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Synthesizing Realistic Facial 
Expressions from Photographs

Pighin et al 
SIGGRAPH’98

The Artist’s Complete Guide to 
Facial Expression: Gary Faigin

• There is no landscape that we know as well as the 
human face. The twenty-five-odd square inches 
containing the features is the most intimately 
scrutinized piece of territory in existence, 
examined constantly, and carefully, with far more 
than an intellectual interest. Every detail of the 
nose, eyes, and mouth, every regularity in 
proportion, every variation from one individual to 
the next, are matters about which we are all 
authorities.
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Main Points

• One view is not enough.
• Fitting of wire frame model to the image is 

a complex problem (pose estimation)
• Texture mapping is an important problem

Synthesizing Realistic Facial Expressions

• Select 13 feature points manually in face 
image corresponding to points in face 
model created with Alias.

• Estimate camera poses and deformed 3d 
model points.

• Use these deformed values to deform the 
remaining points on the mesh using 
interpolation. 
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Synthesizing Realistic Facial Expressions

• Introduce more feature points (99) 
manually, and compute deformations as 
before by  keeping the camera poses fixed. 

• Use these deformed values to deform the 
remaining points on the mesh using 
interpolation as before. 

• Extract texture.
• Create new expressions using morphing.

Synthesizing Realistic Facial Expressions
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3D Rigid  Transformation
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Model Fitting
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Model Fitting
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Model Fitting

• Solve for unknowns in five steps:
kk

Y
k
X

k
i

k TTs η;,;;; Rp

• Use linear least squares fit. 

• When solving for an unknown, assume 
other  parameters are known.
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Least Squares Fit
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Rotation Around an Arbitrary Axis
(Rodriguez’s Formula)
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Rotation Around an Arbitrary Axis
(Rodriguez’s Formula)
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Rotation Around an Arbitrary Axis
(Rodriguez’s Formula)
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Interpolation

• Use initial set of coordinates for the feature 
points (13 points), to deform the remaining 
vertices using interpolation.
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Interpolation
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1.First estimate ci’s ,  M, and t 
using the known 13 points
2.Compute the displacement of 
Other points using f(p)

Texture Extraction

• Given a collection of photographs, the 
recovered viewing parameters, and the 
fitted face model, compute for each point p 
on the face model its texture color T(p).
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Texture Extraction
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Weights
• Self-occlusion

– mk should be zero unless P is front facing with k-th
image and is visible in it.

• Smoothness
– The weight map should vary smoothly, in order to 

ensure a seamless blend between different images.

• Positional certainty
– It is the dot product of surface normal at P and k-th 

direction of projection.

• View similarity
– This depends on the angle between direction of projection of P

onto j-th image and its direction of projection in the new image.
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Texture Extraction

• Positional certainty,           is define as a 
dot product of surface normal at p and the 
k-th direction of projection.

)(pkP

•Visibility map             is set to 1 if the 
corresponding point p is visible in k-th
image, and zero otherwise.

),( vuF k

• View-independent texture mapping: 

)(),(),( pkkk PvuFvum =

• View-dependent texture mapping:

)()(),(),( dVPyxFvum kkkkkk p=

1..)( +−= llkkV ddddd

Texture Extraction
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Show Video Clip.

Face Recognition
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Simple Algorithm

• Recognize faces (mug shots) using gray levels 
(appearance)

• Each image is mapped to a long vector of  gray 
levels

• Several views of each person are collected in the 
model-base during training

• During recognition a vector corresponding to an  
unknown face is compared with all vectors in the 
model-base

• The face from model-base, which is closest to the 
unknown face is declared as a recognized face.

Problems

• Problems :
– Dimensionality of each face vector will be very large 

(250,000 for a 512X512 image!)
– Raw gray levels are sensitive to noise, and lighting 

conditions.

• Solution:
– Reduce dimensionality of face space by finding 

principal components (eigen vectors) to span the face 
space

– Only a few most significant eigen vectors can be used 
to represent a face, thus reducing the dimensionality
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Eigen Vectors and Eigen Values

The eigen vector, x, of a matrix B is a special vector, with 
the following property 

xBx λ= Where ë is called eigen value

0)det( =− IA λ

To find eigen values of a matrix A first find the roots of:

Then  solve the following linear system for each eigen 
value to find corresponding eigen vector

0)( =− xIA λ

Example
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Collect all gray levels in a long vector u:

u I I N I I N I M I M N T= ( ( , ), , ( , ), ( , ), , ( , ), , ( , ), , ( , ))11 1 21 2 1K K K K

Collect n samples (views) of each of p persons in matrix A   
(MN X pn):

[ ]A u u u u u un n
p

n
p= 1

1 1
1
2 2

1, , , , , ,K K K K

Form a correlation matrix L (MN X MN):

L AA T=

Compute eigen vectors,                          , of L, which form 
a bases for whole face space 

1321 ,,, nφφφφ K

Each face, u, can now be represented as a linear combination 
of eigen vectors 

i
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iau φ∑
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Where

a ui x
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i= .φ
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L is a large matrix, computing eigen vectors of a large matrix is 
time consuming. Therefore compute eigen vectors of a smaller 
matrix, C:

C A AT=

Let      be eigen vectors of C, then          are the eigen vectors of A:

C

A A

AA A A

L A L A

i i i

T
i i i

T
i i i

i i

α λα

α λα

α λ α
α α

=

=

=
=

( ) ( )
( ) ( )

iλ
iAλ

Training

• Create A matrix from training images
• Compute C matrix from A.
• Compute eigenvectors of C.
• Compute eigenvectors of L from eigenvectors of 

C.
• Select few most significant eigenvectors of L for 

face recognition.
• Compute coefficient vectors corresponding to 

each training image. 
• For each person, coefficients will form a cluster, 

compute the mean of cluster.
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Recognition

• Create a vector u for the image to be 
recognized.

• Compute coefficient vector for this u.
• Decide which person this image belongs to, 

based on the distance from the  cluster mean 
for each person.

MATLAB Progam

Face Recognition
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load faces.mat
C=A’*A;
[vectorC,valueC]=eig(C);
ss=diag(valueC);
[ss,iii]=sort(-ss);
vectorC=vectorC(:,iii);
vectorL=A*vectorC(:,1:5);
Coeff=A’*vectorL;
for I=1:30

model(i, :)=mean(coeff((5*(i-1)+1):5*I,:));
end
while (1)

imagename=input(‘Enter the filename of the image to 
Recognize(0 stop):’);
if (imagename <1)
break;
end;
imageco=A(:,imagename)’*vectorL;
disp (‘’);
disp (‘The coefficients for this image are:’);

mess1=sprintf(‘%.2f  %.2f  %.2f  %.2f  %.2f’,
imageco(1),imageco(2),imageco(3),imageco(4),
imageco(5));
disp(mess1);

T top=1;
for I=2:30

if (norm(model(i,:)-imageco,1)<norm(model
(top, : )-imageco,1))
top=i
end

end
mess1=sprintf(‘The image input was a image of person
number %d’,top);
disp(mess1);
end

b=A(:,81);
b=reshape(b,34,51);
imshow(b,gray(255)):
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Webpage

http://vismod.www.media.mit.edu/vismod/demos/


