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Lecture-4

Line Search Methods: Search 
Directions, and step lengths

Line Search Methods

kkkk pxx α+←+1

kkk fBp ∇−← −1

Quasi-Newton:       is approximation to the Hessian matrixkB

kBSteepest descent:      is an identity matrix

kBNewton:       is a Hessian matrix
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Instead of inverting approximation of Hessian, we can 
directly compute the approximation of inverse of Hessian:

Inverse Hessian

Quasi Newton
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Conjugate Gradient
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Two vectors are conjugate with respect to a PD matrix G if 

is scalar such that 
and     are conjugatekp

1−kpkβ

Non-interfering directions, with the special property that 
minimization along one direction is not spoiled by 
subsequent minimization along another. 
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Step Length

0    )()( >+= αααφ kk pxf

(Exact Search) The global minimizer of the univariate function:

Too many evaluations of a function, and its gradient

(In-exact search): adequate reduction in f at minimal cost.
Two step method:

Bracketing (find the interval containing desirable step lengths)
bisection (compute step length within this interval)

Step Length
Ideal step length is the global minimizer
Step length should achieve sufficient decrease
And it should not be too small
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Simple Condition

Simple condition: reduction in f

  ) ()( kkk xfpxf <+α

This is not appropriate.
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We don not have sufficient reduction

Sufficient condition
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)1,0(   ),(-) ( 11 ∈+≤∇− cpxfxfpfc kkkk
T
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The reduction should be proportional to both the step length, 
and directional derivative.

St line
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Sufficient condition

)()( αα lpxf kk ≤+

Problem:
The sufficient decrease 
condition is satisfied for
all small values of step length
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Curvature condition
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The slope of         is greater than      times the gradient    .)0(φ′)( kαφ 2c

Derivative       )( kαφ′
gradient  conjugate1for .

Newton-Quasi andNewton for  9.
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Curvature condition
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Curvature condition

If the slope is strongly negative (too steep), that means we can red
further along the chosen direction (you should not stop there)
If the slope is positive, it indicates we can not decrease f further 
in this direction.
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Wolfe conditions
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Curvature 

Strong Wolfe conditions

|) (||)(| 2 kk
T

kk
T

kk pxfcppxf ∇≤+∇ α
)1,0(   ,) ()( 11 ∈∇+≤+ cpfcxfpxf k

T
kkkk αα

This forces step length to lie in at least in a broad neighborhood of 
a local minimizer or a stationary point  of      .φ

should not be too positive, exclude points which are 
Further away from the stationary points of φ
)(αφ′
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Goldstein conditions
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Sufficient decrease

To control step length from the below

Disadvantage:
It may exclude minimizers 
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Goldstein conditions
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(Wolf’s curvature condition)

(finite difference approximation)


