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Abstract
A theory of stereo image formation is presented that en-
ables a complete classification of all possible stereo views,
including non-perspective varieties. Towards this end, the
notion of epipolar geometry is generalized to apply to mul-
tiperspective images. It is shown that any stereo pair must
consist of rays lying on one of three varieties of quadric
surfaces. A unified representation is developed to model all
classes of stereo views, based on the concept of a quadric
view. The benefits include a unified treatment of projec-
tion and triangulation operations for all stereo views. The
framework is applied to derive new types of stereo image
representations with unusual and useful properties.

1 Introduction
A stereo pair consists of two images with purely horizon-
tal parallax, that is, every scene point visible in one image
projects to a point in the same row of the other. We seek
to characterize the space of all stereo images. In particu-
lar, suppose that you could construct two sensors that each
measure light along an arbitrary 2D set of viewing rays and
place the resulting measurements in an image. What is the
range of light rays and sensor designs that produce a stereo
pair?

While the geometric properties of perspective images are
well understood, relatively little is known about other types
of stereo images. Non-perspective image representations
have received burgeoning interest in recent years due to the
development of exciting new panoramic sensors [2, 10] and
a host of applications in vision and graphics. Furthermore,
recent results [7] have demonstrated the existence of stereo
panoramas [12] that enable an observer to achieve a 360Æ

depth perception. Processing such images with stereo al-
gorithms enables a panoramic scene reconstruction from a
single image pair [7, 17], a key capability that is not possi-
ble with perspective images.

Inspired by this previous work in multiperspective imag-
ing, we seek to identify all of the ways in which stereo im-
ages may be formed. Towards this end, this paper makes
the following contributions:

� Epipolar geometry is extended to multiperspective im-
ages. The main result is that three varieties of epipo-
lar geometry exist, corresponding to families of planes,
hyperboloids, and hyperbolic-paraboloids.

� It is shown that all stereo images represent rays lying
on quadric surfaces. Based on this analysis, a complete
classification of stereo images is derived.

� A unified representation is introduced to model all
classes of stereo images, based on the concept of a
quadric view. The benefits include a unified treatment
of projection and triangulation operations for all stereo
image varieties.

� A recipe book for generating stereo images is pro-
vided. In order to demonstrate the power of this frame-
work, we show how all previous stereo images can be
systematically constructed, and present three new vari-
eties with interesting properties. Real examples of one
of these representations, which we call stereo cyclo-
graphs, are shown.

� It is shown that the only three-view epipolar geometry
that exists is the planar variety.

These results are perhaps counter-intuitive in two re-
spects. On one hand, they demonstrate that we can poten-
tially fuse images that have multiple centers of projection.
This is surprising, in that our visual system is clearly de-
signed for processing two single-perspective images. On
the other hand, it is surprising that so few varieties of stereo
views exist. Out of all possible 2D subsets of the 5D set of
rays, only three varieties satisfy the stereo constraint!

Concurrent with this research, Pajdla [11] independently
obtained a similar classification of epipolar surfaces (the
first bullet in the above list), but specialized for the case
of cameras that capture lines rather than rays.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces a generalized model of image formation
and defines the stereo constraint geometrically. Section 3
presents our classification of stereo images and their asso-
ciated epipolar geometries. Section 4 introduces the con-
cept of a quadric view and derives a unified mathematics
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for stereo imaging. The stereo cyclograph is introduced in
Section 5 and example images are shown.

2 Stereo Imaging
2.1 A Generalized Imaging Model
Light in any environment flows along straight lines in
space1. From the viewer’s perspective, it is convenient to
model light flow in terms of the distribution of light that is
received at each point and from each direction in the envi-
ronment, i.e., along each light ray R = (x; y; z; �; �). The
set of all light rays defines a five-dimensional set that we
call ray space and denoteP . The light energy flowing along
these rays can be represented as a function P : P ! E ,
where E represents light energy2. P is known as the plenop-
tic function [1].

We use the term view to denote any two-dimensional
subset of light rays:

A view is any function V : D ! P on a surfaceD
that maps image coordinates (u; v) to light rays.

An image I measures the light observed for a
view, i.e., I = P Æ V .

Conceptually, a view encodes imaging geometry—the
distribution of light rays measured by a camera, whereas an
image represents photometry—light energy radiated from
the environment toward the camera. In this paper, it is im-
plicit that every image I has a corresponding view V . Ac-
cordingly, any terms that we define for views, e.g., field of
view, stereo pair, etc., will also apply to images.

These definitions are very broad, emcompassing most
projection models used in the computer vision literature,
including single point perspective, orthographic, weak per-
spective, and affine models [8]. In addition, non-perspective
mosaic representations fit this definition, including single-
perspective panoramas [2], multiperspective panoramas
[19], manifold mosaics [13], multiple-center-of-projection
images [14], stereo panoramas [12], concentric mosaics
[16], omnivergent images [17], and 360 � 360 panoramas
[10]3.

The following terminology and notation will be useful.
The field of view of a view V , denoted FOV (V ) is defined
to be the range of V , i.e., FOV (V ) = fV (u; v) j (u; v) 2
Dg. We say a point X is within the field of view of V ,
denoted X 2 FOV (V ), if X lies along some ray in
FOV (V ).

1For the purposes of this paper, relativistic effects due to the curvature
of space are ignored.

2In RGB color space, E is isomorphic to <3 . More generally, E can be
a function space representing the light spectrum.

3Note that this definition of an image requires that every image point
corresponds to a unique light ray–point spread functions, for instance, are
not modeled.

We write X 2 R when a 3D point X lies along a ray
R. The intersection of two rays R1 and R2 is written R1 \
R2. In general, this intersection can be a point, a ray, or be
empty.

The projection of a pointX to a view V is defined to be
the set of tuples (u; v) 2 D such that X 2 V (u; v). The
projection of a set of points X is defined to be the union of
the projections of points in X .

We use the notation Du to denote column u in a view,
and Dv to denote row v. We say a view V is u-continuous
if, for every value of v, V (u; v) is a continuous function of
u and connected sets of points in FOV (V ) project to con-
nected subsets of Dv. v-continuity is defined analogously.

2.2 Multiperspective Imaging
Pin-hole camera models have the property that all rays pass
through a single point in 3D space, known as the center of
projection. Driven by applications in graphics [19, 14, 16]
and stereo matching [7, 17], several researchers have pro-
posed view representations that do not have a single distin-
guished center of projection. Rather, these multiperspec-
tive views capture rays that emanate from different points
in space. We define the generator of a view to be the set of
“camera centers” for that view:

The generator of a view V is defined to be
f(x y z) j (x; y; z; �; �) 2 FOV (V )g.

2.3 The Stereo Constraint
A stereo pair consists of two u-continuous views with
purely horizontal parallax, that is, every scene point visi-
ble in one view projects to a point in the same row of the
other view. Images satisfying this property can be fused by
human observers to produce a depth effect and are amenable
to processing by computational stereo algorithms.

More formally, we say that two u-continuous views V1
and V2 satisfy the stereo constraint if the following property
holds:

The rays V1(u1; v1) and V2(u2; v2) intersect only
if v1 = v2.

Any two such views are referred to as stereo views or a
stereo pair.

It is often the case that views in a stereo pair will over-
lap only partially, i.e., there are points in the scene that lie
within the field of view of one view but not the other. Such
points cannot be “fused” and we therefore limit our analy-
sis to regions of the scene within the field of view of both
views. We also ignore points that are imaged with the same
ray in both views, since such points do not provide stereo
depth cues. For instance, two identical images from the
same perspective camera viewpoint satisfy our definition of
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(a) (b)

Figure 1: Epipolar Geometry. (a) Rays in two perspective
views lie on a pencil of epipolar planes. (b) Rays in stereo
panoramas and 360� 360 panoramas lie on epipolar hyper-
boloids.

a stereo pair, but yet do not provide parallax cues that can
be used to infer depth. Accordingly, we define the stereo
viewing region as follows

A point X in 3D space is stereo viewable from
V1 and V2 if there exist rays R1 2 FOV (V1) and
R2 2 FOV (V2) such that R1 \R2 = X.

The set of all points X that are stereo viewable from
two views V1 and V2 is referred to as the stereo viewable
space, denoted V2

1
. Note that there are generally points in

the stereo viewable space that are occluded in one or both
images. Occlusions will not affect our analysis, however,
since the stereo constraint is defined by the distribution of
rays, independent of visibility.

2.4 Central Perspective Stereo
The classical example of a stereo pair consists of two planar
perspective views where the second view has been trans-
lated horizontally from the first4. The fact that two such im-
ages have horizontal parallax is important both for human
perception and computational stereo vision.

It has long been known that a perspective stereo pair
(V1, V2) obeys a very special geometric constraint: the rays
in both views all lie on a pencil of planes, as shown in
Fig. 1(a). In particular, the rays in row v of V1 sweep out a
surface that lies on a plane in the scene, denoted Pv . Simi-
larly, row v of V2 sweeps out a second surface that also lies
on Pv. Pv is known as the epipolar plane of row v of the
image.

Note that any pair of perspective images defines a set
of epipolar planes, i.e., epipolar geometry apply to all per-
spective images, not just to stereo pairs. In fact, it has
been shown that epipolar geometry applies to panoramic
views that are defined on cylindrical [9] or spherical im-
age domains [18]. In general, it can be seen that any pair of
central views, i.e., views that are each generated by a sin-
gle point, can be partitioned into rays that lie on epipolar
planes–as shown in Fig. 1(a), this condition is independent

4More specifically, “horizontal” means in the direction of a row on the
image plane of the first view.

of the shape of the imaging surface and depends only on the
positions of the generators (camera centers).

Importantly, any pair of views that define epipolar
planes can be converted into a stereo pair by reparam-
eterization of the domain D. This procedure is known as
rectification in the stereo literature, and can be applied sim-
ply by creating a new domain D0 of the same topology as
D such that rays in the same epipolar plane have the same v
coordinate in D0.

2.5 Multiperspective Stereo
While the epipolar condition (referred to as epipolar geom-
etry) is well-understood for perspective views, it is not clear
what it means for two multiperspective views to have epipo-
lar geometry. In particular, can stereo pairs be created from
views that do not have a single center of projection? Re-
cent work has shown that multiperspective stereo pairs do
indeed exist. For instance, Ishiguro et al. [7] and Peleg
et al. [12] described how stereo panoramas could be pro-
duced by capturing a set of viewing rays passing through
a circle. Interestingly, stereo panoramas can be shown to
have purely horizontal parallax [17], but, unlike perspective
views, allow for a 360Æ field of view.

Do stereo panoramas have epipolar geometry? Clearly,
the rays from stereo panoramas do not all lie on a pencil
of epipolar planes. Note that each scanline of the left view
is formed by rotating a single ray around a circle, sweeping
out a hyperboloidS1 as shown in Fig. 1(b). The correspond-
ing scanline of the right view defines a second hyperboloid
S2. Note that S1 = S2, ensuring that the left and right
scanlines correspond to the same subset of the scene. In the
same way that perspective rays lie on epipolar planes, rays
from stereo panoramas can be shown to lie on “epipolar hy-
perboloids.”

3 A Classification of Stereo Views
What is the space of all stereo views? In this section we
derive a full categorization of pairs of views that satisfy the
stereo constraint.

3.1 Epipolar Surfaces
Let V1 and V2 be two stereo views, and consider a specific
row v. Since both views are u-continuous, the light rays
Vi(u; v) sweep out a ruled surface Si. We are interested in
the subset of S1 and S2 that is stereo viewable. In particular,
define the epipolar surface for row v to be S2

1
(v) = S1 \

S2 \ V2

1
. In the case of perspective views, for example,

S2

1
(v) is planar for all v.
In the general case, observe that S2

1
(v) contains two fam-

ilies of straight lines–it lies on a doubly-ruled surface (see
Fig. 1). We may therefore characterize the space of stereo
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generator double-ruled quadric
point plane
line plane, hyperboloid, hyperbolic paraboloid

ellipse hyperboloid
parabola hyperbolic paraboloid

hyperbola hyperboloid, hyperbolic paraboloid

Table 1: Any quadric view may be generated by moving
a sensor along a conic path. This table shows the doubly-
ruled quadrics for each conic generating path.

views by classifying the set of all doubly-ruled epipolar sur-
faces. Fortunately, the latter set can be explicitly character-
ized. In particular, the only doubly-ruled surfaces are the
plane, hyperboloid, and hyperbolic paraboloid [6]. While
this classical result applies to algebraic surfaces ruled by
lines, with some care it can be extended to the case of non-
parametric surfaces ruled by rays or line segments. Due to
space limitations, we present the proof of this result in a
companion technical report [15].

We therefore have the following result:

Stereo Classification Theorem: V1 and V2 are
stereo views only if for every row v, S2

1
(v) lies on

a plane, hyperboloid, or hyperbolic paraboloid.

This result demonstrates that we can potentially fuse im-
ages that have multiple centers of projection, a result that
may seem counter-intuitive. Also surprising is that so few
varieties of stereo views exist–out of all possible 2D subsets
of the 5D set of rays, only three varieties satisfy the stereo
constraint.

Note that this theorem concerns the distribution of rays
in space, but does not specify the exact parameterization.
Different (u,v) parameterizations of the same set of rays
will produce distinct images. We could further generalize
the space of stereo images by allowing any parameteriza-
tion of rays so that epipolar surfaces map to arbitrary curves
(or 1D point sets) rather than horizontal lines. These gen-
eralized stereo images could always be rectified to produce
images with horizontal epipolar lines, much in the way that
perspective image pairs are rectified. Regardless of parame-
terization, however, the plane, hyperboloid, and hyperbolic
paraboloid are the only types of epipolar surfaces.

We use the term quadric view to denote a view having the
property that all rays in each row lie on a quadric surface.

3.2 Three- and N-View Stereo
The stereo constraint is easily generalized to three or more
views by requiring that the two-view stereo constraint be
satisfied for every pair of views. A direct consequence of
this condition is that all three views must share the same set
of epipolar surfaces. In particular, each row must sweep out
a triply-ruled surface. Since every triply-ruled surface is
also doubly-ruled, the epipolar surfaces must lie on planes,

image representation generator epipolar surfaces
perspective point pencil of planes

stereo panorama [7, 12, 17] circle half-hyperboloids
360 � 360 [17, 10] circle hyperboloids

spherical omnivergent [17] sphere pencil of planes
pushbroom panorama line pencil of planes

stereo cyclograph ellipse half-hyperboloids
parabolic panorama parabola hyper. paraboloids

Table 2: Classification of known stereo view varieties. The
last three variants are introduced in this paper.

hyperboloids, or parabolic paraboloids, by the Stereo Clas-
sification Theorem. Of these only the plane is a triply-ruled
surface (it has an infinite number of rulings). It follows that
the only epipolar geometry for three or more views is the
planar variety. The pushbroom panorama described in Sec-
tion 3.3 is an example of an image representation that can
be used to form stereo triplets, quadruplets, etc.

3.3 Generating Stereo Views
We now turn to the problem of how stereo views may be
captured. Whereas perspective views can be imaged with a
small CCD array, the same is not necessarily true for mul-
tiperspective views. In general, multiperspective views re-
quire placing sensors on a generating path or surface. In
principle, this generator could be arbitrarily complex. Due
to their restrictive form, however, stereo views are gener-
ated with relative ease.

In particular, any quadric view may be generated by cap-
turing rays from a conic path. For instance, a hyperboloid
is generated by a line, ellipse, or hyperbola. Conversely,
any conic is the generator for some quadric surface. Ta-
ble 1 summarizes the doubly-ruled quadrics corresponding
to each conic generator. This table may be used as a recipe
book for generating stereo pairs. For instance, suppose you
wish to generate a stereo pair with hyperbolic paraboloid
epipolar geomery. Table 1 indicates that you should capture
the appropriate rays by moving a camera or placing sensors
on a line, parabola, or hyperbola.

Because our classification is comprehensive, we can
characterize all previously proposed varieties of stereo im-
ages in terms of their generators and corresponding fam-
ilies of quadric epipolar surfaces (Table 2). In addition,
the classification suggests new varieties of interest, three of
which are listed in the table. The pushbroom panorama and
parabolic image are described briefly in this section, and
the stereo cyclograph is presented in detail in Section 5.

A pushbroom panorama is generated by translating a
camera to create a sequence of images with purely hori-
zontal parallax. Suppose we translate a perspective camera
parallel to the image-plane u-axis, and extract column i of
pixels from every input image. Placing these columns into
successive columns of a new image Ii creates a new image
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(a) (b)

Figure 2: Geometry of a pushbroom panorama (a) and a
parabolic image (b).

representation which we call a pushbroom panorama. Se-
lecting different subsets of rays from each view produces
other varieties of pushbroom panoramas. For instance, cap-
turing a cone of rays symmetric about the translation di-
rection generates the omnidirectional pushbroom panorama
shown in Fig. 2(a). These image representations are gener-
alizations of pushbroom cameras [5]. Any two pushbroom
panoramas Ii and Ij form a stereo pair with rays lying on
a pencil of epipolar planes, as shown in Fig. 2(a). An ex-
ample application of pushbroom panoramas is to create a
stereo panorama of an entire city street or landscape.

The second new variety of stereo pair proposed in this
paper is generated by moving a camera on a parabolic path.
As indicated in Table 1, this strategy can be used to create
views whose rows lie on hyperbolic paraboloids, as shown
in Fig. 2(b). Two such images that share the same set of hy-
perbolic paraboloids form a stereo pair. While of theoretical
interest, parabolic stereo pairs have a rather limited stereo
viewable region with the wedge shape shown in Fig. 2(b).
Consequently, a stereo effect is achieved only for objects
near the generator, making this image representation less
attractive compared with the alternatives in Table 2.

4 Quadric Imaging Representation
Equipped with a classification of stereo pairs, we now turn
to the question of how to represent and operate on such
views. The objective is to obtain a unified approach that
applies to every type of stereo pair, including multiperspec-
tive views. Since all stereo pairs are made up of rays lying
on quadric surfaces, it is convenient to cast our formulation
in the framework of projective geometry.

4.1 Terminology
We denote points in the scene as 4D homogeneous column
vectorsX = [x y z 1]

T and planes as 4D homogeneous row
vectorsP = [a b c d]. PointX is on plane P if and only if

PX = 0 (1)

Any quadric surface Q is represented as the set of solu-
tions to a quadratic equation:

Q = fX jXTQX = 0g (2)

whereQ is a symmetric 4� 4 matrix.

4.2 Quadric Representation
Let V be a u-continuous view. Each row of V defines a
ruled surface S swept out by the rays in that row. If every
row of V sweeps out a quadric surface, V is a quadric view.
Suppose further that V is also v-continuous with the prop-
erty that every column also defines a quadric surface. We
use the term bi-quadric view to denote such a view V . We
will devote special attention to bi-quadric views since most
of the image representations of interest fit into this category.

Any bi-quadric view is defined by a two parameter fam-
ily of quadric surfaces. Let Qv denote the quadric surface
corresponding to row v and Qu the quadric surface corre-
sponding to column u of V . The ray V (u; v) is represented
as the space of solutions to the following equations:

XTQvX = 0 (3)

XTQuX = 0 (4)

plus any number of field of view constraints of the form:

XTQiX � 0 (5)

Here V (u; v) is defined implicitly to be the set of allX that
satisfy Eqs. (3-5). For the special case thatQu is a plane for
every value of u, Eq. (4) may be more conveniently written:

PuX = 0 (6)

and similarly for Eqs. (3) and (5).
For example, consider the case of a planar perspective

view V . The perspective projection equations may be writ-
ten: u = �X, where � is the 3 � 4 projection matrix for
that view, and u = [su sv s]

T . Using the notation that�i is
the ith row of�, we can rewrite these equations as follows

(�2 � v�3)X = 0 (7)

(�1 � u�3)X = 0 (8)

plus field of view constraints

(�2 � vmin�3)X � 0 (9)

�(�2 � vmax�3)X � 0 (10)

(�1 � umin�3)X � 0 (11)

�(�1 � umax�3)X � 0 (12)

Eqs. (7-12) represent the ray V (u; v) as the intersection
of two planes and the viewing frustum, as shown in Fig. 3.
�2 � v�3 is the vector corresponding to the plane passing
through the camera center and row v of the image plane.
Similarly,�1 � u�3 represents the plane from the camera
center through colum u of the image plane.
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Pv

Pu

(u,v)

image plane

column u

row v

V(u,v)

camera
center

Figure 3: Bi-quadric Image Representation. A perspective
view is represented by the two families of planes (quadrics,
more generally) Pu and Pv and field of view constraints.
Each ray in the field of view is specified by the intersection
of two of these planes.

As another example, consider the case of a 360 � 360
panorama [10]. As originally described in [17], this variety
of stereo view is generated by moving a camera along a
circle and capturing a planar strip of rays that is normal to
the circle radius. The result is a panoramic image with a
360Æ horizontal and vertical field of view. Since opposite
edges of the image are identified, the domain of the view is
a torus.

A 360� 360 panorama can be represented in our frame-
work by a family of hyperboloids and planes as follows

Pu = [cos(u) sin(u) 0 � 1] (13)

Qv =

�
1 0 0 0
0 1 0 0
0 0 �v 0
0 0 0 �1

�
(14)

[ sin(u) cos(u) 0 0 ] X � 0
[ 0 0 1 0 ] X � 0

(15)

The field of view (inequality) constraints specify which set
of rays are captured along the generating circle for a given
image. In particular, this view captures only “forward” rays
in the direction of motion around the circle, from the top
half of the hyperboloid. The corresponding image generates
the top half of a 360� 360 panorama. The bottom half may
be generated with a similar set of constraints.

4.3 Quadric Projection
The camera projection operator maps 3D pointsX into view
coordinates (u; v). In the case of bi-quadric views, the
projection operation maps 3D points onto two families of
quadric surfaces, indexed by u and v. GivenX, u and v are
computed by first checking thatX satisfies the field of view
constraints, and then solving Eqs. (4) and (3) for Qu and
Qv respectively. Note that these equations are linear in the
elements of Qu and Qv. If Qu andQv depend linearly on
u and v then the solution of u and v are also linear.

In the case of a 360� 360 panorama, for example, sub-
stituting Eqs. (14) and (13) into Eqs. (3) and (6) yields

v = x2+y2�1

z2
u = � arccos(

x�y
p
x2+y2�1

x2+y2
)

A unique value of u may be obtained by enforcing the field
of view constraints (Eqs. (15)).

4.4 Quadric Triangulation
Let (u1; v) in V1 and (u2; v) in V2 be projections of the
same scene pointX. The problem of computingX from its
projections in two images is known as triangulation. The
triangulation of (u1; v) and (u2; v) is computed by solving
the following equations forX

XTQvX = 0 (16)

XTQu1X = 0 (17)

XTQu2X = 0 (18)

Once again, Eqs. (17) and (18) may be replaced with
Pu1X = 0 and Pu2X = 0, respectively, when Qu1 and
Qu2 are planar.

For the case of a 360�360 panorama, the triangulation of
image points (u1; v) and (u2; v) is obtained by substituting
Eqs. (14) and (13) into Eqs. (16-18). After applying the field
of view constraints (Eqs. (15)) the following expression for
X is obtained:

X =

h
sin(u2) � sin(u1)

sin(u2 � u1)

cos(u1) � cos(u2)

sin(u2 � u1)

1
p
v

tan(
u1 � u2

2
) 1

i
T

4.5 The Quadric Fundamental Matrix

Let V1 and V2 be a stereo pair. By definition, for two points
(u1; v1) in V1 and (u2; v2) in V2 to be in correspondence, v1
and v2 must be identical. This constraint is easily encoded
in terms of the fundamental matrix equation which has a
very simple form for all stereo views:

[u1 v1 1]

"
0 0 0
0 0 �1
0 1 0

#"
u2

v2

1

#
= 0 (19)

5 Stereo Cyclographs
An interesting type of panorama may be created by mov-
ing an inward-facing camera 360Æ on an ellipse around an
object of interest, capturing a column of pixels from each
image, and stacking these columns side by side into a new
panorama. This construction resembles an approach used
by archaeologists to create unwrapped “cyclograph”5 im-
ages of ancient pottery [4]. Using the concepts from Sec-
tion 3, it can be seen that this construction generates a bi-
quadric image, where the rows of the image sweep out hy-
perboloids and the columns define planes.

In order to create stereo cyclograph images, we placed
a video camera on a rotating platform and captured a se-
quence of images while the camera rotated in a circle
around the object. The camera was pointed inward towards
the subject (a person’s head). The entire image sequence

5Cyclographs are also referred to as periphotographs or rollout pho-
tographs.
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contains just over 24 seconds of video. If the frames are
stacked one on top of the other, they define an x-y-� vol-
ume, similar to the x-y-t volumes introduced by Bolles et
al. [3]. Cyclograph images correspond to y-� slices through
the volume, as shown in Fig. 4(a). In particular, a stereo
cyclograph is formed from any two y-� slices that are sym-
metric about the slice x = x0 of rays that pass through the
axis of rotation.

Fig. 5 shows three stereo cyclograph pairs constructed in
this manner. Since all rays in a cyclograph are tangent to a
cylinder, the interior of the cylinder is not visible. Hence,
only the subject’s nose, glasses, and pony-tail are visible in
the top row of Fig. 5(b) and the rest of the object is seam-
lessly removed. As the radius of the cylinder is decreased,
more of the subject’s face comes into the field of view (mid-
dle row), until the head is fully visible (bottom row), creat-
ing an interesting effect. The bottom pair of images can be
fused stereoscopically.

Stereo cyclographs enable viewing “all sides” of an ob-
ject at once, in stereo. In addition to visualization, cyclo-
graphs have potential benefits for shape reconstruction. Ex-
isting stereo techniques can be applied to the bottom pair
of images in Fig. 5 to obtain a nearly completed 3D head
model from a single image pair. The entire set of cyclo-
graphs could be used for structure-from-motion or multi-
baseline stereo processing, perhaps using new algorithms
that exploit the unique structure of cyclograph sequences.

6 Conclusion
A theory of stereo image formation was presented that pro-
vides a complete classification of all possible stereo views.
A main result was that only three varieties of epipolar sur-
faces exist, corresponding to rays lying on doubly-ruled
quadrics. A second important contribution was a novel rep-
resentation called a quadric view that provides a unified
mathematical treatment of all stereo views. This framework
was used to derive projection and triangulation operations
that apply equally to both perspective and multiperspective
image representations. The framework was shown to sub-
sume all previous stereo image representations and also en-
abled deriving three new types of stereo image representa-
tions with unusual and useful properties. One of these rep-
resentations, called the stereo cyclograph, was experimen-
tally demonstrated and offers compelling advantages for vi-
sualization and 3D reconstruction tasks.
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Figure 4: A cyclograph is generated by moving an inward-looking camera on an ellipse and stacking the sequence of images
into an x-y-� volume (a). y-� slices of the volume form cyclograph images. All of the rays in each cyclograph are tangent to
a sheared cylinder (each cross section is an ellipse) (b). A stereo cyclograph pair consists of two views that are both tangent
to the same sheared cylinder (b-c), but with tangent rays oriented in opposite directions.

(a)

(b)

Figure 5: Stereo Cyclograph Images. (a) Four of 732 images captured by moving a camera on a circle around a person’s
head. (b) Cyclograph stereo pairs formed from these input images, corresponding to different slices of the x-y-� volume.
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