Practical Newton's Method

Lecture-20

Newton's Method $p_k^n = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$

 $\nabla^2 f(x_k) p_k^n = -\nabla f(x_k)$

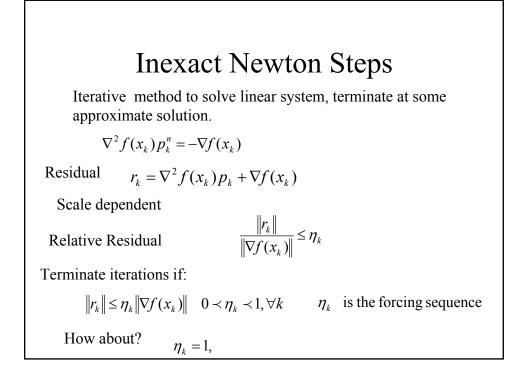
• Pure Newton's method converges rapidly once it is close to x^* .

• It may not converge from the remote starting point

- The search direction to be a descent direction
 True if the Hessian is Positive Definite
 - •Otherwise it may be ascent, or may be excessively long

• Two Strategies:

- Newton GC: Solve Linear System using GC, terminate if neg curvature encountered
- Modified Newton: Modify Hessian before or during the solution



Theorem 6.1

Suppose that $\nabla(x_k)$ is continuously differentiable in a neighborhood of a minimizer x^* , and assume that $\nabla^2 f(x^*)$ is positive definite. Consider the iteration $x_{k+1} = x_k + p_k$, where p_k satisfies $||r_k|| \le \eta_k ||\nabla f(x_k)|| \quad 0 < \eta_k < 1, \forall k$ then, if the starting point x_0

is sufficiently near x^* , the sequence $\{x_k\}$ converges to x^* linearly. That is, for all *K* sufficiently large, we have:

$$||x_{k-1} - x^*|| \le c ||x_k - x^*||, \quad 0 \prec c \prec 1$$

Theorem 3.7 (Newton) (Lecture-6)

Suppose that f is twice differentiable and that Hessian is Lipschitz continuous. Consider the iteration where p_k is given by

$$p_k^N = -\nabla^2 f_k^{-1} \nabla f_k$$

Then:

1. If the starting point x_0 is sufficiently close to x^* , the sequence converges to x^* .

2. The rate of convergence is quadratic

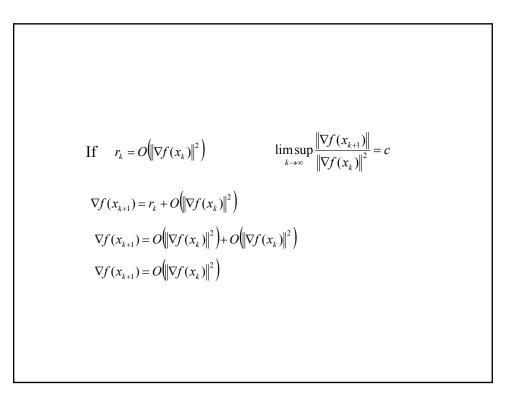
3. The sequence of gradient norms $\|\nabla f(x_k)\|$ converges quadratically to zero.

$$\begin{aligned} r_{k} &= \nabla^{2} f(x_{k}) p_{k} + \nabla f(x_{k}) \\ p_{k} &= (\nabla^{2} f(x_{k}))^{-1} (r_{k} - \nabla f(x_{k})) \end{aligned}$$
If Hessian is PD $\|\nabla^{2} f(x_{k})^{-1}\| \leq L$
 $\|p_{k}\| \leq L(\|\nabla f(x_{k})\| + \|r_{k}\|) \leq 2L \|\nabla f(x_{k})\|$ $\|r_{k}\| \leq \eta_{k} \|\nabla f(x_{k})\|$
Taylor Series
 $\nabla f(x_{k+1}) = \nabla f(x_{k}) + \nabla^{2} f(x_{k}) p_{k} + O(\|p_{k}\|^{2}) = \nabla f(x_{k}) - (\nabla f(x_{k}) - r_{k}) + O(L^{2} \|\nabla f(x_{k})\|^{2})$ $x_{k+1} = x_{k} + p$
 $\nabla f(x_{k+1}) = r_{k} + O(\|\nabla f(x_{k})\|^{2})$ $\|r_{k}\| \leq \eta_{k} \|\nabla f(x_{k})\|$

$$\begin{aligned} \|\nabla f(x_{k+1})\| &\leq \eta_k \|\nabla f(x_k)\| + O\left(\|\nabla f(x_k)\|^2 \right) \\ & \frac{\|\nabla f(x_{k+1})\|}{\|\nabla f(x_k)\|} \leq \eta_k + \frac{O\left(\|\nabla f(x_k)\|^2 \right)}{\|\nabla f(x_k)\|} \\ & \frac{\|\nabla f(x_{k+1})\|}{\|\nabla f(x_k)\|} \leq \eta_k + O\left(\|\nabla f(x_k)\| \right) \end{aligned}$$

If x_k is chosen close to x^* , we can expect $\|\nabla f(x)\|$ to decrease by a factor of approximately $\eta_k < 1$ at every iteration.
$$\begin{aligned} \lim_{k \to \infty} \sup \frac{\|\nabla f(x_{k+1})\|}{\|\nabla f(x_k)\|} \leq \eta < 1 \end{aligned}$$

If $r_k = o\left(\|\nabla f(x_k)\| \right)$
$$\begin{aligned} \lim_{k \to \infty} \sup \frac{\|\nabla f(x_{k+1})\|}{\|\nabla f(x_k)\|} = 0 \\ \|r_k\| \leq \eta_k \|\nabla f(x_k)\| \end{aligned}$$



Theorem 6.2

Suppose that the conditions of Theorem 6.1 hold and assume that the iterates $\{x_k\}$ generated by the inexact Newton method converges to x^* . Then the rate of convergence is super-linear if $\eta_k \to 0$ and quadratic if $\eta_k = O(\|\nabla f(x_k)\|)$.

Quadratic $\eta_{k} = \min(.5, || \nabla f(x_{k}) ||)$ $||r_{k}|| \leq \eta_{k} || \nabla f(x_{k}) ||$ $||r_{k}|| \leq || \nabla f(x_{k}) || || \nabla f(x_{k}) ||$ $||r_{k}|| \leq || \nabla f(x_{k}) || || \nabla f(x_{k}) ||$ $||r_{k}|| \leq || \nabla f(x_{k}) ||^{2}$ $\nabla f(x_{k+1}) = O(|| \nabla f(x_{k}) ||^{2}) + O(|| \nabla f(x_{k}) ||^{2})$ $\nabla f(x_{k+1}) = O(|| \nabla f(x_{k}) ||^{2})$ $||r_{k}|| \leq || \nabla f(x_{k}) ||^{2}$ $||r_{k}|| \leq || \nabla f(x_{k}) ||^{2}$ $||r_{k}|| \leq || \nabla f(x_{k}) ||^{2}$ $||r_{k}|| \leq || \nabla f(x_{k}) ||^{2}$

Line-Search Newton-CG Method

1. The starting point for GC iteration is

2. Negative curvature test. If the search direction satisfies

$$\left(p^{(i)}\right)^T A p^{(i)} \le 0$$

If *i*=0, complete the first GC, compute the new iterate $x^{(1)}$, stop

If *i*>0, stop the first GC, return most recent solution

3. The Newton step p_k is defined as the final CG iterate $x^{(j)}$

Algorithm 6.1

Algorithm 6.1 (Line Search Newton - CG) given initial point x_0 for k = 1,2,...,nCompute a search direction p_k by applying the CG method to $\nabla^2 f(x_k) p = -\nabla f_k$ starting from $x^{(0)} = 0$. Terminate when $||r_k|| \le \min(0.5, \sqrt{||\nabla f_k||}) ||\nabla f(x_k)||$, or if the negative curvature is is encountered Set $x_{k+1} = x_k + \alpha_k p_k$, where α_k satisfies Wolfe backtracking conditions end

Problems

• If Hessian is nearly singular, Newton-CG direction can be long, requiring many function evaluations.

- The reduction in function may be very small.
 - Normalize the Newton's direction
 - Introduce threshold $(p^{(i)})^T A p^{(i)} \le 0$

Algorithm 6.2

Algorithm 6.2 (Line Search Newton with Modification) given initial point x_0 for k = 1,2,...,nFactorize the matrix $B_k = \nabla^2 f(x_k) + E_k$, where $E_k = 0$ if $\nabla^2 f(x_k)$ is sufficiently PD; otherwise, E_k is chosen to ensure that B_k is sufficiently PD Solve $B_k p_k = -\nabla^2 f(x_k)$; Set $x_{k+1} = x_k + \alpha_k p_k$, where α_k satisfies Wolfe backtracking conditions end

Bounded Modified Factorization Property

The matrices in the sequence $\{B_k\}$ have bounded condition number whenever the sequence of Hessian $\{\nabla^2 f(x_k)\}$ is bounded, that is:

 $cond(B_k) = ||B_k|| ||B_k^{-1}|| \le C$, for some $C > 0, \forall k$

Hessian Modification

Choose modification E_k such that matrix $B_k = \nabla^2 f(x_k) + E_k$ is sufficiently PD.

-modification to be well-conditioned -small, so that second order information is preserved -modification be computable at moderate cost

Eigenvalue Modification

 $\nabla f(x_{k}) = (1, -3, 2)$ $\nabla f^{2}(x_{k}) = diag(10, 3, -1) = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ Spectral decomposition $Q = I \text{ and } A = diag(\lambda_{1}, \lambda_{2}, \lambda_{3})$ $\nabla^{2} f(x_{k}) = Q\Lambda Q^{T} = \sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}$ $p_{k}^{N} = -(\nabla^{2} f(x_{k})^{-1} \nabla f(x_{k})) = -\begin{bmatrix} .1 & .33 & \\ .33 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} p_{k}^{N} = (-.1, 1, 2)$ $\nabla f(x_{k})^{T} p_{k}^{N} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}^{T} \begin{bmatrix} -.1 \\ 1 \\ 2 \end{bmatrix} = -.1 - 3 + 4 = .9 > 0$ It is not a descent direction

Replace all negative eigenvalues by small positive numbers.

$$B_{k} = \sum_{i=1}^{2} \lambda_{i} q_{i} q_{i}^{T} + \delta q_{3} q_{3}^{T} = diag(10,3,10^{-8})$$

$$\delta = 10^{-8}$$

$$p_{k} = -B_{k}^{-1} \nabla f_{k} = -\sum_{i=1}^{2} \frac{1}{\lambda_{i}} q_{i} (q_{i}^{T} \nabla f_{k}) - \frac{1}{\delta} q_{3} (q_{3}^{T} \nabla f(x_{k})) \approx -(2x10^{8}) q_{3}$$

For small δ this step is nearly parallel to q_3 and very long. Although f decreases along the direction p_k , its extreme length violates the sprit of Newton's method, which relies on the quadratic approximation of the objective function. Flip the signs of negative eigenvalues, in our case Set

$$\delta = 1$$

Set the last term zero, so that the search direction has no component along the negative curvature directions, adapt the choice of δ to ensure the length of the step is not excessive.

$$p_{k} = -B_{k}^{-1} \nabla f_{k} = -\sum_{i=1}^{2} \frac{1}{\lambda_{i}} q_{i} (q_{i}^{T} \nabla f_{k}) - \frac{1}{\delta} q_{3} (q_{3}^{T} \nabla f(x_{k})) \approx -(2x10^{8}) q_{3}$$