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Lecture-11

Structure from Motion
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Problem
Given optical flow or point 
correspondences, compute 3-D 
motion (translation and rotation) and  
shape (depth).
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Tomasi and 
Kanade
Orthographic Projection
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Assumptions
The camera model is orthographic.
The positions of “p” points in “f” frames 
(f>=3), which are not all coplanar, have been 
tracked.
The entire sequence has been acquired before 
starting (batch mode).
Camera calibration not needed, if we accept 
3D points up to a scale factor.
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Tomasi & Kanade
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Tomasi & Kanade
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k f = i f × j f
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Rank of S is 3, because points in 3D space are not 
Co-planar Copyright  Mubarak Shah 2003

Rank Theorem
Without noise, the registered 

measurement  matrix         is at 
most of rank three.                   
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Translation
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is projection of camera translation along x-axisfa
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Translation
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Translation

Projected camera translation can
be computed:

∑

∑

=

=

==−

==−

P

p
pff

T
f

P

p
pff

T
f

v
P

btj

u
P

ati

1

1

1

1

Copyright  Mubarak Shah 2003

Noisy Measurements
Without noise, the matrix       must be at most 
of rank 3. When noise corrupts the images, 
however,      will not be rank 3. Rank theorem 
can be extended to the case of noisy 
measurements.
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Approximate Rank

21
~ OOW Σ=SVD

2FXP PXP PXP
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Singular Value Decomposition (SVD)

• For some linear systems  Ax=b,       
Gaussian Elimination or LU 
decomposition does not work, because 
matrix A is singular, or very close to 
singular. SVD will not only diagnose for 
you, but it will solve it.
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Singular Value Decomposition (SVD)

Theorem: Any m by n matrix A, for which 
,can be written as 

21 OOA Σ=
mxn nxn nxnmxn

is diagonal

are orthogonal

Σ
21 ,OO

IOOOO TT == 2211

nm ≥
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Singular Value Decomposition (SVD)

If A is square, then                are all square.21 ,, OO Σ

O1
−1 = O1

T

O2
−1 = O2

T

Σ−1 = diag( 1
w j

)

21 OOA Σ=

A−1 = O2diag( 1
w j

)O1

21 OOA Σ=
mxn nxn nxnmxn
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Singular Value Decomposition (SVD)

The condition number of a matrix is the ratio 
of the largest of the        to the smallest of      . 
A matrix is singular if the condition number is 
infinite, it is ill-conditioned if the condition 
number is too large.

jw
jw
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Singular Value Decomposition (SVD)

bAx =
• If A is singular, some subspace of “x”
maps to    zero; the dimension of the null 
space is called “nullity”.

• Subspace of “b” which can be reached by “A”
is called range of “A”, the dimension of range is 
called “rank” of A.
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Range and Null Space

x

Ax=b

b

Range of A

Dimension of 
range is rank of A  

b=0

Null space of A
Dimension of Null space is Nullity Copyright  Mubarak Shah 2003

Singular Value Decomposition (SVD)

• If A is non-singular its rank is “n”.

• If A is singular its rank <n.

• Rank+nullity=n
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Singular Value Decomposition (SVD)

• SVD constructs orthonormal basses of 
null space and range.

• Columns of            with   non-zero        
spans range.

• Columns of          with zero           spans   
null space.

1O

jw2O

jw

21 OOA Σ=
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Solution of Linear System

• How to solve Ax=b, when A is singular?

• If “b” is in the range of “A” then system has
many solutions.

• Replace       by  zero if 0=jw
jw

1

bO
w

diagOx T

j
12 )]1([=
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Solution of Linear System

If b is not in the range of A, above eq still gives
the solution, which is the best possible solution, 

it minimizes: 

|| bAxr −≡
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Approximate Rank
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Approximate Rank

21
ˆ OOW ′Σ′′=

The best rank 3 approximation to the ideal 
registered measurement matrix.

212121
~ OOOOOOW ′′Σ ′′′′+′Σ′′=Σ=
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Rank Theorem for noisy 
measurement

The best possible shape and rotation 
estimate is obtained by considering only
3 greatest singular values of              
together with the corresponding left, 
right eigenvectors.

W~
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Approximate Rank
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Σ′′=

ˆ W = ˆ R Q( )Q−1 ˆ S ( )
This decomposition is not unique

Q is any 3X3 invertable matrix

Approximate Rotation matrix

Approximate Shape matrix
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Approximate Rank

SQS

QRR
ˆ

ˆ
1−=

=
ˆ i f

TQQT ˆ i f =1
ˆ j f

TQQT ˆ j f =1
ˆ i f

TQQT ˆ j f = 0

R and S are linear transformation of 
approximate  Rotation and shape matrices

How to determine  Q?

Rows of rotation matrix are unit vectors
and orthogonal
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How to determine Q: Newton’s 
Method
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M∆q = ε

∆q = ∆q1,K,∆q9[ ]

M ij =
∂f i

∂q j

ε is error
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Algorithm

• Compute SVD of              

• define

• Compute   

21
~ OOW Σ=

[ ] 2
1

1
ˆ Σ′′= OR [ ] 2

2
1ˆ OS ′Σ′=

Q

• Compute                                           QRR ˆ= SQS ˆ1−=
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Hotel Sequence
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Results  (rotations)
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Selected Features
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Reconstructed Shape
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Comparison
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House Sequence
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Reconstructed Walls
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Web Page
http://vision.stanford.edu/cgi-
bin/svl/publication/publication1992.cgi


