
1

Synthesizing Realistic Facial
Expressions from Photographs

Pighin et al
SIGGRAPH’98

The Artist’s Complete Guide to
Facial Expression: Gary Faigin

• There is no landscape that we know as well as the
human face. The twenty-five-odd square inches
containing the features is the most intimately
scrutinized piece of territory in existence,
examined constantly, and carefully, with far more
than an intellectual interest. Every detail of the
nose, eyes, and mouth, every regularity in
proportion, every variation from one individual to
the next, are matters about which we are all
authorities.

2

Main Points

• One view is not enough.
• Fitting of wire frame model to the image is

a complex problem (pose estimation)
• Texture mapping is an important problem

Synthesizing Realistic Facial Expressions

• Select 13 feature points manually in face
image corresponding to points in face
model created with Alias.

• Estimate camera poses and deformed 3d
model points.

• Use these deformed values to deform the
remaining points on the mesh using
interpolation.

3

Synthesizing Realistic Facial Expressions

• Introduce more feature points (99)
manually, and compute deformations as
before by keeping the camera poses fixed.

• Use these deformed values to deform the
remaining points on the mesh using
interpolation as before.

• Extract texture.
• Create new expressions using morphing.

Synthesizing Realistic Facial Expressions

4

3D Rigid Transformation

′

′
′

=

+ =

+

X

Y

Z

R

X

Y

Z

T

r r r

r r r

r r r

X

Y

Z

T

T

T

X

Y

Z

11 12 13

21 22 23

31 32 33

k
i

k
ikk

ik
i

k
ikk

i Z

Y
fy

Z

X
fx

′
′

=′
′
′

=′ ,

Wireframe coordinatesCamera coordinates

perspective

3D Rigid Transformation

k
Zi

k
i

k
i

k

k
Yi

k
i

k
i

k

k
k

i

k
Zi

k
i

k
i

k

k
Xi

k
i

k
i

k

k
k

i

TZrYrXr

TZrYrXr
fy

TZrYrXr

TZrYrXr
fx

+++
+++

=′

+++
+++

=′

333231

232221

333231

131211

k
i

k
ikk

ik
i

k
ikk

i Z

Y
fy

Z

X
fx

′
′

=′
′
′

=′ ,

5

Model Fitting

k
Zz

k
Yy

k
k

i

k
Zz

k
Xx

k
k

i

T

T
fy

T

T
fx

+

+
=′

+
+

=′

i
k

i
k

i
k

i
k

pr

pr

pr

pr

Model Fitting

k
Zz

k
Yy

k
k

i

k
Zz

k
Xx

k
k

i

T

T
fy

T

T
fx

+

+
=′

+
+

=′

i
k

i
k

i
k

i
k

pr

pr

pr

pr

i
k

i
k

i
k

i
k

pr

pr

pr

pr

z
k

k
Yy

k
k

i

z
k

k
Xx

k
k

i

T
sy

T
sx

η

η

+
+

=′

+
+

=′

1

1

kkk

k
Z

k fs
T

ηη == ,
1

6

Model Fitting

i
k

i
k

i
k

i
k

pr

pr

pr

pr

z
k

k
Yy

k
k

i

z
k

k
Xx

k
k

i

T
sy

T
sx

η

η

+

+
=′

+
+

=′

1

1

0)).().((

0)).().((

=+−′+′

=+−′+′
k

YY
kkk

i
k

i
k
i

k
XX

kkk
i

k
i

k
i

Tsyyw

Tsxxw

i
k

i
k
z

i
k

i
k
z

prpr

prpr

η

η

1)).(1(−+= i
k
z

kk
iw prη

Model Fitting

• Solve for unknowns in five steps:
kk

Y
k
X

k
i

k TTs η;,;;; Rp

• Use linear least squares fit.

• When solving for an unknown, assume
other parameters are known.

7

Least Squares Fit

j
j

j
T
j

j
j

jj
j

jj

abxaa

bxa

bxa

∑∑

∑
=

−

=−

)(

).(

0.
2

)(b)(

)(b)(

12k12

02k02

k
i

k
y

kk

i
k
y

kk
z

kk
i

k

ik

k
i

k
x

kk
i

k
x

kk
z

kk
i

k
ik

yTswrsrywa

xTswrsrxwa

−=−=

−=−=

++

++

η

η

0)).().((

0)).().((

=+−′+′

=+−′+′
k

YY
kkk

i
k

i
k
i

k
XX

kkk
i

k
i

k
i

Tsyyw

Tsxxw

i
k

i
k
z

i
k

i
k
z

prpr

prpr

η

η

Update for p

j
j

j
T
j

j
j

jj
j

jj

abxaa

bxa

bxa

∑∑

∑
=

−

=−

)(

).(

0.
2

)).((b).(

)).((b).(

12k12

02k02

i
k

z
kk

i
k
i

k

i
k
yi

k
y

k

ik

i
k
z

kk
i

k
i

k
i

k
xi

k
x

k
ik

pryywtprwa

prxxwtprwa

η

η

+=+=

+=+=

++

++

0)).().((

0)).().((

=+−′+′

=+−′+′
k

YY
kkk

i
k

i
k
i

k
XX

kkk
i

k
i

k
i

Tsyyw

Tsxxw

i
k

i
k
z

i
k

i
k
z

prpr

prpr

η

η

Update for sk

8

Rotation Around an Arbitrary Axis
(Rodriguez’s Formula)

)).(().(nnVVnnVV −+=

)).(((sin)).((cos nnVVnnnVVV −×+−=′⊥ θθ

CVVV ′+′=′ ⊥

)()cos1(sin VnnVnVV ××−+×+=′ θθ VnnVVnn −=××).()(

nnVV).(=′C

nnVVnVV).)(cos1(sin cos θθθ −+×+=′

nnVVVnn).()(=+××

HW 4.1

Rotation Around an Arbitrary Axis
(Rodriguez’s Formula)

−
−

−
=

−++=

0

0

0

)(

)()cos1()(sin),(2

xy

xz

xz

nn

nn

nn

nX

nXnXInR θθθ

VnRV),(θ=′

)()cos1(sin VnnVnVV ××−+×+=′ θθ

HW 4.2

9

Rotation Around an Arbitrary Axis
(Rodriguez’s Formula)

n
r

r
rr θ==

|||
||||

−
−

−
=

−++=

0
0

0

)(

||||
)(

)cos1(
||||
)(

sin),(2

2

xy

xz

xz

rr

rr

rr

rX

r

rX

r

rX
IrR θθθ

)()cos1()(sin),(~ 2 nXnXInR θθθ −++=

kk RRR
~=

)(
~

mXIR θ+≈
),,(zyx mmmnm ==θ

10

0)).~().~((

0)).~().~((

=+−+

=+−+
k
yi

k
y

k
i

k
z

k
x

k
i

k
i

k

i

k
xi

k
x

k
i

k
z

k
x

k
i

k
i

k
i

tqrsqrryyw

tqrsqrrxxw

η

η

kkkk RnRR),(
~ θ←),1,(~

xz
k

y mmr −=

),,1(~
yz

k
x mmr −=

)1,,(~
xy

k
z mmr −=

i
k

i pRq =

0)).().((

0)).().((

=+−′+′

=+−′+′
k

YY
kkk

i
k

i
k
i

k
XX

kkk
i

k
i

k
i

Tsyyw

Tsxxw

i
k

i
k
z

i
k

i
k
z

prpr

prpr

η

η

Interpolation

• Use initial set of coordinates for the feature
points (13 points), to deform the remaining
vertices using interpolation.

11

Interpolation

tMpppp ++−= ∑ ||)(||)(i
i

icf φ

64)(

0,0

)(,

r

i
i

i
i

i

iiii

er

cc

fuu

−

=

==

=−=

∑∑

φ

p

ppp 0
iOriginal point position: pi

Updated point position: pi
0

1.First estimate ci’s , M, and t
using the known 13 points
2.Compute the displacement of
Other points using f(p)

Texture Extraction

• Given a collection of photographs, the
recovered viewing parameters, and the
fitted face model, compute for each point p
on the face model its texture color T(p).

12

Texture Extraction

)(

),()(
)(

p

p
p

∑
∑

=

k

k

kkk

k

k

m

yxIm
T

is k-th image

is weight

kI
km

Weights
• Self-occlusion

– mk should be zero unless P is front facing with k-th
image and is visible in it.

• Smoothness
– The weight map should vary smoothly, in order to

ensure a seamless blend between different images.

• Positional certainty
– It is the dot product of surface normal at P and k-th

direction of projection.

• View similarity
– This depends on the angle between direction of projection of P

onto j-th image and its direction of projection in the new image.

13

Texture Extraction

• Positional certainty, is define as a
dot product of surface normal at p and the
k-th direction of projection.

)(pkP

•Visibility map is set to 1 if the
corresponding point p is visible in k-th
image, and zero otherwise.

),(vuF k

• View-independent texture mapping:

)(),(),(pkkk PvuFvum =

• View-dependent texture mapping:

)()(),(),(dVPyxFvum kkkkkk p=

1..)(+−= llkkV ddddd

Texture Extraction

14

Show Video Clip.

Face Recognition

15

Simple Algorithm

• Recognize faces (mug shots) using gray levels
(appearance)

• Each image is mapped to a long vector of gray
levels

• Several views of each person are collected in the
model-base during training

• During recognition a vector corresponding to an
unknown face is compared with all vectors in the
model-base

• The face from model-base, which is closest to the
unknown face is declared as a recognized face.

Problems

• Problems :
– Dimensionality of each face vector will be very large

(250,000 for a 512X512 image!)
– Raw gray levels are sensitive to noise, and lighting

conditions.

• Solution:
– Reduce dimensionality of face space by finding

principal components (eigen vectors) to span the face
space

– Only a few most significant eigen vectors can be used
to represent a face, thus reducing the dimensionality

16

Eigen Vectors and Eigen Values

The eigen vector, x, of a matrix B is a special vector, with
the following property

xBx λ= Where ë is called eigen value

0)det(=− IA λ

To find eigen values of a matrix A first find the roots of:

Then solve the following linear system for each eigen
value to find corresponding eigen vector

0)(=− xIA λ

Example

−

=

700

430

021

A
1 ,3 ,7 321 −=== λλλ

=

=

=

0

0

1

 ,

0

2

1

 ,

4

4

1

321 xxx

17

Collect all gray levels in a long vector u:

u I I N I I N I M I M N T= ((,), , (,), (,), , (,), , (,), , (,))11 1 21 2 1K K K K

Collect n samples (views) of each of p persons in matrix A
(MN X pn):

[]A u u u u u un n
p

n
p= 1

1 1
1
2 2

1, , , , , ,K K K K

Form a correlation matrix L (MN X MN):

L AA T=

Compute eigen vectors, , of L, which form
a bases for whole face space

1321 ,,, nφφφφ K

Each face, u, can now be represented as a linear combination
of eigen vectors

i

n

i
iau φ∑

=

=
1

1

Where

a ui x
T

i= .φ

18

L is a large matrix, computing eigen vectors of a large matrix is
time consuming. Therefore compute eigen vectors of a smaller
matrix, C:

C A AT=

Let be eigen vectors of C, then are the eigen vectors of A:

C

A A

AA A A

L A L A

i i i

T
i i i

T
i i i

i i

α λα

α λα

α λ α
α α

=

=

=
=

() ()
() ()

iλ
iAλ

Training

• Create A matrix from training images
• Compute C matrix from A.
• Compute eigenvectors of C.
• Compute eigenvectors of L from eigenvectors of

C.
• Select few most significant eigenvectors of L for

face recognition.
• Compute coefficient vectors corresponding to

each training image.
• For each person, coefficients will form a cluster,

compute the mean of cluster.

19

Recognition

• Create a vector u for the image to be
recognized.

• Compute coefficient vector for this u.
• Decide which person this image belongs to,

based on the distance from the cluster mean
for each person.

MATLAB Progam

Face Recognition

20

load faces.mat
C=A’*A;
[vectorC,valueC]=eig(C);
ss=diag(valueC);
[ss,iii]=sort(-ss);
vectorC=vectorC(:,iii);
vectorL=A*vectorC(:,1:5);
Coeff=A’*vectorL;
for I=1:30

model(i, :)=mean(coeff((5*(i-1)+1):5*I,:));
end
while (1)

imagename=input(‘Enter the filename of the image to
Recognize(0 stop):’);
if (imagename <1)
break;
end;
imageco=A(:,imagename)’*vectorL;
disp (‘’);
disp (‘The coefficients for this image are:’);

mess1=sprintf(‘%.2f %.2f %.2f %.2f %.2f’,
imageco(1),imageco(2),imageco(3),imageco(4),
imageco(5));
disp(mess1);

T top=1;
for I=2:30

if (norm(model(i,:)-imageco,1)<norm(model
(top, :)-imageco,1))
top=i
end

end
mess1=sprintf(‘The image input was a image of person
number %d’,top);
disp(mess1);
end

b=A(:,81);
b=reshape(b,34,51);
imshow(b,gray(255)):

21

Webpage

http://vismod.www.media.mit.edu/vismod/demos/

