Lecture-5

Quadratic Functions

Quadratic Functions

$$f(x) = \frac{1}{2}x^{T}Qx - b^{T}x$$

$$Q \text{ is symmetric, Hessian of } f$$

$$\nabla f(x) = Qx - b$$

if x^* is a unique solution of Qx = b, then it is a stationary point of f

If the linear system Qx=b can not be solved, then function does not have a stationary point, it is unbounded

$$f(x) = \frac{1}{2}x^{T}Qx - b^{T}x$$

$$Q \text{ is symmetric, Hessian of } f$$

$$\nabla f(x) = Qx - b$$

According to definition, for any vector x and p:

$$f(x+\alpha p) = \frac{1}{2}(x+\alpha p)^{T}Q(x+\alpha p) - b^{T}(x+\alpha p)$$

Quadratic Functions

$$f(x+\alpha p) = \frac{1}{2}(x+\alpha p)^{T} Q(x+\alpha p) - b^{T}(x+\alpha p)$$

$$f(x+\alpha p) = \frac{1}{2}(x^{T}Q + \alpha p^{T}Q)(x+\alpha p) - b^{T}x - b^{T}\alpha p$$

$$= \frac{1}{2}(x^{T}Qx + \alpha p^{T}Qx + x^{T}Q\alpha p + \alpha^{2}p^{T}Qp) - b^{T}x - b^{T}\alpha p$$

$$= \frac{1}{2}x^{T}Qx - b^{T}x + \frac{1}{2}(\alpha p^{T}Qx + x^{T}Q\alpha p + \alpha^{2}p^{T}Qp) - b^{T}\alpha p$$

$$f(x+\alpha p) = f(x) + \alpha p^{T}(Qx - b) + \frac{1}{2}\alpha^{2}p^{T}Qp$$
If x^{*} is stationary point
$$f(x^{*} + \alpha p) = f(x^{*}) + \alpha p^{T}(Qx^{*} - b) + \frac{1}{2}\alpha^{2}p^{T}Qp$$

$$f(x^{*} + \alpha p) = f(x^{*}) + \frac{1}{2}\alpha^{2}p^{T}Qp$$

$$f(x^* + \alpha p) = f(x^*) + \frac{1}{2}\alpha^2 p^T Q p$$

The behavior of f is determine by matrix Q

Let
$$Qu_j = \lambda_j u_j$$
 Eigenvector and eigenvalue Let p is equal to u_j
$$f(x^* + \alpha u_j) = f(x^*) + \frac{1}{2} \alpha^2 u_j^T Q u_j$$

$$f(x^* + \alpha u_j) = f(x^*) + \frac{1}{2} \alpha^2 u_j^T \lambda_j u_j$$

$$f(x^* + \alpha u_j) = f(x^*) + \frac{1}{2} \alpha^2 \lambda_j$$
 Q is symmetric

$$f(x^* + \alpha u_j) = f(x^*) + \frac{1}{2}\alpha^2 \lambda_j$$

- The change in f when moving away from x^* along the direction u_i depends on the sign of
 - If is positive f will strictly increase as increases
 - If f is negative f is decreasing as f increases
 - If is zero, the value of f remains constant when moving along any direction parallel to u_i
 - -f reduces to a linear function along any such direction, since quadratic term vanishes.

- When all eigenvalues of Q are positive, x^* is the unique global minimum
 - -The contours of f are ellipsoid whose principal axes are in the directions of the eigenvectors of Q, with lengths proportional to square root of corresponding eigenvalues.
- •If Q is positive semi-definite, a stationary point (if it exists) is a week local minimum.
- If Q is indefinite and non-singular, x^* is a saddle point, f is unbounded.

$$f(x^* + \alpha u_j) = f(x^*) + \frac{1}{2}\alpha^2 \lambda_j$$

Iso Contours (Contour Map)

$$f(x_1, x_2) = c$$

$$f(x_1, x_2) = e^{x_1} (4x_1^2 + 2x_2^2 + 4x_1x_2 + 2x_2 + 1)$$

$$c = .2, .4, 1, 1.7, 1.8, 2, 3, 4, 5, 6, 20$$

Two positive eigenvalues

$$Q = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} -5.5 \\ -3.5 \end{bmatrix}$$
PD

Eigenvalues 6.8541, 0.1459

Eigenvectors

-0.8507 0.5257

-0.5257 -0.8507

$$f(x) = \frac{1}{2}x^T Q x - b^T x$$

Figure 3f. Contours of: (i) a positive-definite quadratic function; (ii) a positive semidefinite quadratic function; and (iii) an indefinite quadratic function.

Quadratic Functions

One positive eigenvalue, one zero eigenvalue

$$Q = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$$

Semi PD

Eigenvalue 5, 0

Eigenvectors -0.8944 0.4472 -0.4472 -0.8944

Figure 3f. Contours of: (i) a positive-definite quadratic function; (ii) a positive semidefinite quadratic function; and (iii) an indefinite quadratic function.

One positive eigenvalue, one negative eigenvalue

$$Q = \begin{bmatrix} 3 & -1 \\ -1 & -8 \end{bmatrix}, \quad b = \begin{bmatrix} -.5 \\ 8.5 \end{bmatrix}$$

Indefinite

Eigenvalue 3.0902, -8.0902

Eigenvectors -0.9960 -0.0898 0.0898 -0.9960

Figure 3f. Contours of: (i) a positive-definite quadratic function; (ii) a positive semidefinite quadratic function; and (iii) an indefinite quadratic function.

Quadratic Functions

How about a function with Q, which is a diagonal matrix?

Figure 5.1 Successive minimizations along the coordinate director minimizer of a quadratic with a diagonal Hessian in n iterations.

igure 5.2 Successive minimization along coordinate axes does not find the solution in iterations, for a general convex quadratic.

Quadratic Functions

How about a function with Q, which is a multiple of an identity matrix?

Steepest Descent

Figure 3.7 Steepest descent steps.

Convergence Rate of Steepest Descent

$$f(x) = \frac{1}{2}x^T Q x - b^T x$$

$$\nabla f(x) = Qx - b$$

 x^* is a unique solution of Qx = b

Let us compute step length, which minimizes the function:

$$f(x_k - \alpha g_k) = \frac{1}{2} (x_k - \alpha g_k)^T Q(x_k - \alpha g_k) - b^T (x_k - \alpha g_k)$$

Convergence Rate of Steepest Descent

$$\frac{d}{d\alpha}f(x_k - \alpha g_k) = \frac{d}{d\alpha}(\frac{1}{2}(x_k - \alpha g_k)^T Q(x_k - \alpha g_k) - b^T(x_k - \alpha g_k)) = 0$$

$$= -(x_k - \alpha g_k)^T Q g_k + b^T g_k = 0$$

$$-x_k^T Q g_k + \alpha g_k^T Q g_k + b^T g_k = 0$$

$$\alpha g_k^T Q g_k = x_k^T Q g_k - b^T g$$

$$\alpha = \frac{x_k^T Q g_k - b^T g_k}{g_k^T Q g_k}$$

$$\alpha = \frac{(x_k^T Q - b^T) g_k}{g_k Q g_k}$$

$$\nabla f(x) = Q x - b$$

$$\alpha = \frac{\nabla f_k^T \nabla f_k}{\nabla f_k^T Q \nabla f_k}$$

$$x_{k+1} = x_k - \frac{\nabla f_k^T \nabla f_k}{\nabla f_k^T Q \nabla f_k} \nabla f_k$$

Convergence Rate of Steepest Descent

Define

 $x_{k+1} = x_k - \alpha_k \nabla f_k$

$$\frac{1}{2} \|x - x^*\|_{\mathcal{Q}}^2 = f(x) - f(x^*)$$

Using:
$$x_{k+1} = x_k - \frac{\nabla f_k^T \nabla f_k}{\nabla f_k^T Q \nabla f_k} \nabla f_k$$

It can be shown (homework):

$$||x_{k+1} - x^*||_Q^2 = \left\{1 - \frac{(\nabla f_k^T \nabla f_k)^2}{(\nabla f_k^T Q \nabla f_k)(\nabla f_k^T Q^{-1} \nabla f_k)}\right\} ||x_k - x^*||_Q^2$$

$$\|x_{k+1} - x^*\|_{Q}^{2} \le \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^{2} \|x_k - x^*\|_{Q}^{2}$$

where $0 \le \lambda_1 \le \lambda_2 \le \dots \ge \lambda_n$ are eigenvalues of Q

Convergence Rate of Steepest Descent

$$||x_{k+1} - x^*||_Q^2 \le \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 ||x_k - x^*||_Q^2$$

As the condition number increases the contours of the quadratic become more elongated, the zigzags of line search becomes more pronounced.

Theorem 3.4: Steepest Descent

$$f(x_{k+1}) - f(x^*) \le \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 (f(x_k) - f(x^*))$$

where $0 \le \lambda_1 \le \lambda_2 \le \dots \lambda_n$ are eigenvalues of Hessian

If the condition number is 800, and $f(x_1)=1$ and $f(x^*)=0$, After 1000 iterations the value of function will be .08.