Lecture-5

Quadratic Functions

Quadratic Functions

1, T
Sf(x)= Ex Ox—b'x Q is symmetric, Hessian of /

Vf(x)=0x-b
if x" is a unique solution of Ox = b, then it is

a stationary point of f

If the linear system Qx=>b can not be solved, then function
does not have a stationary point, it is unbounded




Quadratic Functions

1 7 T
J(x)= Ex Ox—b'x Q is symmetric, Hessian of f

Vi(x)=0x—b

According to definition, for any vector x and p:

f(xw)=%<x+om)TQ(x+ow)—bT<x+ow)

Quadratic Functions

f(x+ap)=%(x+ap)TQ(x+ap)—bT(X+0w)

fr+ap) = (70 +ap” O)x+ ap)~b'x b ap
= %(xTQx+ ap"Ox+x"Qap+a’p'Op)—b"'x—b ap
:%xTQx—bTx+%(apTQx+xTQap+a2pTQp)—bTap
f+ap) =10+ ap” (©Qx-b)+5ap'Op

If x™ is stationary point |
S tap) = () tap’(Ox ~b)+-a’p'Op

F(x +ap) =f(x*)+%a2pTQp




Quadratic Functions
F& ap) = f( )+ o’ p' O
The behavior of fis determine by matrix O
Let Qu;=Au,

Let p is equal to u;

f(x +tau;)= f(x*)+%a2quuj

Eigenvector and eigenvalue

fx +au,)= f(x) +%a2ufﬂjuj

f&x +au;)= f(x )+5a2/1j Q1s symmetric

f(x tau;) = f(x*)—i—%az/ij

* The change in f when moving away from x* along
the direction u; depends on the sign of
« If is positive f will strictly increase as
increases

«If 1isnegative f is decreasing as  increases
— If s zero, the value of / remains constant when
moving along any direction parallel to u;

—f reduces to a linear function along any such direction,
since quadratic term vanishes.




Quadratic Functions

« When all eigenvalues of O are positive, x~ is the
unique global minimum

—The contours of /" are ellipsoid whose principal axes
are in the directions of the eigenvectors of Q, with lengths
proportional to square root of corresponding eigenvalues.
If O is positive semi-definite, a stationary point
(if it exists) is a week local minimum.
« If Q is indefinite and non-singular, x” is a saddle
point, fis unbounded.

f(x +au;)= f(x*)+%a2/1j

Iso Contours (Contour Map)

Sx,x)=c

f(x,x,)=¢€" (4x12 + 2x22 +4x,x, +2x, +1)
c=.2,4,1,17,1.8,2,3,4,5,6,20




Quadratic Functions

Two positive eigenvalues
0- 5 3 =55
132 [-35

PD
Eigenvalues 6.8541, 0.1459 '\

Eigenvectors
-0.8507 0.5257
-0.5257 -0.8507

f(x)=%xTQx—bTx /

Figure 3. Contours of: (i) a polw&deﬁ nite quadratic fun: lwa\t] positive semi-
definite quadratic function; and (iii) an indefinite quadratic functio
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Quadratic Functions

One positive eigenvalue,
one zero eigenvalue

o-[; 1} <[}

Semi PD

Eigenvalue 5, 0

Eigenvectors
-0.8944  0.4472
-0.4472 -0.8944

Figure 3. Contours of: (i) a polw&deﬁ nite quadratic fun: lwa\t] positive semi-
definite quadratic function; and (iii) an indefinite quadratic functio




Quadratic Functions

One positive eigenvalue,
one negative eigenvalue

o- 2 3} ]

Indefinite

Eigenvalue 3.0902, -8.0902

Eigenvectors
-0.9960 -0.0898
0.0898 -0.9960

Figure 3. Contours of: (i) & positive-definite quadratic !uncl'wu\;_(:i] & positive semi-
definite quadratic function; and (iii) an indefinite quadratic function.

Quadratic Functions

How about a function with O, which is a diagonal matrix?

Figure 5.1 i inimizations along the coordi
minimizer of a quadratic with a diagonal Hessian in n iterations.

directos




Quadratic Functions

Quadratic Functions

How about a function with Q, which is a multiple of
an identity matrix?




Steepest Descent

Fioure 3.7 Steenest descent steps.

Convergence Rate of Steepest

Descent
f(x)= %xTQx—bTx

Vf(x)=0x—b

x is a unique solution of Ox =5

Let us compute step length, which minimizes the function:

f(xk _agk):%(xk _agk)TQ(xk _agk)_bT(xk _agk)




Convergence Rate of Steepest
Descent

dif(xk _ag/c):i(l(xk —agy )TQ(xk _agk)_br(xk —agy )) =0
a da 2

:_(xk _agk)Tng +ngk =0
_kang +angng +ngk =0

ag,'0g, =x,'0g, ~b'g

_(x/0-b"g,
2,0g; Vf(x)=0x—b
_ VIV
VY, OVf;
kaTka
—x, -y
X =X~ Vf, T = kaTQvfk i

Convergence Rate of Steepest

Descent
Define

%nx—x* 2= £ £ ()

\ Y

Xt =X — ka Sy Vi
Ve OVfi

It can be shown (homework):

. VIIVE)? .
| —x ||;={1 Vi V1) }nxk—x B

Using:

(VAIOVEIOTV)

OR ,
. A —A
2 n 1
X, ., —X <
[l %01 o (/1 )

n

*
(B

where0< 4, <4, <...4, areeigenvaluesof O




Convergence Rate of Steepest
Descent

2

* 2/ _ﬂ/ * 2

[ X4 —x ||2QS£ - IJ |, —x ||Q
A, + 4

As the condition number increases the contours of the quadratic
become more elongated, the zigzags of line search becomes more
pronounced.

Theorem 3.4: Steepest Descent

ln _ﬂ'l
/111 +X’l

f(xk+1)—f(x*)é[ J (f(x)=f(x)

where0< 4, <A, <...4, areeigenvalues of Hessian

If the condition number is 800, and f{x,)=1 and f(x*)=0,
After 1000 iterations the value of function will be .08.




