Lecture-4

Line Search Methods: Search
 Directions, and step lengths

$$
\begin{aligned}
& \text { Line Search Methods } \\
& \begin{array}{c}
x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k} \\
p_{k} \leftarrow-B_{k}^{-1} \nabla f_{k}
\end{array}
\end{aligned}
$$

Steepest descent: is an identity matrix
Newton: is a Hessian matrix
Quasi-Newton: is approximation to the Hessian matrix

Inverse Hessian

Instead of inverting approximation of Hessian, we can directly compute the approximation of inverse of Hessian:

$$
\begin{aligned}
& H_{k+1}=\left(I-\rho_{k} s_{k} y_{k}^{T}\right) H_{k}\left(I-\rho_{k} s_{k} y_{k}^{T}\right)+\rho_{k} s_{k} s_{k}^{T} \\
& \rho_{k}=\frac{1}{y_{k}^{T} s_{k}} \quad s_{k}=x_{k+1}-x_{k}, \quad H_{k}=B_{k}^{-1} \\
& \mathrm{y}_{\mathrm{k}}=\nabla f_{k+1}-\nabla f_{k}
\end{aligned}
$$

$$
p_{k}=-H_{k} \nabla f_{k}
$$

Quasi Newton

Conjugate Gradient

$$
p_{k}=-\nabla f\left(x_{k}\right)+\beta_{k} p_{k-1}
$$

is scalar such that and are conjugate

Two vectors are conjugate with respect to a PD matrix G if

$$
p_{k}{ }^{T} G p_{k-1}=0
$$

Non-interfering directions, with the special property that minimization along one direction is not spoiled by subsequent minimization along another.

Step Length

(Exact Search) The global minimizer of the univariate function:

$$
\phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right) \quad \alpha>0
$$

Too many evaluations of a function, and its gradient
(In-exact search): adequate reduction in f at minimal cost.
Two step method:
Bracketing (find the interval containing desirable step lengths) bisection (compute step length within this interval)

Step Length

Ideal step length is the global minimizer Step length should achieve sufficient decrease And it should not be too small
(-MNIEK J. LINE SEARCH METHODS

Simple Condition

Simple condition: reduction in f

$$
f\left(x_{k}+\alpha p_{k}\right)<f\left(x_{k}\right)
$$

This is not appropriate.

$$
\left\{\frac{5}{k}\right\}, k=1,2,3, \ldots
$$

We don not have sufficient reduction

Figure 3.2 Insufficient reduction in f.

Sufficient condition

$$
\begin{aligned}
& f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1) \quad c_{1}=10^{-4} \\
& -c_{1} \alpha \nabla f_{k}^{T} p_{k} \leq f\left(x_{k}\right)-f\left(x_{k}+\alpha p_{k}\right), \quad c_{1} \in(0,1)
\end{aligned}
$$

The reduction should be proportional to both the step length, and directional derivative.

$$
\begin{aligned}
& f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1) \\
& f\left(x_{k}+\alpha p_{k}\right) \leq l(\alpha)
\end{aligned}
$$

Sufficient condition

$$
f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1)
$$

$$
f\left(x_{k}+\alpha p_{k}\right) \leq l(\alpha)
$$

Figure 3.3 Sufficient decrease condition.

Problem:
The sufficient decrease condition is satisfied for all small values of step length

Curvature condition

$$
\begin{aligned}
& \qquad f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T}\left(x_{k}\right) p_{k}, \quad c_{2} \in\left(c_{1}, 1\right) \\
& c_{2}=.9 \text { for Newton and Quasi - Newton } \\
& c_{2}=.1 \text { for conjugate gradient }
\end{aligned}
$$

The slope of is greater than times the gradient

$$
\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T}\left(x_{k}\right) p_{k}, \quad c_{2} \in\left(c_{1}, 1\right)
$$

Curvature condition

Figure 3.4 The curvature condition.

$$
\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T}\left(x_{k}\right) p_{k}, \quad c_{2} \in\left(c_{1}, 1\right)
$$

Curvature condition

Figure 3.4 The curvature condition
If the slope is strongly negative (too steep), that means we can re further along the chosen direction (you should not stop there) If the slope is positive, it indicates we can not decrease f further in this direction.

Wolfe conditions

$$
\begin{array}{lll}
f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1) & \begin{array}{l}
\text { Sufficient } \\
\text { decrease }
\end{array} \\
\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T}\left(x_{k}\right) p_{k}, \quad c_{2} \in\left(c_{1}, 1\right) & \text { Curvature }
\end{array}
$$

Strong Wolfe conditions

$$
\begin{aligned}
& f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1) \\
& \quad\left|\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k}\right| \leq c_{2}\left|\nabla f_{k}^{T}\left(x_{k}\right) p_{k}\right| \\
& \nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T}\left(x_{k}\right) p_{k}, \quad c_{2} \in\left(c_{1}, 1\right)
\end{aligned}
$$

This forces step length to lie in at least in a broad neighborhood of a local minimizer or a stationary point of
should not be too positive, exclude points which are Further away from the stationary points of

Figure 3.5 Step lengths satisfying the Wolfe conditions.

angle	0	30	45	60	90	120	135	150	180
\tan	0	.5774	1	1.732	∞	-1.732	-1	-.5774	0
$\|\tan \|$	0	.577	1	1.732	∞	1.732	1	.5774	0

Goldstein conditions

$f\left(x_{k}\right)+(1-\mathrm{c}) \alpha_{\mathrm{k}} \nabla f_{k}^{T} p_{k} \leq f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c \alpha_{k} \nabla f_{k}^{T} p_{k}$
To control step length from the below $0<c<\frac{1}{2}$

Sufficient decrease

Figure 3.6 The Goldstein conditions.

Goldstein conditions

$$
f\left(x_{k}\right)+(1-\mathrm{c}) \alpha_{\mathrm{k}} \nabla f_{k}^{T} p_{k} \leq f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c \alpha_{k} \nabla f_{k}^{T} p_{k}
$$

To control step length from the below $\quad 0<c<\frac{1}{2}$
(finite difference approximation)

$$
\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T}\left(x_{k}\right) p_{k}, \quad c_{2} \in\left(c_{1}, 1\right)
$$

(Wolf's curvature condition)

