Hand Gesture Recognition, Aerobic exercises, Events

Lecture-15

Hand Gesture Recognition

Seven Gestures

Gesture Phases

- Hand fixed in the start position.
- Fingers or hand move smoothly to gesture position.
- Hand fixed in gesture position.
- Fingers or hand return smoothly to start position.

Finite State Machine

Main Steps

- Detect fingertips.
- Create fingertip trajectories using motion correspondence of fingertip points.
- Fit vectors and assign motion code to unknown gesture.
- Match

Detecting Fingertips

Vector Extraction

Vector Representation of Gestures

Copyright Mubarak Shah 2003

Results

Results

Run	Frames	L	R	U	D	Т	G	S
1	200		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
2	250		\checkmark	>	$\overline{}$	\	\checkmark	\checkmark
3	250	\vee	\wedge	\checkmark	X	\vee	\vee	✓
4	250	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
5	300	\vee	^	/	\	/	\vee	^
6	300	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
7	300	\vee	/	/	\	/	\vee	^
8	300		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9	300		\checkmark	\checkmark	\checkmark	*	*	*
10	300		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

L = Left, R = Right, U = Up, D = Down, T = Rotate, G = Grab, S = Stop, $\sqrt{\ }$ - Recognized, X - Not Recognized, * - Error in Sequence.

Publication

- http://www.cs.ucf.edu/~vision/papers/shah/94/D
 AS94.pdf (James Davis and Mubarak Shah.
 Vision, Vision, Image and Signal Processing, Vol 141, No. 2, April 1994.)
- http://www.cs.ucf.edu/~vision/papers/CS-TR-93-11.pdf (James Davis and Mubarak Shah. Gesture Recognition, European Conference on Computer Vision, 1994.)

Action Recognition Using Temporal Templates

Jim Davis and Aaron Bobick

Main Points

- Compute a sequence of difference pictures from a sequence of images.
- Compute Motion Energy Images (MEI) and Motion History Images (MHI) from difference pictures.
- Compute Hu moments of MEI and MHI.
- Perform recognition using Hu moments.

MEI and MHI

Motion-Energy Images (MEI)

$$E_{\tau}(x, y, t) = \bigcup_{i=0}^{\tau-1} D(x, y, t-i)$$

Motion History Images (MHI) Change Detected Images

$$H_{\tau}(x, y, t) = \begin{cases} \tau & \text{if } D(x, y, t) = 1 \\ \max(0, H_{\tau}(x, y, t - 1) - 1) & \text{otherwise} \end{cases}$$

Copyright Mubarak Shah 2003

MEIs

Copyright Mubarak Shah 2003

Color MHI Demo

Copyright Mubarak Shah 2003

Summary

- Use seven Hu moments of MHI and MEI to recognize different exercises.
- Use seven views (-90 degrees to +90 degrees in increments of 30 degrees).
- For each exercise several samples are recorded using all seven views, and the mean and covariance matrices for the seven moments are computed as a model.
- During recognition, for an unknown exercise all seven moments are computed, and compared with all 18 exercises using Mahalanobis distance.
- The exercise with minimum distance is computed as the match.
- They present recognition results with one and two view sequences, as compared to seven view sequences used for model generation.

Moments

Binary image

General Moments

$$m_{pq} = \int \int x^p y^q \rho(x, y) dx dy$$

Central Moments (Translation Invariant)

$$\mu_{pq} = \int \int (x - \overline{x})^p (y - \overline{y})^q \rho(x, y) \ d(x - \overline{x}) d(y - \overline{y})$$

$$\overline{x} = \frac{m_{10}}{m_{00}}, \overline{y} = \frac{m_{01}}{m_{00}}$$
 centroid Copyright Mubarak Shah 2003

Central Moments

$$\mu_{00} = m_{00} \equiv \mu$$

$$\mu_{01} = 0$$

$$\mu_{10} = m_{20} - \mu \bar{x}^{2}$$

$$\mu_{11} = m_{11} - \mu \bar{x} \bar{y}$$

$$\mu_{02} = m_{02} - \mu \bar{y}^{2}$$

$$\mu_{30} = m_{30} - 3m_{20}\bar{x} + 2\mu \bar{x}^{3}$$

$$\mu_{21} = m_{21} - m_{20}\bar{y} - 2m_{11}\bar{x} + 2\mu \bar{x}^{2} \bar{y}$$

$$\mu_{12} = m_{12} - m_{02}\bar{x} - 2m_{11}\bar{y} + 2\mu \bar{x} \bar{y}^{2}$$

$$\mu_{03} = m_{03} - 3m_{02}\bar{y} + 2\mu \bar{y}^{3}$$

Moments

Hu Moments: translation, scaling and rotation invariant

$$\upsilon_{1} = \mu_{20} + \mu_{02}$$

$$\upsilon_{2} = (\mu_{20} - \mu_{02})^{2} + {\mu_{11}}^{2}$$

$$\upsilon_{3} = (\mu_{30} - 3\mu_{12})^{2} + (3\mu_{12} - \mu_{03})^{2}$$

$$\upsilon_{4} = (\mu_{30} + \mu_{12})^{2} + (\mu_{21} + \mu_{03})^{2}$$
:

Half size, mirror Rotated 2, rotated 45

Copyright M

Table 8.2 Moment Invariants for the Images in Figs. 8.24(a)-(e)

Invariant (Log)	Original	Half Size	Mirrored	Rotated 2°	Rotated 6
	6.249	6.226	6.919	6.253	6.318
$oldsymbol{\phi_1}{oldsymbol{\phi_2}}$	17.180	16.954	19.955	17.270	16.803
*** <u>*</u> *****	22.655	23.531	26.689	22.836	19.724
$oldsymbol{\phi_3} oldsymbol{\phi_4}$	22.919	24.236	26.901	23.130	20.437
	45.749	48.349	53.724	46.136	40.525
$oldsymbol{\phi_6}$	31.830	32.916	37.134	32.068	29.315
ϕ_{7}	45.589	48.343	53.590	46.017	40.470

Hu moments

Copyright Mubarak Shah 2003

Copyright Mubarak Shah 2003

PAT (Personal Aerobic Trainer)

PAT (Personal Aerobic Trainer)

http://vismod.www.media.mit.edu/vismod/demos/actions/mhi_generation.mov

PAT (Personal Aerobic Trainer)

A Framework for the Design of Visual Event Detectors

Niels Haering

Our Framework

Object Classification

Object Classification

Copyright Mubarak Shah 2003

Deciduous Trees

Copyright Mubarak Shah 2003

Sky

Animals, Sky, Grass, Trees, Rock

Motion-blob Verification

Motion Estimation

Frame number

- three parameter system: x-, y-translation, and zoom,
- 4 motion estimates based on pyramid,
- 4 motion estimates based on previous best match,
- "texture" measure prevents ambiguous matches

Copyright Mubarak Shah 2003

Motion-blob detection

Motion estimate

$$\Delta x = -7$$

$$\Delta y = 0$$

$$zoom = 1.0$$

Shot Summarization

Shot Detection

Characteristics of shot boundaries:

- Change of camera/viewpoint
- Change of color characteristics

- 4 Bins for Value
- 4 Bins for Saturation
- 8 bins for hue

$$= 0.79$$

$$\gamma = \frac{\sum_{n=0}^{15} \min(f_1(n), f_2(n))}{\min(\sum_{n=0}^{15} (f_1(n), \sum_{n=0}^{15} f_2(n)))}$$

Shot Summaries

A = Ground Truth

B = Result of Algorithm

$$recall = \frac{A \cap B}{A}$$

$$precision = \frac{A \cap B}{B}$$

Event Inference

Hunt events

Hunts

Hunt

Non-hunt

Hunts

Non-hunt

Hunt

Non-hunt

Event Detection

Sequence	Actual	Detected	Precision	Recall
Name	Hunt Frames	Hunt Frames		
Hunt1	305 - 1375	305 - 1375	100%	100%
Hunt2	2472 - 2696	2472 - 2695	100%	99.6%
Hunt3	3178 - 3893	3178 - 3856	100%	94.8%
Hunt4	6363 - 7106	6363 - 7082	100%	96.8%
Hunt5	9694 – 10303	9694 – 10302	100%	99.8%
Hunt6	12763 – 14178	12463 – 13389	67.7%	44.2%
Hunt7	16581 - 17293	16816 - 17298	99.0%	67.0%
average			95.3%	86.0%

Non-landing

Approach

Touch-down

Deceleration

Copyright Mubarak Shah 2003

Non-landing

Approach

Touch-down

Deceleration

Copyright Mubarak Shah 2003

Non-landing

Non-landing Approach

Touch-down

Deceleration

Copyright Mubarak Shah 2003

Non-landing

Conclusions

- Many natural objects are easily recognized by their color and texture signatures (shape is often not needed)
- Many events are easily detected and recognized by the classes of the comprising objects and their approximate motions
- The proposed visual event detection is robust to changes in scale, color, shape, occlusion, lighting conditions, view points and distances, and image compression

Publications

- Niels Haering and Niels da Vitoria Lobo. <u>Features and Classification Methods to Locate Deciduous Trees in Images</u>, Journal of Computer Vision and Image Understanding, 1999.
- Niels Haering, Richard Qian, and Ibrahim Sezan. A
 <u>Semantic Event Detection Approach and Its Application</u>
 <u>to Detecting Hunts in Wildlife Video</u>, IEEE Transactions on Circuits and Systems for Video Technology, 1999.
- <u>VISUAL EVENT DETECTION</u>, Niels Haering and Niels da Vitoria Lobo, Kluwer Academic Publishers, 2001.

Monitoring Human Behavior

Lecture-16

Monitoring Human Behavior

http://www.cs.ucf.edu/~vision/projects/Office/Office.html

Goals of the System

- Recognize human actions in a room for which prior knowledge is available.
- Handle multiple people
- Provide a textual description of each action
- Extract "key frames" for each action

Possible Actions

- Enter
- Leave
- Sitting or Standing
- Picking Up Object
- Put Down Object
- •

Prior Knowledge

- Spatial layout of the scene:
 - Location of entrances and exits
 - Location of **objects** and some information about how they are use
- Context can then be used to improve recognition and save computation

Layout of Scene 1

Layout of Scene 2

Layout of Scene 4

Major Components

- Skin Detection
- Tracking
- Scene Change Detection
- Action Recognition

State Model For Action Recognition

Flow of the System

Key Frames

- Why get key frames?
 - Key frames take less space to store
 - Key frames take less time to transmit
 - Key frames can be viewed more quickly
- We use heuristics to determine when key frames are taken
 - Some are taken before the action occurs
 - Some are taken after the action occurs

Key Frames

- "Enter" key frames: as the person leaves the entrance/exit area
- "Leave" key frames: as the person enters the entrance/exit area
- <u>"Standing/Sitting" key frames</u>: after the tracking box has stopped moving up or down respectively
- "Open/Close" key frames: when the % of changed pixels stabilizes

Copyright Mubarak Shah 2003

Key Frames Sequence 1 (350 frames), Part 1

Copyright Mubarak Snan 2003

Key Frames Sequence 1 (350 frames), Part 2

Copyright Mubarak Shah 2003

Key Frames Sequence 2 (200 frames)

Copyright Mubarak Shah 2003

Key Frames Sequence 3 (200 frames)

Key Frames Sequence 4 (399 frames), Part 1

Copyright Mubarak Shah 2003

Key Frames Sequence 4 (399 frames), Part 2

