Lecture-9

Conjugate Direction Algorithm
(Solution of Linear System or

Minimization of A Quadratic
Function)

Conjugate Gradient

» Linear conjugate gradient: for solving linear
systems Ax=b with PD matrix, A.
— Exact solution in n steps (Hestenes & Stiefel, 1950s)
— Approximate solution in fewer than n steps

» Non-linear conjugate gradient: for solving large-
scale non-linear optimization problems.
— Fletcher and Reeves, 1964
— Polk-Ribiere, 1969




Conjugate Gradient

Ax=b A is symmetric PD. (1)

Or minimize the following function:

P(x) = %xTAx—bTx (2)

Vg(x)=Ax—b=r(x) r(x) is the residual

S=1{py:Pis--sPi}  The set Sis conjugate wrt 4 if
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Linear Independence

S={py:Pi>-spii}  Sis linearly independent

if oypy+op+...0,,P,,=0

theno,=0,=0,=...0,,=0
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Conjugate set is also linearly independent.

pldp. =0 Vi j Therefore, 4 has at most
Y n conjugate directions.




Conjugate Direction Method

Xy =X, t O, P, Line search
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P(x) = %xTAx -b"x

o - Ve b, 1D minimizer of a quadratic function
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Convergence Rate of Steepest
Descent
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Conjugate Direction Method
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Theorem 5.1

For any x” the sequence {x,} generated by the conjugate direction
algorithm, converges to the solution x* of the linear system in
at most n steps.

* Sequence {x,}
* Linearly independent vectors

* Conjugate vectors




Proof

J— T
Xps1 = X T OGPy o = ——kPr
PeAp,

Xy =Xyt Qypytop+...+0 P

Xy —Xog =Py top+...+0_ P

Proof

S={po:Pi>-spii}  Sis linearly independent
Therefore:

X —Xy=0\pytopt...0,,P,,
kaA(X* —X,) = kaA(O'opo +top+...0,,P,.1)
prA(x —x,)=(0 +0+...+0,p, Ap, +...+0) conjugate

pLA(x —x,) = p; Ap,

_ kaA(X* = X)
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Proof
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kaA(xk -x,)=0

p,{Axk = kaAx0

kaA(X* —X,) = kaA(X* —X,) = ka(b_Axk) = _p/cTrk
" Vé(x)=Ax—b=r(x)
kaA(x —X,) = _kark

Proof
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Interpretation of Theorem 5.1

If 4 is a diagonal matrix, then we can minimize the 1-D
function along coordinate axes in n iterations.
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Figure 5.1 i inimizations along the ©
minimizer of a quadratic with a diagonal Hessian in n iterations.

Interpretation of Theorem 5.1

If 4 is not a diagonal matrix, then we can not minimize the
function along coordinate axes in # iterations.

igure5.2 Successive minimization along coordinate axes does not find the solution
1 n iterations, for a general convex quadratic.




Transformed Problem
Let

)%:S%x where S:[poaplv""pn—l]

1, ,
o) =5 Ax_lb * By conjugacy S7AS
P(X)=p(x) = Ea”cT(S T48)%-(S"h)" 2 is a diagonal matrix.
P = p() =¥ Di- (o) &
Now we can minimize along coordinate directions
in transformed space.

However, each coordinate direction in transformed space

correspond to the conjugate direction in the original space
due to

Therefore, we conclude the conjugate direction algorithm
converges in 7 steps.

Figure 5.1 i inimizations along the coordi directos
minimizer of a quadratic with a diagonal Hessian in n iterations.

When Hessian is diagonal, each coordinate minimization
correctly determines one of the components of the solution x*.
Therefore, after k£ 1-D minimizations, the quadratic has been
minimized on the subspace spanned by e, e,, .....e,.




Theorem 5.2

Let x, be any starting point and suppose that the sequence
{x,} is generated by the conjugate direction algorithm. Then

rW'p,=0 fori=0,..,k-1

. e e e 1
and x; is minimizer of ¢ =_+"4x-b"x over the set

x| x = x, +span{p,,.... p 1} (3)

Proof

First show that a point ~ minimizes over the set (3) if and only
if
rX) p,=0 fori=0,....k—1

{x|x =X +Span{p0""9pk—l}}

Where
Let h(o)=¢(xy+0,py +...+ 041 Piy)
c=(0,,0,...-0,,)
Since is strictly convex quadratic, it has a unique minimizer:
R o, 10,k
oo,

V¢(x0+0'0*p0+...+O'*k71pk71)rpi=0 i=0,..., k-1 Chain rule

r(x) is the residual
XY p,=0  i=0,..,k-1




Proof

r'p,=0 fori=0,... k-1

Vo(x)=Ax—b=r(x) Xy =X, T Dy
en =h o Ap,
ne=rot o Ap, (A)
From (A)
n=n+adp,

VlTpo =(r, + aoApo)Tpo
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Proof
n=rn_tao,_ A4p, (A)
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Definition
And
piTrk = piTrk—l +ak—1piTApk—1 =0 i=0,....k=2

w p. =0 ;m‘\\ Conjugacy

induction
Therefore /'p, =0  fori=0,...,k-1  QED




How do we select conjugate
directions
 Eigenvalues of 4 are mutually orthogonal
and conjugate wrt to 4.

* Gram-Schmidt process to produce
conjugate directions instead of orthogonal
vectors.

Basic Properties of the CG

Each direction is chosen to be a linear combination of the steepest
descent direction and the previous direction.

Pv=-Vé +Bir,
P ="+ Bipiy
kaf1Apk = _rkpf—lA + ﬂkplz-—lApk—l

B, = e Ap,
=k Tkl
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Algorithm 5.1

Given x,;
set 1y < Ax,—b, p, < -1y, k<0
While 1, # 0

Xeel € X T Dy

Tin € Ax, —b;

Pin € T + Bralis
k<« k+1
end(while)

P, 18 steepest descent




