Lecture-6

Convergence and order of
convergence

Line Search Methods
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Steepest descent is and identity matrix

Newton is a Hessian matrix
Quasi-Newton is approximation to the Hessian matrix




Line Search Methods
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Conjugate gradient

Important Questions

* What are the conditions under which, the
method converges?

» What 1s the rate of convergence?




Conditions of convergence

 Steepest Descent: Wolf’s conditions

» Newton and Quasi-Newton: In addition to
Wolfe’s conditions, PD Hessian, and
bounded condition number

» Conjugate Gradient: subsequence of
direction cosinescoss, 1s bounded away from
Zero.

Convergence Rate

Steepest descent: Linear

Quasi-Newton: Super-linear

Newton: Quadratic

Conjugate Gradient: n steps




Convergence of Line Search
Methods

» The steepest descent method is globally
convergent

* For other algorithms how far p, can deviate
from the steepest descent direction and still
gives rise to globally convergent iteration.

Convergence of Line Search Methods
(Theorem 3.2)

The angle between p, and steepest descent direction — vy
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We will show (Theorem 3.2):
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Convergence of Line Search Methods
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Convergence of Line Search Methods
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Convergence of Line Search Methods
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Convergence of Line Search Methods
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Since f'is bounded below, we have f,-f, . ; is less than some
positive constant for all £

Taking the limits:
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Convergence of Line Search Methods
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We can be sure that gradient norms converges to zero, provided that
the search directions are never too close to orthogonality with the gradient

Therefore, the steepest descent produces a gradient sequence that converges to zero,
provided that it uses a line search satisfying Wolf’s conditions.

We can not guarantee that the method converges to a minimizer,
but only that it is attracted by stationary points.

Newton-Like
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Assume Hessian is a PD with a uniformly bounded condition number
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Newton-Like
cosf, = €1
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are globally convergent

if Hessians have bounded condition
numbers and are PD, and if the step
lengths satisfy Wolf’s conditions

Conjugate Gradient

Only subsequence of the gradient norms converges to zero,
rather than the whole sequence.
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Sketch of proof by contradiction:
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Therefore it is enough to show that a subsequence {cosg, } 18
bounded away from zero.




General Class of Algorithms

» Algorithm
— Every iteration produces a decrease in the
objective function

— Every m the-th iteration is a steepest descent
step, with the step length chosen to satisfy the
Wolf’s conditions.

* Then
— Since cos6, =1 for steepest descent, then
following holds
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Convergence Rate of Steepest
Descent: Quadratic Function
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As the condition number increases the contours of the quadratic
become more elongated, the zigzags of line search becomes more
pronounced.




Theorem 3.4: Steepest Descent
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where0< A, <4, <...4, areeigenvalues of Hessian

If the condition number is 800, and f{x,)=1 and f{x")=0,
After 1000 iterations the value of function will be .08.

Theorem 3.5 (Any Descent Direction)

Suppose f'is three times continuously differentiable. Consider
iteration Xwa =X+ P, where p, is a descent direction, ¢,
Satisfies Wolfe’s conditions, with ¢ S% . If the {x, } converges
to a point y* such that vs(x")=0 and v2f(x") is pd, and if the
search direction satisfies
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(i) if for all k>k,, then {x,! converges to x™ superlinearly.




Theorem 3.6 (Quasi-Newton)

Suppose f'is three times continuously differentiable. Consider
iteration X =%+ Px , where p, is given by Quasi-Newton
direction. Assume the sequence {x, } converges toa x" point
such that V/(x)=0 and V’f(x") is pd, the{x, }converges
superlinearly ifif the following condition holds.
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Order Notations

Given two non-negative infinite sequences
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Sketch of a Proof
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Norm of Hessian is bounded.

Sketch of a Proof
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Super-linear Show this in Homework




Sketch of a Proof
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Super-linear Show this in Homework
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Theorem 3.7 (Newton)

Suppose that f* is twice differentiable and that Hessian is
Lipschitze continuous. Consider the iteration x,,, = x, + p,where p,

is given by
N 2 p-1
pr =—V 1 VS,

Then:
1. If the starting point x, is sufficiently close to x*, the sequence
converges to x*

2. The rate of convergence is quadratic
3. The sequence of gradient norms converges quadratically
to zero.




Coordinate Descent Method

Cycle through n coordinate directions ¢-¢:---¢, using each
in turn as a search direction.

Fix all other variables except one, and minimize the function.

It is an inefficient method, it can iterate infinitely without
ever approaching a point, where the gradient vanishes.

The gradient may become more and more perpendicular to search
directions, making approach to zero, but not the gradient.




