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Abstract

Tracking regions in an image sequence is a challenging and di�cult problem in image processing and

computer vision, and at the same time, one that has many important applications: Automated video

surveillance, video database search and retrieval, automated video editing, ... So far, numerous approaches

to region tracking have been proposed. Many of them su�er from excessive constraints imposed on the

motion of the region being tracked and need an explicit motion model (e.g. a�ne, euclidean, ...). Some,

which do not need a parametrized motion model, rely instead on a dense motion �eld. By and large,

most rely on some kind or other of motion information. Those which do not use any motion information

use instead a model of the region being tracked, typically by assuming strong intensity boundaries, or

constraining the shape of the region to belong to a parametrized family of shapes. In this paper, we

propose a novel approach to region tracking that derives from a Bayesian formulation. The novelty of

the approach is twofold: First, no motion �eld or motion parameters need to be computed. This removes

a major burden since accurate motion computation has been and remains a challenging problem and the

quality of region tracking algorithms based on motion critically depends on the computed motion �elds

and parameters. The second novelty of this approach is that very little a priori information about the

region being tracked is used in the algorithm. In particular, unlike numerous tracking algorithms, no

assumption is made on the strength of the intensity edges of the boundary of the region being tracked,

nor is its shape assumed to be of a certain parametric form. The problem of region tracking is formulated

as a Bayesian estimation problem, and the resulting tracking algorithm is expressed as a level set partial

di�erential equation. We present further extensions to this partial di�erential equation, allowing the

possibility of including additional information in the tracking process, such as priors on the region's

intensity boundaries, and we brie
y discuss the issue of numerical implementation. Very promising

experimental results are provided using numerous real image sequences with natural object and camera

motion.



I. Introduction

Tracking of regions in an image sequence is one of the most important, and yet, di�cult prob-

lems in video processing (object-based video database search, automated image manipulation,

video surveillance), video compression (object-based coding such as in MPEG-4), and computer

vision (scene analysis and interpretation).

A number of di�erent approaches to region tracking have been developed to date, starting

from the early tracking algorithms which concentrated on tracking feature points [1] and edge

segments [2], [3]. Since the ultimate goal of a region tracking algorithm is to track whole

regions and not only feature points in the region, strong assumptions had to be made both on

the shape of the region and on the motion of the points, in order to allow the region to be

recovered from its feature points. In the simplest case, the motion �eld would be assumed to be

translational and the shape of the region constant throughout the sequence. This would allow

feature point tracking using simple cross-correlation computations between successive images in

the sequence. A slightly higher degree of generality would be attained by allowing the motion to

be euclidean and using rotational-invariant cross-correlation measures. The notion of tracking

a region through its feature points was extended to three dimensions by [4]. There, a three

dimensional polyhedral model was assumed, and computed from feature points in the image.

Once the three dimensional model was computed, it would be reprojected onto the image plane.

Clearly, all these algorithms perform well when the two-dimensional (or three-dimensional) shape

of the region can be easily modeled and stays relatively constant over the image sequence. This

is not the case in many tracking problems of interest, where the region of interest changes shape

throughout the sequence, corresponding to deformable objects (e.g. blood cells [5]). There,

feature point based tracking is not appropriate since the shape of the region cannot be related

to the position of the feature points in any simple way. To overcome these limitations of region

tracking based on simple feature points, region tracking algorithms based on active contours

were developed [5], [6], [7], [8]. Here, no assumption is made on the shape of the region (other

than overall smoothness); yet, a very strong assumption is made on the boundaries of the region,

that is they have to correspond to strong intensity boundaries. In this way, an active contour is

shrinked from an initial contour (large enough so as to englobe the region of interest) under a

velocity �eld which locks the contour to intensity edges. In the subsequent frame, this contour

is used as initial condition and is locked onto the intensity edges of the region being tracked.

To further constrain the motion of the active contour, additional a priori models on the contour

displacement have been proposed [9]. Although relatively good results have been obtained, the

active contour approach is limited to small displacements and uses only the boundary of the

region being tracked, and not the region itself. For this class of algorithms, region tracking
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is essentially a byproduct of intensity boundary detection. This is not so with region based

tracking algorithms, which use region information and not merely boundary information. In

this regard, approaches dual to edge detection have been proposed in [10], aiming at maximizing

the intensity homogeneity inside the region to be tracked and inside the background as well.

Once region information is used, the motion �eld can be computed over the region and used to

compute the position of the region in the next frame. Furthermore, this motion �eld can be

temporally �ltered in order to yield better estimates of the region position. The main drawback

of region based techniques is that boundaries are not accurately computed. This imposes a �rst

restriction on the magnitude of motion between subsequent frames: The smaller the motion,

the more accurately it is computed. But this is not enough. Indeed, due (usually) to excessive

smoothing, motion is least accurately computed around motion boundaries, and these often

coincide with boundaries of regions we wish to track. This suggests that motion information

alone is not su�cient to guarantee reliable tracking over long sequences. This has led researchers

to combine both edge-based and region-based approaches.

A desirable feature of any tracking algorithm, �rst proposed and demonstrated by [11], is that

the tracking algorithm allow changes in the topology of the region being tracked. Indeed, it

may be the case that a region of interest split into sub-regions over a number of frames, or that

conversely, a number of regions of interest merge into one region. Such changes in topology,

which may be di�cult to handle when region shape is parametrized, follow instead naturally

whenever tracking is formulated as a level set partial di�erential equation [11], [12], [13].

In [11], tracking is expressed as the solution of a system of coupled partial di�erential equa-

tions: While one image is morphed into another via a particular level set partial di�erential

equation, the boundary of the region being tracked follows the 
ow obtained from this equation

via another level set equation. Since the evolution equation for morphing is obtained by gradient

descent on an L2 norm of image di�erences, this tracking algorithm can be applied only when

the displacements involved are small, typically on the order of a few pixels. In [12], tracking is

expressed as minimum description length estimation using a geometric description length crite-

rion, and knowledge of a dense or parametrized motion �eld is assumed. The resulting tracking

performance is critically dependent on the quality of the given motion �eld or parameters, as

shown in the results. The problem addressed in [13] is that of detection and tracking of moving

objects in image sequences. In the proposed algorithm, a detection step forces a closed curve

to converge towards moving areas of an image, while a tracking step evolves the curve even

further, until it coincides with the exact boundary of the moving object. The detection step is

based on temporal change detection, while the tracking step is actually nothing other than a

classical intensity boundary detection algorithm using active contours and implemented using
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level sets. Thus, the tracking algorithm proposed in [13] is not a generic tracking algorithm,

and since it is merely a byproduct of simple intensity boundary detection, it su�ers from very

stringent constraints; in particular, the region to be tracked is assumed to have strong intensity

boundaries, and the background is assumed to be smooth. Also, since the tracking step relies

heavily on the preceding moving region detection step, the region being tracked is assumed to

be moving, while the background is assumed to be stationary.

In this paper, we consider the generic problem of tracking regions in image sequences, be

they moving or stationary, and we attempt to do so using only the least number of explicit

constraints on the region being tracked. In particular, other than overall smoothness, we do

not assume the region's shape to belong to a parametrized family, nor do we relate it to a

three-dimensional model, nor do we assume that the region undergoes rigid motion. Also, in

stark contrast to [13], we do not make the simplifying assumption that its boundary coincides

with strong intensity boundaries, nor do we assume that the region to be tracked is moving on

a �xed and uniform background. Furthermore, unlike numerous motion-based approaches (e.g.

[12]) , we do not compute any motion �eld or motion parameters or feature points for motion

computation, and contrary to [11], we do not restrict tracking to small displacements. To be

sure, we will have to make some assumptions on the way to our proposed tracking algorithm;

however, these assumptions will be expressed probabilistically and will be made on particular

probability distributions. As a result, these assumptions will constrain the tracking problem only

implicitely, as will be discussed in the paper. We believe such implicit probabilistic assumptions

are more suited to the tracking problem than the explicit assumptions commonly used; this is

demonstrated in the experimental results, where it is shown that our proposed algorithm yields

precise tracking over numerous frames for real image sequences with substantially di�erent

motion, shape, and intensity boundary structure.

The starting point of our algorithm is a basic observation model that expresses the fact that

the region's luminance/chrominance statistics vary little from frame to frame in the sequence.

Clearly, without such an assumption, tracking would not make much sense. Although we do

not assume any particular underlying motion, we assume the maximum range of motion in be-

tween image frames is given. This does not reduce the generality of the proposed algorithm

and is used only to reduce its computational complexity. We pose region tracking as a bayesian

estimation problem, and at each step on our way to solving this estimation problem, we use

the minimum assumptions necessary to make the problem tractable. This bayesian estimation

problem is ultimately formulated as an energy minimization problem, leading to the solution

via Euler-Lagrange descent equations. These Euler-Lagrange equations are themselves formu-

lated as level set partial di�erential equations, leading to a stable numerical implementation,
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in addition to allowing the proposed tracking algorithm to retain the desirable feature of being

topology independent, and allowing regions being tracked to freely split and merge. The track-

ing algorithm we propose is thus a particular level set evolution equation, and as will be seen

in the experimental results, the tracking obtained is remarkably accurate despite the variety

of test images used and despite the small number - two- of parameters to set, one of which is

the same for all test runs. Although our proposed tracking algorithm makes no use of intensity

boundary, shape, or motion information, we indicate precisely in the paper where and how such

information, whenever available, could be incorporated in the tracking algorithm.

The paper is organized as follows. In Section II a formulation of region tracking as bayesian

estimation is proposed. In Section III, the solution of this bayesian estimation problem in terms

of Euler-Lagrange descent equations is provided. Then, in Section III-C the equivalent formu-

lation of these equations in terms of level set partial di�erential equations is given, and the

numerical solution of these evolution equations is very brie
y discussed. The estimation of the

probability distribution functions which form the cornerstone of this algorithm is discussed in

Section IV, together with basic extensions. In Section V, our proposed level set evolution equa-

tion for tracking is given, together with numerous extensions. The paper ends with experimental

results in Section VI followed by conclusions.

II. Region Tracking as Bayesian Estimation

Let (Ik)k be a sequence of images (indexed by nonnegative integers with integer k representing

time instant k) with common domain 
 (an open subset of R2). Let R0 � 
 be a region in the

image at time n (In) and let R1 � 
 be the corresponding (unknown) region in the image at

time n+1 (In+1), that we seek to estimate. The problem of tracking R0 from time instant n to

time instant n+ 1 can thus be formulated as the problem of estimating R1 given I
n; In+1, and

R0. In order to perform this estimation, we need to de�ne an observation model. For simplicity,

we shall assume that all our images are scalar-valued. Extensions to vector-valued images will

be indicated where appropriate and are, for the most part, immediate. Once this observation

model is de�ned, probability estimates can be computed and optimized.

A. Observation model

We consider a given (�nite or in�nite) set � of di�eomorphisms  : 
 ! 
. � is the set

of allowed geometrical transformations. We assume there exists a mapping � 2 � such that

�(R0) = R1 (and hence �(Rc
0) = Rc

1), and such that

In+1 � �(x) = In(x) + �(x); 8x 2 
; (1)
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where � denotes a stationary zero-mean Gaussian white noise process with variance (covariance

matrix, in the vector case) �2. This is a formulation of the constraint that the image function

In+1 de�ned over R1 be in agreement with the image function In de�ned over R0, as is implicit

in most tracking algorithms. Note that this model does not take into account occlusions or

uncovered regions. To take these into account, we would either have to model them explicitly or

factor them in the noise process, which would then be neither stationary nor white. Nevertheless,

the observation model as de�ned above is a reasonable working model. It is important to note

that motion based tracking algorithms directly attempt to estimate � among all transformations

in �, and then estimate R1 as being given by �(R0). To make the estimation of � tractable,

� is then constrained in various ways: For example, by assuming the transformations in � are

close to the identity transformation, thereby leading to the use of di�erential techniques, or

by assuming � is a small-dimensional space described by only a few parameters, leading to

least-squares techniques for estimating these parameters.

In this paper, we propose a di�erent approach to tracking, and rather than estimating �, we

shall attempt to estimate R1. The main bene�t of this approach is that no speci�c assumptions

on � need to be made, and the resulting tracking algorithm will not be constrained to particular

types of motion.

B. MAP formulation

The Maximum A Posteriori estimate R̂1 of R1 given I
n, In+1, and R0 is found by maximizing

the a posteriori probability P (R1 = RjIn; In+1;R0) over subsets R of 
. That is,

R̂1 = argmax
R�


P (R1 = RjIn; In+1;R0): (2)

Using Bayes' rule, we can thus write

R̂1 = argmax
R�


P (In+1jIn;R0;R1 = R)P (R1 = RjIn;R0):

The �rst expression on the right hand side above is the likelihood of observing image In+1 given

image In, the region R0 in the image at time n, and the corresponding region R1 in the image at

time n+ 1. This likelihood function summarizes part of our assumptions about the behavior of

the region to be tracked, since it allows us to �nd the maximum likelihood estimate of In+1 from

the knowledge of In, R0, and R1. This likelihood term will embody our assumptions pertaining

to the constancy (with respect to the sequence index n) of the luminance or the chrominance

of the region being tracked. The second term on the right-hand-side above is the prior term

on R1. Note that unlike usual priors, it is a conditional probability, with conditioning on In

and region R0. This probability term embodies our geometrical assumptions on how the region

R0 should evolve from image In to image In+1 of the sequence. For example, the assumption
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that R1 should di�er from R0 by an euclidean transformation would a�ect only this probability

term. If we allow the deformation of a region throughout the sequence to be independent of

its luminance or chrominance characteristics, then this term reduces to P (R1 = RjR0). If, in

addition, we allow the shape of the region being tracked from In to In+1 to be independent

of its shape in In, then this last term further reduces to P (R1 = R). This yields the highest

degree of generality for the tracking algorithm in that the shape of the region being tracked can

freely change from one frame to the next. Although such a degree of generality is not always

warranted, we will allow it precisely in order not to constrain the deformations of the region

being tracked to belong to a narrow speci�c class.

To reduce the likelihood term P (In+1jIn;R0;R1 = R) to a more tractable expression, we

make two fundamental assumptions:

� Conditional independence: We assume that 8x;y 2 
;x 6= y, the conditional probabilities of

In+1(x) and In+1(y) are independent given In;R0;R1. That is,

P (In+1(x); In+1(y)jIn;R0;R1 = R) = P (In+1(x)jIn;R0;R1 = R)P (In+1(y)jIn;R0;R1 = R):

� Partial dependence: We assume that for any x 2 
, the conditional probability of In+1(x)

given In;R0;R1 is a function only of In;R0 and the membership (or lack of membership) of x

in R1. In other words, we write

P (In+1(x)jIn;R0;R1 = R) = P (In+1(x)jIn;R0; �R(x));

where �R is the indicator function of the set R.

The conditional independence assumption would follow directly from the observational model

(1) if we could determine � uniquely from the knowledge of R0 and R1. This happens whenever

the class of allowed di�eomorphisms � is small enough that there exists only one di�eomorphism

� in � for which �(R0) = R1. Thus, the conditional independence assumption is essentially an

assumption about the set of allowed geometrical transformations �, akin to constraints on mo-

tion which are imposed in numerous tracking algorithms (e.g. translational motion, euclidean,

a�ne). We believe however that constraining � indirectly through this probabilistic condition

is better suited to tracking and provides a much more general tracking algorithm, as opposed

to constraining � to be a particular set of geometric transformations. Furthermore, although

the conditional independence assumption is false in general, it is a reasonable assumption and

will provide us with a tractable model. The partial dependence assumption, on the other hand,

stipulates that the dependence of a point on R1 (given In and R0) can be factored through

the dependence only on its membership in R1. Such an assumption would hold if the image

function In were to have a constant value on R0 and a constant value on Rc
0. More generally, it
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would also hold if In(R0)\ I
n+1(Rc

0) were empty. Note that this assumption is analogous to the

assumption of strong intensity boundaries which is imposed in active contour based tracking algo-

rithms. Once again, we believe that formulating the constraint that the region being tracked and

the background have distinct luminance/chrominance characteristics probabilistically through

the partial dependence assumption is better suited to tracking than assuming strong intensity

boundaries. Indeed, in the latter case, the tracking algorithm is easily derailed by spurious inten-

sity edges which are not on the region's boundary. The partial dependence assumption is also

a simplifying assumption, since an object's luminance/chrominance characteristics sometimes

overlap with those of the background. Yet, locally (e.g. in a small neighborhood of a boundary

point of the region), these characteristics are usually distinct.

The partial dependence assumption allows us to de�ne the probability functions

P (In+1(x)jIn;R0;R1 = R) =

(
Pin;x(I

n+1(x)jIn;R0); if x 2 R ;

Pout;x(I
n+1(x)jIn;R0); if x 2 Rc;

which are the conditional probabilities that a point in 
 be inside or outside of the region being

tracked. Here, we have indexed the probability functions by x to highlight their dependence on

the position variable.

Together, the conditional independence and partial dependence assumptions above allow us

to write

R̂1 = argmax
R�


( Y
x2R

Pin;x(I
n+1(x)jIn;R0)

! Y
x2Rc

Pout;x(I
n+1(x)jIn;R0)

!
P (R1 = RjIn;R0)

)
;

where Rc denotes the complement in 
 of the subset R of 
. Since one of our objectives in this

paper is to illustrate how reliable region tracking can be performed without reliance on intensity

boundaries, we shall de�ne a prior on R1 that does not make any use of intensity boundaries of

In+1. In the next section, we shall indicate how to include priors on R1 depending on intensity

boundaries. Furthermore, since we also wish to de�ne a generic tracking algorithm that does not

assume a particular two-dimensional or three-dimensional model of the region being tracked, we

shall de�ne a simple prior onR1 that only enforces smoothness of the boundary @R1 ofR1. This

will allow our tracking algorithm to retain a substantial degree of generality. It is nevertheless

possible to tailor our proposed algorithm to the tracking of speci�c shapes. In this case, the

smoothness prior we shall adopt for the sake of generality and simplicity should be replaced

with a prior speci�c to the shapes being tracked. Such priors have been proposed in [18], and

we refer the reader thereto for a detailed discussion of their computation.

Dropping normalizing additive constants, we shall then de�ne P (R1 = RjIn;R0) through its
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negative log-likelihood:

� logP (R1 = RjIn;R0) = �L

I
@R

d�;

which is simply, up to the positive constant �L, the length of @R, d� being the di�erential of

arc length. We can thus write

R̂1 = arg min
R�


E(RjIn; In+1;R0);

where

E(RjIn; In+1;R0) = �

Z
R

logPin;x(I
n+1(x)jIn;R0)dx

�

Z
Rc

logPout;x(I
n+1(x)jIn;R0)dx

+�L

I
@R

d�:

This functional, which we call the tracking functional, is the one we shall try to minimize with

respect to R. Obviously, this functional depends on the probability functions Pin and Pout and

these need to be somehow estimated. Before discussing the estimation of these probabilities,

however, we shall detail the solution of the tracking functional.

III. Minimization of the tracking functional

A. Tracking independent of intensity boundaries

Let ~
 : [0; 1]!R2; s 7! ~
(s); be a closed planar curve, oriented counterclockwise, that we use

as an estimator of @R1 (note that the arc parameter s is not necessarily arc length). Our goal

is to �nd the curve ~
? that minimizes the tracking functional

E(~
jIn; In+1;R0) = �

Z
R~


logPin;x(I
n+1(x)jIn;R0)dx

�

Z
Rc

~


logPout;x(I
n+1(x)jIn;R0)dx

+�L

I
~


d�; (3)

where R~
 , the region enclosed by ~
, is the estimator of the region R1, while its complement Rc
~


is the estimator of the background Rc
1. In the last integral above, expressing the prior on the

length of ~
, the curve ~
 has been parametrized by the arc parameter s 2 [0; 1] (note that s is not

necessarily arc length). This functional is identical to the region competition functional proposed

by [14] for image segmentation, and the minimization of this functional corresponds to �nding

the shortest closed curve ~
 that best separates the region being tracked from the background.
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γ

Pin < Pout

Pin > Pout

Fig. 1. Curve evolution for tracking.

To �nd the curve ~
? that minimizes E(~
jIn; In+1;R0), we embed ~
 in a one-parameter family

(~
(:; t))t�0 of closed planar curves, such that as t!1, ~
(�; t) converges to a local minimum of E.

Such a one-parameter family is obtained from the Euler-Lagrange descent equation associated

to the minimization of (3), and, omitting t for simplicity of notation, is given by [14]:

d~
(s)

dt
= [logPin;~
(s)(I

n+1(~
(s))jIn;R0)� logPout;~
(s)(I
n+1(~
(s))jIn;R0)� �L�
(s)]~n(s); (4)

where ~n(s) is the unit normal to ~
 at s pointing outward of R~
 , and �
 is the curvature function

of ~
 de�ned as follows:

�
 =
_x�y � �x _y

( _x2 + _y2)3=2
;

where ( _x; _y; �x; �y) are the �rst- and second-order derivatives, respectively, of ~
 = (x; y) with

respect to s. The evolution of ~
 can be easily read o� the above equation (see Fig. 1): Assuming

the curvature to be zero, a boundary point x = ~
(s) with higher likelihood of belonging to R1

than to Rc
1 (Pin;x > Pout;x) will induce a velocity of ~
(s) in the outward direction and the curve

~
 will grow so as to englobe the point x. Similarly, if x = ~
(s) is a point with higher likelihood

of belonging to Rc
1 than to R1 (Pout;x > Pin;x), then ~
 will move inward at ~
(s) and will shrink,

relinquishing the point x. The curvature term, on the other hand, will tend to locally straighten

out the curve; convexities (�
 > 0) will be pulled in, while concavities (�
 < 0) will be pushed

out.

B. Tracking accounting for intensity boundaries

We now indicate a simple extension to the curve evolution equation (4) that allows the in-

corporation of intensity boundary information during tracking. Though our main objective is

to demonstrate reliable tracking without reliance on such constraints, it is important to note
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that such additional constraints can be easily incorporated in the proposed formulation. Indeed,

in some tracking applications, there may be a very strong correlation between the boundary of

the region being tracked and image intensity boundaries, and such a correlation may need to

be exploited. In other words, knowledge of the intensity boundaries of In+1 may help in the

estimation of R1. We thus assume a dependence between R1 and the intensity boundaries of

In+1 which we assume, without loss of generality, can be obtained from ~rIn+1 (note that any

other di�erential operator may be used for that matter). Returning to equation (2), we may

write

R̂1 = argmax
R�


P (R1 = RjIn; In+1;R0)

= argmax
R�


P (R1 = RjIn; In+1; ~rIn+1;R0);

since ~rIn+1 is a function of In+1. Using Bayes' rule, we can write

R̂1 = argmax
R�


P (In+1jIn; ~rIn+1;R0;R1 = R)P (R1 = RjIn; ~rIn+1;R0):

Assuming that P (In+1(x)jIn; ~rIn+1;R0;R1 = R) = P (In+1(x)jIn;R0;R1 = R) for all x 2 
,

everything proceeds as in section II-B, except that the prior probability on R1 is now of the form

P (R1 = RjIn; ~rIn+1;R0). We can now impose on R1 a prior that not only enforces smoothness

of @R1, as we did in the previous section, but also one that encourages @R1 to pass through

points in 
 where ~rIn+1 has a large magnitude. Thus, a possible prior on R1 could now be

given by

� logP (R1 = RjIn; ~rIn+1;R0) = �L

I
@R

d�� �I

I
@R

k~rIn+1kd�;

where the last term favors the alignment of @R with intensity boundaries of In+1, depending

on the magnitude of the positive constant �I . In this way, the prior model for @R1 seeks the

shortest closed curve ~
 : [0; 1] ! R2 that aligns itself with image intensity boundaries, yielding

the tracking functional

E(~
jIn; In+1;R0) = �

Z
R~


logPin;x(I
n+1(x)jIn;R0)dx

�

Z
Rc

~


logPout;x(I
n+1(x)jIn;R0)dx

+�L

Z
[0;1]

k _~
kds

��I

Z
[0;1]

k~rIn+1(~
(s))kk _~
kds: (5)

11



The complete curve evolution equation leading to a minimum of the functional (5) is given by:

d~
(s)

dt
= [logPin;~
(s)(I

n+1(~
(s))jIn;R0)� logPout;~
(s)(I
n+1(~
(s))jIn;R0)� �L�
(s)]~n(s)(6)

+�I
�
(HI

~rIn+1

k~rIn+1k
) � ~n(s) + k~rIn+1k�
(s)

�
~n(s); (7)

whereHI is the Hessian of the image function In+1 and \�" denotes the euclidean scalar product.

The tangential evolution terms have been discarded from the above equation since 
ows along

the tangent to a curve change only its parametrization and not its geometry. Here again, further

priors on ~
 can be included to constrain the shape of the region being tracked, as was discussed

in the previous section.

We now discuss the level set representation of the curve evolution equations obtained in the

last two sections.

C. Level Set Representation

Equations (4) and (6) can be solved numerically by discretizing the interval [0; 1] on which ~
 is

de�ned, thus leading to a representation of ~
 in terms of a �nite number of points or nodes. This

leads to an explicit representation of ~
. A better alternative is to represent the curve ~
 implicitly

by the zero level set of a function u : R2 ! R, with the region inside ~
 corresponding to u > 0.

There are major advantages to such an implicit representation [15], the most important being

numerical stability and topology independence. Indeed, the discretization of a curve using a

�xed number of nodes can lead to large approximation errors since the order of discretization

error is highly dependent on the evolution of the curve itself. Such discretization problems do

not occur with level set representations of curves since each level set function is de�ned over a

�xed discrete grid with uniform spacing. Furthermore, as is well known by the Jordan curve

theorem, a closed simple (i.e., non self-intersecting) curve divides the plane into two connected

components, one bounded and the other unbounded. A contour evolution equation does not

allow for curve splitting and curve merging. Thus, during curve evolution, there will always be

one \inside" and one \outside". On the other hand, curves implicitly de�ned using level sets

can split and merge, freely changing topology during their evolution (Fig. 2).

Since ~
 obeys an evolution equation and the zero level set of u is assumed to coincide with

(the image of) ~
, u must evolve according to a certain evolution equation closely related to that

of ~
. We can thus embed u in a one-parameter family (u(�; t))t�0, and we construct the evolution

equation that u has to satisfy so that its zero level set satisfy the evolution equation of ~
. To

achieve such correspondence, u must satisfy two conditions:

1. The curve ~
 must be a zero level set (iso-level contour) of u, which leads to:
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Fig. 2. Schematic representation of the equivalence between the evolution of curves ~
1, ~
2 and the

evolution of function u.

du(~
(s; t); t)

ds
=
@u

@x

@x

@s
+
@u

@y

@y

@s
= 0:

2. The curve ~
 must be a zero level set (iso-level contour) of u for all time t, and this leads

to:

du(~
(s; t); t)

dt
=
@u

@x

@x

@t
+
@u

@y

@y

@t
+
@u

@t
= 0:

Based on the two conditions above, one can show that if the evolution of ~
 is described by the

equation

d~
(s; t)

dt
= F (~
(s; t))~n(s; t);

where F is a function de�ned on R2, then the corresponding evolution of u is given by:

@u(x; t)

@t
= F (x)k~ru(x; t)k:

As a result, the solution curve to our tracking problem will be given by the zero level set of the

function u(�; t) as t!1.

In the case of tracking independent of intensity boundaries, the evolution equation for u

corresponding to equation (4) becomes (omitting t for simplicity of notation):

@u(x)

@t
= [logPin;x(I

n+1(x)jIn;R0)� logPout;x(I
n+1(x)jIn;R0)� �L�u(x)]k~ruk; (8)

where �u is the curvature of the level set of u, given as a function of u by:

�u = ~r �
~ru

k~ruk
=
uxxu

2
y � 2uxuyuxy + uyyu

2
x

(u2x + u2y)
3=2

: (9)
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On the other hand, the level set evolution equation corresponding to the curve evolution equation

(6) for tracking accounting for intensity boundaries (Subsection III-B) is given by:

@u(x)

@t
= [logPin;x(I

n+1(x)jIn;R0)� logPout;x(I
n+1(x)jIn;R0)� �L�u(x)]k~ruk

��I ~ru
T
HI

~rIn+1

k~rIn+1k
+ �I(k~rI

n+1k�u(x))k~ruk: (10)

The level set evolution equations (8),(10) are solved by replacing time derivatives by �nite

di�erences, and spatial derivatives by approximations using forward and backward di�erences, as

suggested in [15], the key idea of such numerical approximations being that the numerical domain

of dependence of a function should contain its mathematical domain of dependence ([15]). We

refer the reader to [15] for a presentation and discussion of level set partial di�erential equation

discretization schemes. We also refer the reader to [15] and [16] for a presentation and analysis

of algorithms for fast computation of level set evolution equations.

IV. Estimation of the probability functions Pin;x and Pout;x

As was described in section II, the conditional independence and partial dependence assump-

tions allowed us to formulate our tracking/estimation problem in terms of the two probability

functions Pin;x and Pout;x. In what follows, we shall �rst present an approximation to these prob-

ability functions. Starting from this approximation, we shall present generalizations in various

directions.

A. Basic estimation

The membership probability function Pin;x can be written

Pin;x(I
n+1(x)jIn;R0) = Px(I

n+1(x)jIn;R0;x 2 R1)

=

Z
�

Px(I
n+1(x)jIn;R0;x 2 R1; � =  )P (� =  jIn;R0;x 2 R1)d 

=

Z
f 2�: �1(x)2R0g

Px(I
n+1(x)jIn;R0; � =  )P (� =  jIn;R0)d ;

where the second equality is obtained by expressing the probability Px(I
n+1(x)jIn;R0;x 2 R1)

as the marginal probability of Px(I
n+1(x)jIn;R0;x 2 R1; � =  ) by integration with respect to

the transformation �. Also, using the fact that � is a di�eomorphism of the image domain that

maps R0 onto R1 (and hence Rc
0 onto R

c
1), the probability function P (� =  jIn;R0;x 2 R1) is

evidently zero over the subset f 2 � :  �1(x) 2 Rc
0g of �, hence the third equality.

We now make a major simplifying assumption which will allow us to approximate this last

integral: We assume that the probability function Px(I
n+1(x)jIn;R0; � =  ) is highly peaked

both as a function on f 2 � :  �1(x) 2 R0g and as a function on f 2 � :  �1(x) 2
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X

Fig. 3. Approximating
R
X
F (x)dx by C supx2X F (x).

Rc
0g. In other words, we assume that Px(I

n+1(x)jIn;R0; � =  ) is concentrated on a small,

family of transformations (see Fig. 3). This is an indirect assumption both on � and on the

luminance/chrominance characteristics of the image in the region to be tracked and in the

background: We are assuming that a small family of (possibly neighboring) transformations of

� map a point of In+1 to a corresponding point of In. This will happen if the family � is small

enough, or if the region and background texture are su�ciently non-uniform. This is once again

an assumption on the tracking problem expressed in probabilistic form. Consistent with our

idea of not using any motion information for tracking, we can assume that the prior probability

of � is uniform; extensions of our algorithm to include known a priori motion will be given in a

later section. We �nally obtain:

Pin;x(I
n+1(x)jIn;R0) =

Z
f 2�: �1(x)2R0g

Px(I
n+1(x)jIn;R0; � =  )P (� =  jIn;R0)d 

� Cin(x) sup
f 2�: �1(x)2R0g

Px(I
n+1(x)jIn;R0; � =  );

where Cin is a normalizing function that depends also on In and R0. For each x in the image

domain, Cin(x) is a direct function of the extent of the support of Px(I
n+1(x)jIn;R0; � =  ) in

f 2 � :  �1(x) 2 R0g. The larger this support, the larger Cin(x) will be.

Performing a similar approximation for Pout;x(I
n+1(x)jIn;R0), we obtain:

Pout;x(I
n+1(x)jIn;R0) = Px(I

n+1(x)jIn;R0;x 2 R
c
1)

=

Z
�

Px(I
n+1(x)jIn;R0;x 2 R

c
1; � =  )P (� =  jIn;R0;x 2 R

c
1)d 

=

Z
f 2�: �1(x)2Rc

0
g

Px(I
n+1(x)jIn;R0; � =  )P (� =  jIn;R0)d 

� Cout(x) sup
f 2�: �1(x)2Rc

0
g

Px(I
n+1(x)jIn;R0; � =  );

where Cout is another normalizing function (that depends also on In and R0) that is a direct
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function of the extent of the support of Px(I
n+1(x)jIn;R0; � =  ) in f 2 � :  �1(x) 2 Rc

0g.

Here again, the larger this support, the larger Cout(x) will be.

The precise behaviour of the functions Cin and Cout as functions of x depends on the statistics

of In; In+1, as well as on the structure of the family � of di�eomorphisms. This dependence

is furthermore very intricate, and the precise estimation of these functions using local image

statistics is the subject of our ongoing research. At this point however, we shall make the

last simplifying assumption which will lead us to the solution of our tracking problem, and we

shall assume that at each point x in the image domain, Cin(x) and Cout(x) are equal, and we

shall denote by C(x) their common value. This assumption essentially means that the set of

transformations in � that best map x to a background point in In has the same measure as the

set of transformations that best map x to a region point in In. Once again, this is an assumption

on the image sequence, but in probabilistic disguise.

Using the observation model (1) and the above expressions, we can thus approximate� logPin;x

and � logPout;x by the following expressions:

� logPin;x(I
n+1(x)jIn;R0) � inf

f 2�: �1(x)2R0g

(In+1(x)� In( �1(x)))2

2�2
� logC(x) (11)

+
1

2
log(2��2);

and

� logPout;x(I
n+1(x)jIn;R0) � inf

f 2�: �1(x)2Rc
0
g

(In+1(x)� In( �1(x)))2

2�2
� logC(x) (12)

+
1

2
log(2��2):

A key observation here is that the computation of the negative log likelihoods above is done

pointwise. As a result, two distinct transformations  ; � 2 � for which  �1(x) equals ��1(x)

will have the same contribution to the in�ma above and will be redundant. In each of the in�ma

above, therefore, we can quotient the family � of di�eomorphisms by the equivalence relation

 � � ,  �1(x) = ��1(x). The quotient set �= � can then be identi�ed with a subset of the

group � of plane translations. In the worst case, if � is large enough, �= � can be identi�ed with

� itself. We shall make this worst case assumption and allow � to be so large that the search

for the above in�ma reduce to a search over the complete group �. The only simpli�cation we

shall make is to assume that the maximum range of motion from one frame to the next in the

sequence is already known a priori. This is not a major restriction since the maximum range

of motion of each point is already bounded by the diameter of the image domain; furthermore,

in most applications, a maximum range of motion can be assumed with no loss of generality,

reducing the computational burden. This allows us to further replace � with the subset �� of
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plane translations of norm less than or equal to the maximum range of motion �. We obtain:

� logPin;x(I
n+1(x)jIn;R0) � inf

fz:kzk��;x+z2R0g

(In+1(x)� In(x+ z))2

2�2
� logC(x) (13)

+
1

2
log(2��2);

and

� logPout;x(I
n+1(x)jIn;R0) � inf

fz:kzk��;x+z2Rc
0
g

(In+1(x)� In(x+ z))2

2�2
� logC(x) (14)

+
1

2
log(2��2);

where the right hand side is set to a large positive value whenever the search for the in�mum

is over an empty set. Since in any implementation the image plane 
 is discretized, this search

reduces to a �nite search in a restricted neighborhood of pixel x. This is precisely where the

computational e�ciency of this algorithm lies: Instead of searching for the transformation � in

the possibly very large set of di�eomorphisms � and then mapping R0 to R1 via �, likelihoods

of membership in R1 are independently computed for every point in 
 by searching in a much

smaller and simpler set of transformations.

V. Level set Evolution equations for tracking

A. Basic equation

Using the probability estimates for Pin;x and Pout;x obtained in equations (13) and (14) to-

gether with the level set evolution equation (8) yields our proposed level set evolution equation

for tracking:

@u(x)

@t
= �[ inf

fz:kzk��;x+z2R0g
(In+1(x)� In(x+ z))2 � inf

fz:kzk��;x+z2Rc
0
g
(In+1(x) � In(x+ z))2

+�L�u(x)]k~ruk; (15)

where the noise variance �2 has been absorbed in the coe�cient �L. This is the basic equation

we shall use. It is important to note that our complete level set evolution equation for tracking

depends on only two parameters: The search range �, and the length prior coe�cient �L.

B. Using known motion information

Although the basic equation we have proposed in (15) does not use any motion information, it

may happen, in some tracking applications, that motion estimates are available. This could be a

byproduct of tracking itself in that a trajectory model could be built from consecutive tracking

of a region in a sequence, and this trajectory model could be used to predict the region in a

subsequent frame. Or it could be the result of a separate process. In any case, it is expected
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that knowledge of motion should help in tracking. The extent to which knowledge of motion will

improve tracking performance will of course depend on the reliability of the motion estimates.

We can assume that this known motion is given as a vector �eld v on the image domain, and

relates a point x of In+1 to a point x+v(x) of In. To understand how to incorporate knowledge

of this vector �eld in equation (15), it should be noted that the sets over which the in�ma are

computed can be written as fz : kzk � �;x + z 2 R0g = fz : kzk � �g \ fz : x + z 2 R0g and

fz : kzk � �;x+ z 2 Rc
0g = fz : kzk � �g \ fz : x+ z 2 Rc

0g, respectively. In both intersections,

the set fz : kzk � �g is an isotropic neighborhood of the origin in the plane, and can be suitably

modi�ed to re
ect the known a priori about motion. Assume each motion vector v(x) is known

with error �(x), i.e. the exact (unobservable) motion vector at x is known to be in the closed

ball fz : kz � v(x)k � �(x)g of center v(x) and radius �(x). We can immediately incorporate

this information in our tracking algorithm by replacing the set fz : kzk � �g above with the set

fz : kz � v(x)k � �(x)g. This yields the following level set evolution equation:

@u(x)

@t
= �[ inf

fz:kz�v(x)k��(x);x+z2R0g
(In+1(x)� In(x+ z))2

� inf
fz:kz�v(x)k��(x);x+z2Rc

0
g
(In+1(x)� In(x+ z))2 + �L�u(x)]k~ruk: (16)

Note that whenever the motion �eld is known with absolute precision (�(x) = 0 for all x), the

set fz : kz � v(x)k � �(x)g is reduced to the singleton fv(x)g. In this case, tracking becomes

tautological, as can be read from equation (16).

C. Further extensions

We now present extensions to the basic level set equation (15). These extensions are ob-

tained by re�ning the estimates of the probability distributions Pin;x and Pout;x (without loss of

generality, the various normalizing constants have been discarded) ; the corresponding level set

evolution equation can then be obtained by substituting these estimates in equation (8). Note

that all these extensions can be combined in an obvious manner.

C.1 Extension to vector-valued images

The most obvious extension of the approximations described in the previous subsection to the

case of vector-valued images is given by assuming that the various image components are uncor-

related and identically (Gaussian) distributed. This allows us to replace the squared di�erence

expression in equations (11) and (12) with the squared norm of a di�erence. We thus obtain:

� logPin;x(I
n+1(x)jIn;R0) � inf

f 2�: �1(x)2R0g

kIn+1(x)� In( �1(x))k2

2�2
;
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and

� logPout;x(I
n+1(x)jIn;R0) � inf

f 2�: �1(x)2Rc
0
g

kIn+1(x)� In( �1(x))k2

2�2
:

C.2 Estimation away from @R0

In any tracking sequence, the points which are most likely to be misclassi�ed as being inside

or outside of the region being tracked are those which are closest to the region boundary. Those

which are further away from the boundary are less prone to such misclassi�cation. This suggests

that some measure of robustness can be added by performing the estimation in equations (11)

and (12) by discarding points which are �-close to the boundary @R0. This yields the following

approximations:

� logPin;x(I
n+1(x)jIn;R0) � inf

f 2�: �1(x)2R0;d( �1(x);@R0)>�g

(In+1(x)� In( �1(x)))2

2�2
;

and

� logPout;x(I
n+1(x)jIn;R0) � inf

f 2�: �1(x)2Rc
0
;d( �1(x);@R0)>�g

(In+1(x)� In( �1(x)))2

2�2
;

where d denotes a distance function on 
.

C.3 Using local image structure

The search for the in�mum in equations (11) and (12) is done by computing a squared di�er-

ence expression. This expression is a measure of the mismatch between a point and its postulated

corresponding match. Since a considerable amount of image structure is preserved during track-

ing, it is possible to take this local image structure into account in the search for the in�mum.

The most obvious way of doing so is to replace the squared di�erence expression at x by a sum

of squared di�erences in a neighborhood of x. This yields:

� logPin;x(I
n+1(x)jIn;R0) � inf

f 2�: �1(x)2R0g

P
y2Vx;�

(In+1(y)� In( �1(x)))2

2�2
;

and

� logPout;x(I
n+1(x)jIn;R0) � inf

f 2�: �1(x)2Rc
0
g

P
y2Vx;�

(In+1(x)� In( �1(x)))2

2�2
;

where Vx;� is the �-ball around x. Since the expressions above are not computed pointwise,

we cannot reduce the set � of di�eomorphisms to a subset of the group of plane translations.

Nevertheless, assuming the di�eomorphims in � are close to being locally Euclidean, we can

reduce � to a subset of the group of plane Euclidean transformations, as long as � is small enough.

Once again, this allows us to replace the search over a possibly huge space of transformations

with a number of independent searches over a much smaller space of transformations.
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C.4 Extension to arbitrary distance functions

We can generalize the expressions in equations (11) and (12) even further, by completely

discarding the assumption of Gaussian noise. This allows us to replace the squared di�erence

expression with any distance function. This distance could be pointwise (e.g. the absolute

di�erence of intensities at two points) or it could be computed over a neighborhood of the

points under consideration (e.g. the sum of absolute di�erences of intensities in a neighborhood

of the points). As was mentionned earlier, this does not always allow us to make the reduction

from the family � of di�eomorphisms to a subset of the group of plane translations. To make this

reduction, one has to ensure basic invariance properties of this distance function. This distance

function could even be a distance between intensity distributions computed in the neighborhood

of the points. Such a distance function, robust to partial occlusions, clutter, rotations, and

changes in camera position has been proposed in [17]. Letting d be such a general distance

function, the general level set evolution equation for tracking then becomes

@u(x)

@t
= �[ inf

fz:kzk��;x+z2R0g
d((x; In+1); (x+ z; In))� inf

fz:kzk��;x+z2Rc
0
g
d((x; In+1); (x+ z; In))

+�L�u(x)]k~ruk:

VI. Experimental Results

We illustrate our tracking algorithm on three real image sequences with natural motion. In

all three experiments, an initial contour is manually outlined in frame 0 (I0) of the sequence;

this contour is then tracked from frame 0 to frame 1 (I1), then from I1 to I2, ... and so on until

the last frame in the sequence. In all three experiments, region tracking from frame to frame

is performed via equation (15), with, for color sequences, the extension described in Subsection

V-C.1. All three experiments have been performed with the same value of the length prior

coe�cient �L = 10. The parameter �, on the other hand, which determines the maximum range

of motion, has been set to di�erent values.

The �rst tracking experiment is performed on the parking sequence. This is a gray level

interlaced sequence with little interframe motion. The only object with any apparent motion is

a white car tracing a circular path at the image speed of 1 to 2 pixels per frame. Accordingly,

in this experiment, we have set � = 5. The body of the car, which is manually outlined in frame

0 and tracked over 150 frames, changes little shape overall, but its orientation is substantially

modi�ed in going from frame 0 to frame 150. The result is shown in Figure 4. Note that the car

is accurately tracked over the �rst 20 frames. At frame 30, however, the contour on the right

side of the car is slightly deformed. This can be explained by the fact that the luminance of

the right side of the car and that of the road are very close. Hence, the only force acting on
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the contour there is due to curvature and tends to shrink the contour. This shrinking continues

until frame 50 and the contour then stabilizes. Frames 55 to 70 show changes in topology which

can be handled by level set equations. In frame 55, part of the white marking on the road has

been misclassi�ed as part of the car. In frame 60 however, the portion of contour englobing

the marking is severed from the portion englobing the car, again due to curvature. The same

phenomenon is shown in frames 65 and 70. From frame 80 onwards, the car is accurately tracked

without any substantial changes in the geometry of the tracking contour. Furthermore, one of

the two contours associated to road markings fades away between frames 90 and 100. Note that

the �nal tracking result, as shown in frame 150, is very close to the original, in frame 0. Note

that the contour deformation in frame 30 could be avoided through the inclusion of a shape

model. Such a shape model could be either included as a prior on the shape of the region being

tracked, or used to re�ne estimates of the probability functions Pin and Pout.

The second experiment is performed on a subsequence of the manege sequence, which is an

interlaced YUV color sequence. Speci�cally, we have constructed a new sequence (which we

shall call manege subsequence) by temporally subsampling the manege sequence by a factor of 4,

in order to construct longer range motion. Thus, frame k of manege subsequence corresponds to

frame 4k of the original manege sequence. At frame 0 of manege subsequence, the region to be

tracked in subsequent frames, namely the body of the sailboat, is manually outlined. Motion of

this region from frame to frame inmanege subsequence is mainly translational, and mainly in the

horizontal direction, with an average displacement of about 30 pixels. The vertical displacement

of this region is an order of magnitude smaller than its horizontal component. Here, we have set

� = 30. We track the region of interest over 10 frames of manege subsequence. Since the body of

the sailboat undergoes a rotation in space around an axis parallel to the image plane, the shape

of its projection on the image plane is modi�ed in going from frame 0 to frame 10. Despite

this fact, tracking has been performed very faithfully, as can be seen in Figure 5. Note that the

rudder, which is prominent in frame 10, is barely visible in frame 0. Note also the precision with

which the contour has tracked the object boundary, given that the interframe displacement is

on the order of 30 pixels, and despite the fact that no priors on intensity edges were used. To be

sure, some inaccuracies remain in the contour, especially on the top right corner of the sailboat.

This is due to the fact that no shape models were used to guide the tracking. Improvements

to these tracking results can be obtained by incorporating further a priori knowledge on shape

other than mere smoothness. Note also that in this image sequence the background is far from

being smooth, containing numerous strong intensity boundaries, and that it is far from being

stationary, in stark contrast to the requirements of the algorithm presented in [13].

The third experiment is performed on the autoroute sequence, which is a gray level interlaced
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sequence. A car is manually outlined in frame 0 and is tracked over 40 frames. Interframe

displacement of the car from frame to frame is about 5 pixels. We have therefore set � = 5.

Furthermore, the car's size changes substantially from frame 0 to frame 40, as it is shrunk by

a factor of 3, and is even partially occluded by the car following it, as can be seen in frame

40. Once again, the initial contour is tracked very accurately, including even the mirror which

appears as a small dent on the left side of the car. Note that in frame 10 the contour seems to

go somewhat astray, as it locks to portions of the car shadow on the road. This does not persist

however, and the contour returns to the car body. Note that overall, only the car body is being

tracked, as desired. This would have not been the case, had tracking been based on intensity

boundaries. Indeed, the car shadow on the road has strong enough contrast with respect to the

road to mislead an intensity edge based tracking algorithm, as can be seen in the results on the

highway sequence given in [13]. Note also that the tracking is very accurate despite the partial

occlusion in frame 40.

To give some idea of the time e�ciency of our algorithm, tracking from frame to frame of

the autoroute sequence took approximately �ve seconds, on a 450 MHz Pentium-III PC under

Linux. No attempt was made at using special techniques to reduce the computations [15], [16],

nor at optimizing the code. It is expected that the use of such techniques will allow real-time

tracking by our algorithm.

In closing, we illustrate the performance of our algorithm on a sequence with synthetic motion

which has been constructed so as to show the limits of the proposed tracking level set equation

(15). This sequence, which we call the camou
age sequence, has been constructed from a portion

of the aqua YUV color sequence by cutting out a disc-like shape from the textured vegetation

in the center of the image and pasting it so as to create apparent motion from the lower left

corner to the upper right corner, as can be seen in Figure 7. The displacement of the disc-

shaped object from frame to frame is about 15 pixels, so we have set � = 20. This disc-shaped

object is manually outlined in frame 0 of the sequence and is tracked in subsequent frames, using

equation (15) with �L = 10 as before. Note that the tracking is accurate until and including

frame 3 of the sequence, despite the fact that already in frame 3, most of the right part of the

disc is overlapping a background with texture similar to that of the region. In frame 4 of the

sequence, the right side of the tracked region is strongly deformed. This is due to the fact that

the region and background textures are so similar there that the probability estimates Pin and

Pout are almost identical for most of those points. These two probability functions cancelling

each other out (see equation (8)), the curve evolution equation at those points is driven only by

curvature. Note that on the left edge of the region, where the region and background textures

are distinct, the tracking result remains accurate. In frame 5, the tracked region is even more
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deformed, as it is almost completely superimposed on a background with identical texture. This

sequence is indeed challenging, and without constraints on shape, the ambiguity between region

and background in frames 4 and 5 cannot be resolved.

VII. CONCLUSIONS

We have presented a novel method for tracking regions in image sequences. The novelty of the

method lies in the fact that region tracking is formulated as a Bayesian estimation problem, with

no motion model assumed nor any dense motion �eld computed. Furthermore, no assumptions,

other than smoothness, are being made on the shape of the region being tracked nor on its

intensity boundaries. In particular, the shape of the region being tracked is not constrained

to belong to a particular parametrized family of shapes, nor should the region exhibit strong

contrast with respect to the background. The only basic assumption of this algorithm is that

a region's luminance/chrominance characteristics be relatively constant from frame to frame.

Clearly, this is the minimum assumption on which any tracking algorithm should rely. The

tracking algorithm is formulated as a Bayesian estimation problem and its solution provided by

a level set partial di�erential equation. The bene�ts of this approach are numerical stability

of the descent iterations and 
exibility in topology. The experimental results we have shown

demonstrate that this algorithm yields very accurate tracking results despite the minimality of

assumptions on which it is based. Our current research is aimed at providing better estimates

of the various probability functions used in the proposed algorithm.
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(0) (10) (20) (30)

(40) (50) (55) (60)

(65) (70) (80) (90)

(100) (110) (120) (130)

(140) (150)

Fig. 4. Tracking on the parking sequence. The frame number is indicated below the pictures. Note the

change in topology in frames 55 and 60. Note: Contour has been thickened for better visibility.
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(0) (1)

(2) (3)

(5) (10)

Fig. 5. Tracking on manege subsequence. The frame number is indicated below the pictures. Compare

the rudder in frame 0 and in frame 10. Note: Contour has been thickened for better visibility.
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(0) (1) (2) (3)

(4) (5) (6) (7)

(10) (20) (30) (40)

Fig. 6. Tracking on the autoroute sequence. The frame number is indicated below the pictures. Note

the stability of the contour, despite the change in size of the car, and despite the occlusion in frame

40.
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(0) (1)

(2) (3)

(4) (4)

Fig. 7. Tracking on the camou
age synthetic sequence. This is a challenging sequence, as the region's

texture is identical to a portion of the background's texture. The frame number is indicated below

the pictures. Note: Contour has been thickened for better visibility.
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