Practical Newton’s Method

Lecture-20

Newton’s Method

pi ==V f(x) "' Vf(x,)

Vi f(x)pi =-Vf(x,)
« Pure Newton’s method converges rapidly once it is close to x™
* It may not converge from the remote starting point

» The search direction to be a descent direction
*True if the Hessian is Positive Definite
*Otherwise it may be ascent, or may be excessively long

» Two Strategies:
* Newton GC: Solve Linear System using GC, terminate if neg
curvature encountered
* Modified Newton: Modify Hessian before or during the solution




Inexact Newton Steps

Iterative method to solve linear system, terminate at some
approximate solution.

V2 f(x)pi ==V (x,)
Residual = =V £ (e)py +V/ (%)
Scale dependent

i

Relative Residual ||V 1 (x, )" ST

Terminate iterations if:

Il <mlvreo| 0<m <1,k n, is the forcing sequence

How about? =1,

Theorem 6.1

Suppose thatV(x,) is continuously differentiable in a neighborhood of
a minimizer ", and assume that V’f(x)is positive definite. Consider
the iteration x,,, =x, + p,, where 7 satisfies |[r|<n/|V/ (x| 0<n, <LVk
then , if the starting point X,

is sufficiently near x", the sequence {x,}  convergesto x" linearly.
That is, for all K sufficiently large, we have:

0<c=<l1

* *
ka-1 —-X H < cka —-X

>




Theorem 3.7 (Newton)
(Lecture-6)

Suppose that f is twice differentiable and that Hessian is
Lipschitz continuous. Consider the iteration where p;

is given by . o
P ==V [ Vi

Then:
1. If the starting point x, is sufficiently close to x*, the sequence
converges to x*

2. The rate of convergence is quadratic
3. The sequence of gradient norms/ v/l converges quadratically
to zero.

B :sz(xk)pk +Vf(xk)

pe=(V2f () (15 =V (x)

If Hessian is PD IV f(x) "L
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If x, is chosen close to x" , we can expectll V/(x) [l to decrease
by a factor of approximately 5, <1 at every iteration.
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P Vi)
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Theorem 6.2

Suppose that the conditions of Theorem 6.1 hold and assume that the
iterates {x, } generated by the inexact Newton method converges to
X . Then the rate of convergence is super-linear if;7, — 0 and

quadratic if 7, =0(v/(x,)]) .

Quadratic
1, =min(.5,[| V£ (x) 1)
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Line-Search Newton-CG Method

1. The starting point for GC iteration is

2. Negative curvature test. If the search direction satisfies

(pu))TAp(i) <0

If i=0, complete the first GC, compute the new iterate x

, stop

If >0, stop the first GC, return most recent solution

3. The Newton step p, is defined as the final CG iterate x?

Algorithm 6.1

Algorithm 6.1 (Line Search Newton - CG)
given initial point x,
for k=12,...n
Compute a search direction p, by applying the CG method to
V* f(x,)p = -V, starting from x'” = 0. Terminate when

I 7 [I€ min(0.5, /]| V£, ID | Vf (x,) ||, or if the negative curvatureis
is encountered
Set x,,, = x, + &, p,, where a, satisfies Wolfe backtracking conditions

end




Problems

* [f Hessian is nearly singular, Newton-CG direction can be long,
requiring many function evaluations.

* The reduction in function may be very small.

* Normalize the Newton’s direction

« Introduce threshold (p")" 4p"”’ <0

Algorithm 6.2

Algorithm 6.2 (Line Search Newton with Modification)
given initial point x,
for k=12,...n
Factorize the matrix B, = V> f(x,)+ E,, where E, = 0if V> f(x,)
is sufficiently PD; otherwise, E, is chosen to
ensure that B, is sufficiently PD
Solve B, p, ==V’ f(x,);
Set x,,, = x, + a, p,, where ¢, satisfies Wolfe backtracking conditions

end




Bounded Modified Factorization
Property

The matrices in the sequence {B,} have bounded condition number
whenever the sequence of Hessian {V’f(x,)} is bounded, that is:

cond(B,) =||B,||B;"| < C. for some C >0,k

Hessian Modification

Choose modification £, such that matrix B, =V’ f(x,)+E, is sufficiently
PD.

-modification to be well-conditioned
-small, so that second order information is preserved
-modification be computable at moderate cost




Eigenvalue Modification

Vf(xk) = (1:_3’2)

10 0 O
Vf*(x,) =diag(103,-1)= 0 3 0
0 0 -1
Spectral decomposition O =1and A =diag(4,,4,,1,)
V(i) = 0N =Y A’
1 B 1 v
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Vf(x) p {3

T
—-.1
{1 } —_1-3+4=9>0 Itisnota descent direction
2

Replace all negative eigenvalues by small positive numbers.

2
B, = Z ﬂﬁq,‘qiT + 5q3Q3T = diag(10,3,10™)

i=1

§=10"
] 2 | 1
Py =BV = —Z—q/l RGN 5% (45 Vf (x,)) = =(2x10%)g,
i=1

i

For small ¢ this step is nearly parallel to ¢; and very long.
Although f decreases along the direction p,, its extreme length
violates the sprit of Newton’s method, which relies on the quadratic
approximation of the objective function.




Flip the signs of negative eigenvalues, in our case Set

o=1

Set the last term zero, so that the search direction has no component
along the negative curvature directions, adapt the choice of 5
to ensure the length of the step is not excessive.
2
1

_ 1
P, =—B,'Vf, = —Z;qxqf %) —gqa(qi V£ (x,)) = —(2x10%)q,
i=1 i
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