Lecture-3

Search Directions

Homework Due 1/16/01

- 2.1, 2.2, 2.3, 2.8, 2.13, 2.14

Rate of Convergence

Definition : Suppose $\left\{p_{n}\right\}_{n=0}^{\infty}$ is a sequence that converges to p and that $e_{n}=p_{n}-p$
$\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lim _{n \rightarrow \infty} \frac{\left|e_{n+1}\right|}{\left|e_{n}\right|^{\alpha}}=\lambda$
then the seq is said to converge to p of order α with asymptotic error constant λ.

$$
\begin{aligned}
& \alpha=1, \text { linear } \\
& \alpha=2, \text { quadratic } \\
& \alpha=1, \text { and } \lambda=0, \text { superlinear }
\end{aligned}
$$

Problem

$\min f(x)$

x

Definitions

A point x^{*} is a stationary point if $f^{\prime}\left(x^{*}\right)=0$
A point x^{*} is a global minimizer if $f\left(x^{*}\right) \leq f(x) \forall x$
A point x^{*} is a local minimizer if there is a neighborhood N s.t.
$f\left(x^{*}\right) \leq f(x) \forall x \in \mathrm{~N}$
A point x^{*} is a strict local minimzer if there is a neighborhood N s.t.
$f\left(x^{*}\right)<f(x) \quad \forall x \in \mathrm{~N}, x \neq x^{*}$
if $\nabla f\left(x^{*}\right)=0$, but x^{*} is neither a minimum nor a maxima, it is called a saddle point.

First Order necessary conditions

If x^{*} is a local minimizer and f is continuously differentiable in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$.

Second order necessary conditions

If x^{*} is a local minimizer and $\nabla^{2} f$ is continuous in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite .

Second order sufficient conditions

Suppose that $\nabla^{2} \mathrm{f}$ is continuous in an open neighborhood of x^{*} and that $\nabla f\left(x^{*}\right)=0$ and $\nabla f\left(x^{*}\right)$ is positive definite. Then x^{*} is a strict local minimizer of f.

Convex Function

f is a convex function if for any two points x and y in its domain, the graph of f lies below straight line connecting $(x, f(x))$ to $(y, f(y))$

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \forall \alpha \in[0,1]
$$

Convex Function

$$
\begin{aligned}
& \text { When } f \text { is convex, any local minimizer } \\
& x^{*} \text { is a global minimzer of } f \text {. If in addition } f \\
& \text { is differentiable, then any stationary point } x^{*} \\
& \text { is a gobal minimzer of } f .
\end{aligned}
$$

Line Search

$$
\min f\left(\underset{\substack{\alpha>0}}{\left.x_{k}+\alpha p_{k}\right)}\right.
$$

x_{k} current iterate
p_{k} direction of a search
α distance to move along

Model Algorithm for Smooth Functions

- Let x_{k} be the current estimate of x^{*}.
-[Test for convergence.] If the conditions for convergence are satisfied, the algorithm terminates with x_{k} as a solution. -[Compute a search direction.] Compute a non-zero n-vector p_{k}, the direction of search.
-[Compute a step length.] Compute a positive scalar, , the step length, for which it holds that

$$
f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right)
$$

- [Update the estimate of the minimum.]
$x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}, \quad k \leftarrow k+1$
and go back to the first step

Steepest Descent

$$
\begin{gathered}
f\left(x_{k}+\alpha p\right)=f\left(x_{k}\right)+\alpha p^{T} \nabla f_{k}+\frac{1}{2} \alpha^{2} p^{T} \nabla^{2} f\left(x_{k}+p\right) p \\
\min _{p} p^{T} \nabla f_{k} \quad \text { subject to }\|p\|=1 \\
p^{T} \nabla f_{k}=\|p\|\left\|\nabla f_{k}\right\| \cos \theta \quad \text { dot product } \\
p^{T} \nabla f_{k}=\|p\|\left\|\nabla f_{k}\right\|(-1) \quad \text { minimum value } \\
p=-\frac{\nabla f_{k}}{\|p\|\left\|\nabla f_{k}\right\|} \quad \text { Taylor series } \\
p=-\frac{\nabla f_{k}}{\left\|\nabla f_{k}\right\|}
\end{gathered}
$$

Steepest Descent

$p_{k}=-\nabla f$
Steepest descent direction
$p_{k}{ }^{T} \nabla f_{k}=\left\|p_{k}\right\|\left\|\nabla f_{k}\right\| \cos \theta_{k}<0 \quad$ down hill direction
Any descent direction-one that makes an angle of strictly less than 90 degrees with the negative of gradient vector produces a decrease in f, provided, that the step length is sufficiently small.

Newton's Direction

$$
\begin{aligned}
& f\left(x_{k}+p\right)=f_{k}+p^{T} \nabla f_{k}+\frac{1}{2} p^{T} \nabla^{2} f_{k} p=m_{k} \quad \text { Taylor series } \\
& \frac{d m_{k}}{d p}=\nabla f_{k}+\nabla^{2} f_{k} p=0 \\
& p=-\nabla^{2} f_{k}^{-1} \nabla f_{k} \\
& p_{k}^{N}=-\nabla^{2} f_{k}^{-1} \nabla f_{k} \\
& \text { N superscript for Newton } \\
& \text { approximation } \\
& -\nabla^{2} f_{k} p_{k}^{N}=\nabla f_{k} \\
& -p_{k}^{N^{T}} \nabla^{2} f_{k} p_{k}^{N}=\nabla f_{k}^{T} p_{k}^{N} \\
& \nabla f_{k}^{T} p_{k}^{N}=-p_{k}^{N^{T}} \nabla^{2} f_{k} p_{k}^{N} \leq-\sigma_{k}\left\|p_{k}^{N}\right\|^{2} \quad \text { Because } \nabla^{2} f_{k} \text { is p.d. } \\
& \nabla f_{k}^{T} p_{k}^{N}<0 \quad \text { Therefore } p_{k}^{v} \text { is a descent direction }
\end{aligned}
$$

Newton's Direction

- There is a natural step length, α_{k}, of 1 for Newton's direction.
- If is not p.d., the Newton's directions may not be defined, because inverse may not exists.
- Even inverse exists, the descent property may not be satisfied.
- In that case, the search direction is modified to be a down hill direction.
- Newton direction gives a quadratic local convergence.
-The main drawback of Newton's method is computation of a Hessian matrix.

Approximation of Hessian

Taylor Series

$$
\nabla f(x+p)=\nabla f(x)+\nabla^{2} f(x) p
$$

Let

$$
p=x_{k+1}-x_{k}, x=x_{k}
$$

$$
\nabla f_{k+1}=\nabla f_{k}+\nabla^{2} f_{k+1}\left(x_{k+1}-x_{k}\right)
$$

$$
\nabla^{2} f_{k+1}\left(x_{k+1}-x_{k}\right)=\nabla f_{k+1}-\nabla f_{k}
$$

$$
\rightarrow B_{k+1} s_{k}=y_{k}
$$

Approximate
Hessian

$$
s_{k}=x_{k+1}-x_{k}, \quad \mathrm{y}_{\mathrm{k}}=\nabla f_{k+1}-\nabla f_{k}
$$

Approximation of Hessian

B_{k+1} should be symmetric
The difference between successive approximation B_{k+1} to B_{k} have a low rank.

$$
\begin{array}{ll}
B_{k+1}=B_{k}+\frac{\left(y_{k}-B_{k} s_{k}\right)\left(y_{k}-B_{k} s_{k}\right)^{T}}{\left(y_{k}-B_{k} s_{k}\right)^{T} s_{k}} & \text { SRI (symmetric rank one) } \\
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}{ }^{T} B_{k}}{s_{k}{ }^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}} & \text { Broyden,Fletcher, Shanno }
\end{array}
$$

Quasi-Newton

$$
p_{k}=-B_{k}^{-1} \nabla f_{k}
$$

Inverse Hessian

Instead of inverting approximation of Hessian, we can directly compute the approximation of inverse of Hessian:

$$
\begin{aligned}
& H_{k+1}=\left(I-\rho_{k} s_{k} y_{k}^{T}\right) H_{k}\left(I-\rho_{k} s_{k} y_{k}^{T}\right)+\rho_{k} s_{k} s_{k}^{T}, \\
& \rho_{k}=\frac{1}{y_{k}^{T} s_{k}} \\
& \quad H_{k}=B_{k}^{-1} \\
& \quad p_{k}=-H_{k} \nabla f_{k}
\end{aligned}
$$

Conjugate Gradient

$$
p_{k}=-\nabla f\left(x_{k}\right)+\beta_{k} p_{k-1} \quad \beta_{k} \text { is scalar that } p_{k-1}
$$ and p_{k} are conjugate

Two vectors are conjugate with respect to a matrix G if

$$
p_{k}{ }^{T} G p_{k-1}=0
$$

