Lecture-3

Search Directions

Homework Due 1/16/01

« 2.1,22,23,2.8,2.13,2.14




Rate of Convergence

Definition : Suppose {p, },_, is a sequence that

convergesto pandthate =p —p

. | P — Pl . lenl
lim, > — o =lim_". =4

n—»o0 |pn_p| n—® |en|
then the seq is said to converge to p of order

o with asymptotic error constant A.

o =1, linear
a = 2, quadratic

a =1,and A =0, superlinear

Problem

min /)




Definitions
A point x is a stationary point if f'(x")=0
A point x" is a global minimizerif f(x")< f(x) Vx
A point x" is a local minimizer if there is a neighborhood N s.t.
f(x)< f(x) VxeN
A point x” is a strict local minimzer if

there is a neighborhood N s.t.
f(x)< f(x) VxeN,x#x

if V£(x") =0, but x" is neither a minimum nor

a maxima, it is called a saddle point.

First Order necessary conditions

* . . . .
If x isalocal minimizer and f

1s continuously differentiable in an

open neighborhood of x”, then V' (x") =0.




Second order necessary
conditions

If x" is a local minimizer and V> f
. . . . *
is continuous in an open neighborhood of x

then V/(x') =0 and V* f(x") is positive semidefinite .

Second order sufficient
conditions

Suppose that V°f is continuous in an open
neighborhood of x” and that V£ (x") =0

and Vf{x") is positive definite. Then x is a strict

local minimizer of f.




Convex Function

f 1s a convex function if for any two pointsx and » in its domain,
the graph of 7 lies below straight line connecting(x, 7(x)) to (v, f(»))

flx+(-a)y)<of () +(1-a) f(y) Yae[0,]]

Convex Function

When f is convex, any local minimizer
x is a global minimzer of f.If in addition f

is differentiable, then any stationary point x

is a gobal minimzer of f.




Line Search

min f (xk Top, )

a>0

x, current iterate
p, direction of a search

a distance to move along

Model Algorithm for Smooth Functions

* Let x;, Dbe the current estimate of x*.

—[Test for convergence.] If the conditions for convergence
are satisfied, the algorithm terminates with x, as a solution.

—[Compute a search direction.] Compute a non-zero n-vector
D, the direction of search.

—[Compute a step length.] Compute a positive scalar,
the step length, for which it holds that

S+ p) < f(x,)
- [Update the estimate of the minimum.]
X< x, +o,p, k<k+1

and go back to the first step




Steepest Descent

F G+ ap) = £(5)+p"Vf, +2 'V S 3+ )

min pTka subjectto|| p|=1
p

PTka =l p Il Vfy || cos& dot product

PTka =l p IV (1) minimum value

p= —V—fk Taylor series
I Y

Vi

Vil

Steepest Descent

P, =-Vf Steepest descent direction

kaka :H Py H H ka H cos 01( <0 down hill direction

Any descent direction-one that

makes an angle of strictly less than

90 degrees with the negative of gradient vector
produces a decrease in f, provided, that the
step length is sufficiently small.




Newton’s Direction

1
f(xk +p) = fk +pTVﬁc +§PTV2fkp =m,  Taylor series

approximation

D f 4V fip=0
dp

p=—V2f.’1Vf ‘ '
N Az fl N superscript for Newton Hessian
Py =-V fk ka

-V fipi =Vf,

T
- p/iv vszp/iv = vfkTpliv
Vi pY =—pY' Vi L pY <o, | PN IP Because Y/ is p.d.
Therefore 7 is a descent direction

kaTpkN <0

Newton’s Direction

* There is a natural step length, «, , of 1 for Newton’s

direction.
«If isnotp.d., the Newton’s directions may not be

defined, because inverse may not exists.
* Even inverse exists, the descent property may not

be satisfied. o _
* In that case, the search direction is modified to be a

down hill direction.
» Newton direction gives a quadratic local convergence.

*The main drawback of Newton’s method is
computation of a Hessian matrix.




Approximation of Hessian

Taylor Series
Vf(x+p)=Vf(x)+V*f(x)p
Let

P =Xy =X X=X
Vfea =Vf; +V2fk+1 (X — %)
szkﬂ (X1 = X%)=Vfiu = VS,

By S =y
Approximate/

Hessian S =X — X Ve =V Vi

Approximation of Hessian

By should be symmetric
The difference between successive approximations,,, to B,
have a low rank.

(v, —B.s)(v, —B;s,)"
Bk+1:Bk+ k kY k kak
(V= Bisy) s,
B,s,s,' B Y5
Bk+1:Bk_ kZ]fk k+ ka
s, B,s, Vi Sy

SRI (symmetric rank one)

Broyden,Fletcher, Shanno




Quasi-Newton

DPr = _Bk_lvfk

Inverse Hessian

Instead of inverting approximation of Hessian, we can
directly compute the approximation of inverse of Hessian:

H,, = (I_pkskylf)Hk(]_pkskyl\y:)-l_pksksl?’
1
ykTSk H, :Bk_l

Pr =

Pr = _Hkvfk




Conjugate Gradient

Pr = _Vf (xk) + ,kak—l B, 1is scalar that P«

and p, are conjugatg

Two vectors are conjugate with respect to a matrix G if

T
p. Gp, =0
Where G is PD




