure 3, for example).

The prior model then forms a basis for interpretation of
image sequences via the posterior

p(Xl,X2,... |2’1,22,...;A)

where A is the set of learned parameters of the probabilis-
tic model, including the exemplar set, the noise parameters,
and the dynamic model.

3 Probabilistic Modelling of Images and Ob-
servations

Figure 2. Probabilistic graphical structure for the M?
model: The observation z; at time ¢ is an image drawn
from a mixture with centers {7oZx, k =1,..., K}, where
{zZr,k = 1,..., K} are exemplars; T, is a geometrical
transformation, indexed by the (real-valued) parameter c.

The probabilistic dependency structure for the M? model
is depicted in Figure 2 and is similar to [11]. However,
the similarity of dependency structure belies crucial inno-
vations in representation and probability distributions which
are explained below.

3.1 Objects

An object in the class A" is taken to be an image that
has been preprocessed to enhance certain features, result-
ing in a preprocessed image x. The M? approach is general
enough to apply to a variety of such images — we will con-
sider two: unprocessed raw images, and sparse binary im-
ages with true-valued pixels marking a set of feature curves.

Patches

In the case of real-valued output from preprocessing, z is an
image subregion, or patch, visible as an intensity function
I.(r). As mentioned earlier, it is undesirable to have to as-
sume a known parameterization of the intensity function on

that patch. For now, we make the conservative assumption
that some linear parameterization, with parameters y € R4,
of a priori unknown form and dimension d, exists, so that:

d
L(r) =) L)y )
i=1
where I (r), ..., I4(r) are independent image basis func-

tions and y = (y1,- .-, yq). Given the linearity assumption,
all that need be known about the nature of the patch basis
is its dimensionality d. There is no requirement to know
the form of the I;. A suitable distance function p is needed
for patches. For robustness we will use a “shuffle distance”
[19], in which each pixel in one image is first associated
with the most similar pixel in a neighbourhood around the
corresponding pixel in the other image. (Figure 6 shows
why we chose this function over others.)

Curves

The situation for binary images is similar to that for patches,
except that a different distance function is needed, and the
interpretation of the linear parameterization is a little dif-
ferent, too. Now z is visible as a curve r. (s), with curve-
parameter s, and linearly dependent on y € R%:

d
r.(s) = Zl‘i(s)yi, 3)
i=1
where r1(s),...,rg(s) are now independent curve basis

functions such as parametric B-splines [2]). In this case, the
measure p(z, ) used is a (non-symmetric) “chamfer” dis-
tance [12]. The chamfer distance can be computed directly
from the (binary) images = and Z, using a chamfer image
constructed from z, and without recourse to any parametric
representation of the underlying curves.

3.2 Geometric Transformations

Geometric transformations o € A are applied to exem-
plars to give transformed mixture centers:
Z=T,zZ.

For example, in the case of Euclidean similarity, a =
(u,8, s) and vectors transform as

Tor=u+ R(f)sr,

in which (u, 8, s) are offset, rotation angle and scaling fac-
tor respectively. Where the observations are curves, this in-
duces a transformation

r.(s) = Tary(s)
and in the case of patches, the induced transformation is

L (T,r) = I,(r).
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3.3 The Metric Mixture (M?) Model

The observation likelihood functions, at the heart of the
M2 approach, can now be specified. We exploit the fact that
we only need to know enough about p(z|X) to evaluate it.
There is no call to sample from it. Hence no constructive
form for the observer need be given, and we can avoid con-
troversies about pixelwise independence.

Exemplars as Mixture Centers

The object class is defined in terms of a set X = {Z, k =
1,..., K} of untransformed exemplars, to be inferred from
the training set Z. A transformed exemplar Z serves as a
center in a mixture component:

1
p(2|2) o — eXP —Ap(z,2) 4)

— a “metric exponential” distribution — whose normaliza-
tion constant or “partition function” is Z.

Metric-Based Mixture Kernels

For tracking of the full state, both motion and shape, the
hypothesis is X = («, k). The mixture model above leads
to an observation likelihood

1
p(z|X) = p(z|a, k) x — €XP =2(z, Tar).  (5)

If only motion is to be tracked, the hypothesis is simply «
so the observation likelihood becomes

1
p(z|a) x zk: T 77 eXp —Mo(z, Taiy),
a mixture with component priors 7.

Partition Function

In order to learn the value of an exponential parameter A
from training data, we need to know something about the
partition function Z. This is difficult in general, but straight-
forward in the case that p is a quadratic chamfer function:

p(z,2) = gl(lsf)l [Ir=(s) — rz(s")II%, (©)

is then the squared-Hausdorff distance [16], which is ap-
proximately quadratic [5, Section 6.2], giving an approx-
imately Gaussian distribution. Similarly, an L, norm on
patches leads to a Gaussian mixture distribution. In that
case, the exponential constant \ in the observation likeli-
hood is interpreted as A = #, where ¢ is an image-plane
distance constant, and the partition function is Z o,
From this, it can be shown (see appendix) that the chamfer
distance p|Z = p(z, Z) is a 02 X% random variable (i.e., p/o?
has a x? distribution). This allows the parameters o, d of the
observation likelihood (5) to be learned from training data,
as set out below.

4 Learning Algorithms
4.1 Learning Mixture Kernel Centers

Following the probabilistic interpretation of exemplars
as kernel centers Z, in (4), we exploit the temporal conti-
nuity of the training sequence Z* to choose initial mixture
centers, and proceed to cluster iteratively.

1. The training set is assumed to be approximately
aligned from the outset (this is easily achieved in
cases where the training set is, in fact, easy to extract
from raw data). To improve the initial alignment, first
a datum, zg, is chosen such that

zy ¢ arg min  max p(z*,2).

2*EZ* 2 eZr—{z*}
Then,

a; = arg mo’}n (T 2), 25) and o} = Ta}lzt*,
minimizing by direct descent.

2. To initialise centers, a subsequence of the z is cho-
sen to form the initial Zy, selected in such a way as
to be evenly spaced in chamfer distance. Thus the
Ty are chosen so that p(Zgt1,Zr) & pe, for some
appropriate choice of p. that gives approximately the
required number K of exemplars.

3. For the remainder of the aligned training data =}, t =
1...7T™*, find the cluster that minimizes the distance
from x} to the cluster center:

ki(z}) = arg min p(xf, o). (7

Label the set of all elements in cluster k as Cj, = {x} :
ke(zy) = k} and let Ny, = |Cy.

4. For each cluster k, find the new representative, which
is the element in that cluster that minimizes the max-
imum distance to all other elements in that cluster:

I < argmin  max p(z,z'). (8)

z€Ck z' €Cr—{x}
5. Repeat Steps 3 and 4 for a fixed number of iterations
or until convergence and save the final exemplars Zy,.
6. Set mixture weights: 75 o< Np.

Steps 3 and 4 are analogous to the iterative computation of
cluster centers in the K-means algorithm, but adapted here
to work in spaces where it is impossible to compute a cluster
mean. Instead, an existing member of the training set is
chosen by a minimax distance computation, since that is
equivalent to the mean in the limit that the training set is
dense and is defined over a vector space with a Euclidean
distance.
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4.2 Learning the M? Kernel Parameters

To learn observation likelihood parameters o, d, we ob-
tain a validation set Z,. (This could simply be the training
set Z less the (unaligned) exemplars {Z;}.) For each z,
from Z,, the corresponding aligning transformation a,, and
mixture center Z, is estimated by minimizing, by direct de-
scent, the distance:

i T.7).
acin . P(z0, Tad)

Now, following Section 3.3, we treat the distances
po(zv) = p(2v, Ta, Tv), 20 € Zy

as 02?2 distributed. An approximate but simple approach
to parameter estimation is via the sample moments

pk—_ vazv andpk:_ vazv

k 2y EC Zueck

which after manipulation of expressions for the x> mean
and variance, give rise to estimates for dj and oy.

-2
dp = ="

P7r — Py

Alternatively, the full maximum likelihood solution, com-
plete with integer constraint on d, yields o values exactly
as above, and integer d > 1 as the smallest value for which
L'(d) < 0, where (dropping the k-subscripts for simplicity)

and o}, = ﬁk/d )

d+1
L'(d) = (d+1)lo gT —1—log(pa/py)  (10)

is the differential log-likelihood for the model and p,, p, are
respectively the arithmetic and geometric means of the p-
samples. [Notes: 1) If p, /5, > 4/e the solution for d is the
trivial d = 1. 2) This estimation procedure is equivalent to
fitting a ['-distribution to dy.] The value of d captures the ef-
fective dimensionality of the local space in which exemplars
exist. As py increases, so does d — this is consistent with the
statistician’s intuition that Gaussians in higher-dimensional
spaces hold more of their “weight” in the periphery than
their lower-dimensional counterparts.

4.3 Learning Dynamics

In line with recent developments in probabilistic track-
ing [5], sequences of estimated X; from a training set
are treated as if they were fixed time-series data, and
used to learn two components (assumed independent) of
(X Xi—1):

1. a Markov matrix M for p(k¢|k:_1), learned by his-
togramming transitions;

2. a first order auto-regressive process (ARP) for
p(ag|az—1), with coefficients calculated using the
Yule-Walker algorithm [13].

5 Results

In order to demonstrate the necessity for, and applicabil-
ity of, the M2 model, we performed tracking experiments in
two separate domains. In the first, we track walking people
using contour edges. Here, background clutter and simu-
lated occlusion threaten to distract tracking without a rea-
sonable dynamic model and a good likelihood function.

In the second, we track a person’s mouth based on raw
pixel values. Unlike the pedestrian-tracking domain, im-
ages are cropped such that only the mouth, and no back-
ground, is visible. While distraction is not a problem, the
complex articulations of the mouth make tracking difficult
(even state-of-the-art face-tracking algorithms [7, 21] have
difficulty tracking lip and tongue articulation).

5.1 Tracking Human Motion

\‘3 a%? E

t, J_(\\LW\ I

Figure 3. A randomly generated sequence using only
learned dynamics. Edges shown represent the contours of
model exemplars.

For the person tracking experiments, training and test se-
quences show various people walking from right to left in
front of a stationary camera. The background in all of the
training sequences is fixed, allowing us to use simple back-
ground subtraction and edge-detection routines to automat-
ically generate the exemplars (naturally, we took advantage
of the fixed background only for the purposes of generating
exemplars — not for tracking). Examples of a handful of ex-
emplars are shown in Figure 3. To the extent that topology
fluctuates within a given mixture component, the linearity
assumption of Section 3.1 is met only approximately.

Dynamics were learned as described in Section 4.3 on
5 sequences of the same walking person, each about 100
frames long. Figure 3 overlays several frames from a se-
quence generated on the basis of dynamics alone. The full
sequence is available as generatd.mpg.!

Validity of the M? model

An essential assumption of the M? approach is that the d
values computed from Equation 9 give rise to reasonable

LAl movie files mentioned in this paper are avail-
able at http://research.microsoft.com/vision/papers/
ICCV2001ToyamaBlake.
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Figure 4. Cropped, sample frames from a tracked sequence. The person tracked does not appear in the training sequences.

partition functions. We tested the suitability of this assump-
tion for the chamfer distance by conducting experiments on
synthetically generated ellipses with up to 4 degrees of free-
dom. Results given in Figure 5 support the argument that d

Avg. Actual
Object Cluster | DOFof | d o
Size Curve
Synthesized ellipse 100 1 0.8 | 89.1
100 2 1.2 | 933
100 3 1.5 | 86.4
100 4 36 | 71.9
Person contour 5 ? 2.8 | 21.6
10 ? 4.1 | 144
20 ? 5.1 183
40 ? 501 17.9

Figure 5. Computed d values using the chamfer distance.

can be computed from training data alone, given a reason-
able distance function, and that d does in fact correlate with
the degrees of freedom of curve variation.

The table also shows values of d for the pedestrian exem-
plars. Note that dimensionality increases with cluster size
up to a point, but it eventually converges to d =~ 5. We read
this as assurance that d is a function of the local dimension-
ality rather than of cluster size.

Practical Tracking

We can now compute observation likelihoods as in Equa-
tion 5 and track using the following Bayesian framework.
A classical forward algorithm [22] would give p;(X;) =

.., Zy) as:

P = 3 [ XY X pir (Xem),
kgq VX1

where p(z|X) is computed according to Equation 5. Exact
inference is infeasible given that a is real-valued, so the
integral is performed using a form of particle filter [14, 17].
To display results, we calculate X; = arg max py (X;).

Figure 1 shows cropped, sample images of tracking on
a sequence that was not in the training sequence (see also,
walkl.mpg). Tracking in this case is straightforward and
accurate. Figure 4 shows the same exemplar set (trained
on one person) used to track a different person entirely (see
walk3 .mpg). Although the swing of this subject’s arms is
not captured by the existing exemplars, the gait is neverthe-
less accurately tracked.

Finally, we ran an experiment to verify tracking robust-
ness against occlusion and other visual disturbances. In
walk3occ.mpg, we simulated occlusions by rendering
black two adjacent frames out of every ten frames in the test
sequence, and so tracking was forced to rely on the prior in
these frames. The sequence was accurately tracked in the
non-occluded frames, bridged by reasonable state estimates
in the black frames — something that would be impossible
without incorporation of a dynamic model.

5.2 Mouth Tracking

The mouth tracking sequences consisted of closely
cropped images of a single subject’s mouth while the per-
son was speaking and making faces. The training sequence
consisted of 210 frames captured at 30Hz. We tested on a
longer test sequence of 570 frames (of which 270 are shown
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(a) (b) () (d) (e) () (9] (h)

Figure 6. Best match, based on various distance functions: (a) test image, (b) Lo distance, (c) Lo after blurring, (d) histogram
matching, (e) L distance after projecting to PCA subspace with 20 bases, (f) L2 after projection to PCA subspace with 80 bases,
(g) L2 after image warp based on optic flow, (h) shuffle distance as described in text.

in the video files described below). Dynamics were learned
as in Section 4.3, with K = 30 exemplar clusters. Tracking
was performed as in Section 5.1, but with no « transfor-
mations, since the images were largely registered. On this
training set, the shuffle distance d values exhibited greater
variance (the extremes running from 1.2 to 13.8), but the
majority of clusters showed a dimensionality of d = 4 + 1,
indicating again that the dimension constant d in the M?
model is learned consistently.

The results for this experiment can be seen in video for-
mat: m12.mpg shows the result of tracking based on the
Lo distance (Euclidean distance between vectors formed
by concatenating the raw pixel values of an image), and
mshuf fle.mpg shows tracking using the shuffle distance.
In these video files, the left-hand image shows the test im-
age, and the right-hand image shows the a posteriori best-
match exemplar from the training sequence. Both functions
do well with the initial two-thirds of the test sequence, while
the subject is speaking. As soon as the subject begins to
make faces and stick out his tongue, the Lo-based likeli-
hood crumbles, whereas tracking based on the shuffle dis-
tance remains largely successful.

Figure 6 shows a comparison of maximum-likelihood
matches, on one of the difficult test images — a tongue stick-
ing out to the left — for a variety of distance functions. Most
of the functions prefer an exemplar without the tongue. This
may be because of the high contrast between pixels pro-
jected dimly by the inside of the mouth and those projected
brightly by lip and tongue; even a small difference in tongue
configuration can result in a large difference in Lo, and
other, distances. On the other hand, the flow-based distance
and the shuffle distance (really an inexpensive version of the
flow-based distance) return exemplars that are perceptually
similar. These functions come closer to approximating per-
ceptual distances by their relative invariance to local warp-
ing of images. These observations were what originally led
to our experiments with different distance functions, and
they justify the need for the ability to handle metrics that
are not embedded in a vector space.

6 Conclusion

The Metric Mixture approach combines the advan-
tages of exemplar-based models [12] with a probabilistic
framework [11] into a single probabilistic exemplar-based
paradigm. The power of the M2 technique comes from its
generality: both object models and noise models can be
learned automatically, and metrics can be chosen without
significant restrictions on the structure of the metric space
(a drawback of Markov random field models of image-pixel
dependencies, for example).

We intend to explore several avenues in future work:

e One problem with exemplar sets is that they can grow
exponentially with object complexity. Tree structures
appear to be an effective way to deal with this prob-
lem [12, 26], and we would like to find effective ways
of using them in a probabilistic setting. Note how-
ever, that the use of a dynamical model for prediction
greatly reduces the effective size (perplexity) of the
exemplar set, so the lack of tree structure has not been
a serious limiting factor yet. See ballet0 .mpg for
preliminary results with larger exemplar sets (training
and test sets here are the same).

e The current clustering algorithm can be extended to
a “soft” EM-like algorithm by assigning exemplar
membership probabilities based on d values com-
puted at each step.

e Our results make it clear that the M? approach works
for some non-metric distances. One open question is
to determine to what extent metric assumptions can
be violated.

Acknowledgments
We thank P. Anandan, Brendan Frey, Nebojsa Jojic, Neil

Lawrence, and Chris Williams for stimulating discussions;
John MacCormick kindly provided video data.

References

[1] A. Amini, S. Tehrani, and T. Weymouth. Using dynamic
programming for minimizing the energy of active contours

0-7695-1143-0/01 $10.00 (C) 2001 IEEE



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

in the presence of hard constraints. In Proc. 2nd Int. Conf.
on Computer Vision, pages 95-99, 1988.

R. Bartels, J. Beatty, and B. Barsky. An Introduction to
Splines for use in Computer Graphics and Geometric Mod-
eling. Morgan Kaufmann, 1987.

B. Bascle and R. Deriche. Region tracking through image
sequences. In Proc. 5th Int. Conf. on Computer Vision, pages
302-307, Boston, Jun 1995.

M. Black and A. Jepson. Eigentracking: robust matching and
tracking of articulated objects using a view-based represen-
tation. In Proc. 4th European Conf. Computer Vision, pages
329-342, 1996.

A. Blake and M. Isard. Active contours. Springer, 1998.

M. Brand. Shadow puppetry. In Proc. Int. Conf. on Computer
Vision, pages 1237-1244, 1999.

T. Cootes, G. Edwards, and C. Taylor. Active appearance
models. In Proc. European Conf. Computer Vision, pages
484-498, 1998.

A. Efros and T. Leung. Texture synthesis by non-parametric
sampling. In Proc. Int. Conf. on Computer Vision, pages
1033-1038, 1999.

D. Field. Relations between the statistics of natural images
and the response properties of cortical cells. J. Optical Soc.
of America A., 4:2379-2394, 1987.

W. Freeman and E. Pasztor. Learning to estimate scenes from
images. In Advances in Neural Information Processing Sys-
tems 11. MIT Press, 1999.

B. Frey and N. Jojic. Learning graphical models of images,
videos and their spatial transformations. In Proc. Conf. Un-
certainty in Artificial Intelligence, 2000.

D. Gavrila and V. Philomin. Real-time object detection for
smart vehicles. In Proc. Int. Conf. on Computer Vision, pages
87-93, 1999.

A. Gelb, editor. Applied Optimal Estimation. MIT Press,
Cambridge, MA, 1974.

N. Gordon, D. Salmond, and A. Smith. Novel approach
to nonlinear/non-Gaussian Bayesian state estimation. /EE
Proc. F, 140(2):107-113, 1993.

G. Hager and K. Toyama. Xvision: combining image warp-
ing and geometric constraints for fast tracking. In Proc. 4th
European Conf. Computer Vision, pages 507-517, 1996.

D. Huttenlocher, J. Noh, and W. Rucklidge. Tracking non-
rigid objects in complex scenes. In Proc. 4th Int. Conf. on
Computer Vision, pages 93-101, 1993.

M. Isard and A. Blake. Visual tracking by stochastic prop-
agation of conditional density. In Proc. 4th European Conf.
Computer Vision, pages 343-356, Cambridge, England, Apr
1996.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. In Proc. Ist Int. Conf. on Computer Vision,
pages 259-268, 1987.

K. Kutulakos. Approximate N-view stereo. In Proc. Euro-
pean Conf. Computer Vision, volume 1, pages 67-83, 2000.
D. Mumford. Pattern theory: a unifying perspective. In
D. Knill and W. Richard, editors, Perception as Bayesian in-
ference, pages 25-62. Cambridge University Press, 1996.

[21] H. Neven and E. Interfaces. In Siggraph Demo Session. Los
Angeles, 2000.

[22] L. R. Rabiner. A tutorial on hidden markov models and se-
lected applications in speech recognition. Proc. of the IEEE,
77(2):257-285, 1989.

[23] G. Storvik. A Bayesian approach to dynamic con-
tours through stochastic sampling and simulated annealing.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
16(10):976-986, 1994.

[24] D. Terzopoulos and R. Szeliski. Tracking with Kalman
snakes. In A. Blake and A. Yuille, editors, Active Vision,
pages 3-20. MIT, 1992.

[25] T. Vetter and T. Poggio. Image synthesis from a single ex-
ample image. In Proc. 4th European Conf. Computer Vision,
pages 652—-659, Cambridge, England, Apr 1996.

[26] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In Proc. ACM Siggraph.
ACM, 2000.

Appendix

Quadratic Chamfer distance has a scaled x? distribu-
tion. We have, from (6),
plz = p(2,2) = ||r2(s) —rz(s)|1”.

From (3),
plZ=y H 'y +O(y)

where O(y) is a linear term in the parameter vector y. Ma-
trix H;; is a nonsingular, symmetric, metric matrix [5]
which can be diagonalized as H = UDU T, in which U
is orthogonal and D is diagonal. Now, from (4), and using
the normalization properties of Gaussians,

- Cdja— 1 -
p(2|2) = (V2mo) !|H| 7% exp ~557 (P2,

where 1/(202) = X as before. Therefore y is a normal
random variable:

y = Bw where w ~ N(0,1;) and

B=ocH"'?=¢UD'?UT.
Finally,

plZ=w'B'"H 'Bw =0o’w'w

s0 (p|Z) is a 02X random variable, as claimed.
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