Lecture-7

Step Length Selection

Homework (Due 2/13/03)

- 3.1
- 3.2
- 3.5
- 3.6
- 3.7
- 3.9
- 3.10
- Show equation 3.44
- The last step in the proof of Theorem 3.6. (see slides)
- Show that if $\mathrm{c} 1>.5$, the line search would exclude the minimizer of a quadratic, and unit step length may not be admissible. (Theorem 3.5)

Sufficient condition

$$
\begin{aligned}
& f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1) \quad c_{1}=10^{-4} \\
& f\left(x_{k}+\alpha p_{k}\right)-f\left(x_{k}\right) \leq c_{1} \alpha \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1)
\end{aligned}
$$

The reduction should be proportional to both the step length, and directional derivative.

$$
\begin{aligned}
& f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1) \\
& f\left(x_{k}+\alpha p_{k}\right) \leq l(\alpha)
\end{aligned}
$$

St line

Sufficient condition

$f\left(x_{k}+\alpha p_{k}\right) \leq l(\alpha)$

Figure 3.3 Sufficient decrease condition.

Problem:
The sufficient decrease condition is satisfied for all small values of step length

Curvature condition

$$
\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T}\left(x_{k}\right) p_{k}, \quad c_{2} \in\left(c_{1}, 1\right)
$$

The slope of $\phi\left(\alpha_{k}\right)$ is greater than c_{2} times the gradient $\phi^{\prime}(0)$.

Curvature condition

Figure 3.4 The curvature condition.
If the slope is strongly negative, that means we can reduce f further along the chosen direction
If the slope is positive, it indicates we can not decrease f further in this direction.

Wolfe conditions

$$
\begin{array}{lll}
f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1) & \begin{array}{l}
\text { Sufficient } \\
\text { decrease }
\end{array} \\
\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T}\left(x_{k}\right) p_{k}, \quad c_{2} \in\left(c_{1}, 1\right) & \text { Curvature }
\end{array}
$$

Backtracking Line Search

If line search method chooses its step length appropriately, we can dispense with the second condition

Choose $\bar{\alpha}>0, \rho, c \in(0,1)$; set $\alpha \leftarrow \bar{\alpha}$;
repeat until $f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c \alpha \nabla f_{k}^{T} p_{k}$
$\alpha \leftarrow \rho \alpha ;$
end(repeat)
Terminate with $\alpha_{k}=\alpha$
$\bar{\alpha}=1$, for Newton and quasi - Newton

This ensures that the step length is short enough to satisfy the sufficient decrease condition, but not too short.

Searching Step Length Using Interpolation

$$
\begin{array}{cc}
f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k}, & c_{1} \in(0,1) \\
\phi\left(\alpha_{k}\right) \leq \phi(0)+c_{1} \alpha_{k} \phi^{\prime}(0) & \phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)
\end{array}
$$

1. Assume α_{0} is the initial guess. Then if we have:

$$
\phi\left(\alpha_{0}\right) \leq \phi(0)+c_{1} \alpha_{0} \phi^{\prime}(0)
$$

Then this step length satisfies the condition, we terminate the search.
2. Otherwise, we know ${ }_{\left[0, \alpha_{0}\right]}$ contains the acceptable step lengths. We fit quadratic polynomial to three pieces of information:

$$
\phi_{q}(0)=\phi(0), \phi_{q}^{\prime}(0)=\phi^{\prime}(0), \phi_{q}\left(\alpha_{0}\right)=\phi\left(\alpha_{0}\right)
$$

Searching Step Length Using Interpolation

and find step length α_{1} by analytically minimizing this polynomial
If the sufficient decrease condition is satisfied for this α_{1} then we terminate the search.
3. If not we fit cubic polynomial to interpolate four pieces of information, and analytically minimize this polynomial to find

$$
\phi_{c}(0)=\phi(0), \phi_{c}^{\prime}(0)=\phi^{\prime}(0), \phi_{c}\left(\alpha_{0}\right)=\phi\left(\alpha_{0}\right), \phi_{c}\left(\alpha_{1}\right)=\phi\left(\alpha_{1}\right)
$$

If necessary we can repeat this process with $\phi(0), \phi^{\prime}(0)$ and two most recent values of ϕ.

Quadratic Interpolation

$$
\begin{gathered}
\phi_{q}(\alpha)=a \alpha^{2}+b \alpha+c \\
\phi_{q}(0)=\phi(0), \phi_{q}^{\prime}(0)=\phi^{\prime}(0), \phi_{q}\left(\alpha_{0}\right)=\phi\left(\alpha_{0}\right) \\
\phi_{q}(\alpha)=\left(\frac{\phi\left(\alpha_{0}\right)-\phi(0)-\alpha_{0} \phi^{\prime}(0)}{\alpha_{0}^{2}}\right) \alpha^{2}+\phi^{\prime}(0) \alpha+\phi(0) \\
\frac{d}{d \alpha} \phi_{q}(\alpha)=2\left(\frac{\phi\left(\alpha_{0}\right)-\phi(0)-\alpha_{0} \phi^{\prime}(0)}{\alpha_{0}^{2}}\right) \alpha+\phi^{\prime}(0)=0 \\
\alpha_{1}=-\left(\frac{\phi^{\prime}(0) \alpha_{0}^{2}}{2\left(\phi\left(\alpha_{0}\right)-\phi(0)-\alpha_{0} \phi^{\prime}(0)\right)}\right)
\end{gathered}
$$

$$
\begin{gathered}
\text { Cubic Interpolation } \\
\phi_{c}(\alpha)=a \alpha^{3}+b \alpha^{2}+c \alpha+d \\
\phi_{c}(0)=\phi(0), \phi_{c}^{\prime}(0)=\phi^{\prime}(0), \phi_{c}\left(\alpha_{0}\right)=\phi\left(\alpha_{0}\right), \phi_{c}\left(\alpha_{1}\right)=\phi\left(\alpha_{1}\right) \\
\phi_{c}(\alpha)=a \alpha^{3}+b \alpha^{2}+\phi^{\prime}(0) \alpha+\phi(0) \\
{\left[\begin{array}{l}
a \\
b
\end{array}\right]=\frac{1}{\alpha_{0}^{2} \alpha_{1}^{2}\left(\alpha_{1}-\alpha_{0}\right)}\left[\begin{array}{cc}
\alpha_{0}^{2} & -\alpha_{1}^{2} \\
-\alpha_{0}^{3} & \alpha_{1}^{3}
\end{array}\right]\left[\begin{array}{l}
\phi\left(\alpha_{1}\right)-\phi(0)-\phi^{\prime}(0) \alpha_{1} \\
\phi\left(\alpha_{0}\right)-\phi(0)-\phi^{\prime}(0) \alpha_{0}
\end{array}\right]} \\
\alpha_{2}=-\left(\frac{-b+\sqrt{b^{2}-3 a \phi^{\prime}(0)}}{3 a}\right)
\end{gathered}
$$

Algorithm 3.2 (Line Search Algorithm)

```
Set \(\alpha_{0} \leftarrow 0\), choose \(\alpha_{1}>0\), and \(\alpha_{\text {max }}\);
\(i \leftarrow 1\)
repeat
    Evaulate \(\phi\left(\alpha_{i}\right)\);
    if \(\phi\left(\alpha_{i}\right)>\phi(0)+c_{1} \alpha_{i} \phi^{\prime}(0)\) or \(\left[\phi\left(\alpha_{i}\right)>\phi\left(\alpha_{i-1}\right), i>1\right] \quad 1^{\text {st }}\) Wolfe's condition
        \(\alpha_{*} \leftarrow \operatorname{zoom}\left(\alpha_{i-1}, \alpha_{i}\right)\), and stop;
    Evaulate \(\phi^{\prime}\left(\alpha_{i}\right)\);
    if \(\left|\phi^{\prime}\left(\alpha_{i}\right)\right| \leq-c_{2} \phi^{\prime}(0) \quad 2^{\text {nd }}\) Wolfe's condition
        set \(\alpha_{*} \leftarrow \alpha_{i}\), and stop;
    if \(\phi^{\prime}\left(\alpha_{i}\right) \geq 0\)
        set \(\alpha_{*} \leftarrow \operatorname{zoom}\left(\alpha_{i}, \alpha_{i-1}\right)\), and stop;
    choose \(\alpha_{i+1} \in\left(\alpha_{i}, \alpha_{\text {max }}\right)\)
    \(i \leftarrow i+1 ;\)
end(repeat)
```


Algorithm 3.3 (Zoom)

repeat
Interpolate to find a trial step length
α_{j} between $\alpha_{L_{0}}, \alpha_{h i}$;
Evaulate $\phi\left(\alpha_{j}\right)$;

$$
\begin{aligned}
& \text { if } \quad \phi\left(\alpha_{j}\right)>\phi(0)+c_{1} \alpha_{j} \phi^{\prime}(0) \text { or }\left[\phi\left(\alpha_{j}\right)>\phi\left(\alpha_{l o}\right)\right] \quad 1^{\text {st }} \text { Wolfe's condition } \\
& \\
& \text { esle }
\end{aligned}
$$

Evaulate $\phi^{\prime}\left(\alpha_{j}\right)$;
if $\left|\phi^{\prime}\left(\alpha_{j}\right)\right| \leq-c_{2} \phi^{\prime}(0)$ $2^{\text {nd }}$ Wolfe's condition
set $\alpha_{*} \leftarrow \alpha_{j}$, and stop;
if $\phi^{\prime}\left(\alpha_{j}\right)\left(\alpha_{h i}-\alpha_{l o}\right) \geq 0$ set $\alpha_{h i} \leftarrow \alpha_{l o}$
$\operatorname{set} \alpha_{l o} \leftarrow \alpha_{j}$
end(repeat)

Figure 3.1 The ideal stev lensth is the slobal minimizer

ᄂ-ANIEK J. LINE DEARCH METHODS

Figure 3.1 The ideal sted lenath is the elohal minimizer

Theorem 3.5 (Any Descent Direction)

Suppose f is three times continuously differentiable. Consider iteration $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction, α_{k} Satisfies Wolfe's conditions, with $c_{\leqslant} \leq \frac{1}{2}$. If the $\left\{x_{k}\right\}$ converges to a point x^{*} such that $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is pd, and if the search direction satisfies

$$
\begin{aligned}
& \lim _{k \rightarrow 0} \frac{\left\|\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right\|}{\left\|p_{k}\right\|}=0 \\
& \lim _{k \rightarrow 0} \frac{\left\|\left(B_{k}-\nabla^{2} f\left(x^{*}\right)\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0
\end{aligned}
$$

Then
(i) $\quad \alpha_{k}=1$ is admissible for all $k>k_{0}$ and
(ii) if $\alpha_{k}=1$ for all $k>k_{0}$, then $\left\{x_{k}\right\}$ converges to x^{*} superlinearly.

Theorem 3.6 (Quasi-Newton)

Suppose f is three times continuously differentiable. Consider iteration $\quad x_{k+1}=x_{k}+p_{k}$, where p_{k} is given by Quasi-Newton direction. Assume the sequence $\left\{x_{k}\right\}$ converges to a x^{*} point such that $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is pd, the $\left\{x_{k}\right\}$ converges superlinearly ifif the following condition holds.

$$
\lim _{k \rightarrow 0} \frac{\left\|\left(B_{k}-\nabla^{2} f\left(x^{*}\right)\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0
$$

Order Notations

Given two non-negative infinite sequences

$$
\begin{aligned}
& \eta_{k}=O\left(v_{k}\right) \\
& \text { if }\left|\eta_{k}\right| \leq C\left|v_{k}\right| \text {, for } C>0, \forall k \\
& \quad \eta_{k}=o\left(v_{k}\right) \\
& \text { if } \lim _{k \rightarrow \infty} \frac{\eta_{k}}{v_{k}}=0
\end{aligned}
$$

Sketch of a Proof

$$
\eta_{k}=O\left(v_{k}\right)
$$

$$
\begin{array}{rlr}
p_{k}-p_{k}^{N} & =\nabla^{2} f_{k}^{-1}\left(\nabla^{2} f_{k} p_{k}+\nabla f_{k}\right) & \text { if }\left|\eta_{k}\right| \leq C\left|v_{k}\right| \text {, for } C>0 \\
& =\nabla^{2} f_{k}^{-1}\left(\nabla^{2} f_{k}-B_{k}\right) p_{k} & \eta_{k}=o\left(v_{k}\right) \\
& =O\left(\left\|\left(\nabla^{2} f_{k}-B_{k}\right) p_{k}\right\|\right), & \text { if } \lim _{k \rightarrow \infty} \frac{\eta_{k}}{v_{k}}=0 \\
& =o\left(\left\|p_{k}\right\|\right) & \lim _{k \rightarrow 0} \frac{\left\|\left(B_{k}-\nabla^{2} f\left(x^{*}\right)\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0 \\
\lim _{k \rightarrow 0} \frac{\left\|\nabla f_{k}+\nabla^{2} f_{k} p_{k}\right\|}{\left\|p_{k}\right\|}=0
\end{array}
$$

Norm of Hessian is bounded.

Sketch of a Proof

$$
\begin{aligned}
&\left\|x_{k}+p_{k}-x^{*}\right\|=\left\|x_{k}+p_{k}^{N}-p_{k}^{N}+p_{k}-x^{*}\right\| \leq\left\|x_{k}+p_{k}^{N}-x^{*}\right\|+\left\|p_{k}-p_{k}^{N}\right\| \\
&=\mathrm{O}\left(\left\|x_{k}-x^{*}\right\|^{2}\right)+o\left(\left\|p_{k}\right\|\right) \\
&\left\|x_{k}+p_{k}-x^{*}\right\| \leq o\left(\left\|x_{k}-x^{*}\right\|\right)
\end{aligned} \quad \begin{aligned}
& \text { if } \lim _{k \rightarrow \infty} \frac{\eta_{k}}{v_{k}}=0
\end{aligned}
$$

Theorem 3.7 (Newton)

Suppose that f is twice differentiable and that Hessian is Lipschitze continuous. Consider the iteration $x_{k+1}=x_{k}+p_{k}$ where p_{k} is given by

$$
p_{k}^{N}=-\nabla^{2} f_{k}^{-1} \nabla f_{k}
$$

Then:

1. If the starting point x_{0} is sufficiently close to x^{*}, the sequence converges to x^{*}.
2. The rate of convergence is quadratic
3. The sequence of gradient norms $\left\|\nabla f\left(x_{k}\right)\right\|$ converges quadratically to zero.

Coordinate Descent Method

Cycle through n coordinate directions $e_{1}, e_{2}, \ldots e_{n}$ using each in turn as a search direction.

Fix all other variables except one, and minimize the function.
It is an inefficient method, it can iterate infinitely without ever approaching a point, where the gradient vanishes.

The gradient may become more and more perpendicular to search directions, making $\cos \theta$ approach to zero, but not the gradient.

