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Preliminaries 

Lecture-2

Eigen Vectors and Eigen Values
The eigen vector, x, of a matrix A is a special vector, with 
the following property 

xAx λ= Where λ is called eigen value

0)det( =− IA λ
To find eigen values of a matrix A first find the roots of:

Then  solve the following linear system for each eigen 
value to find corresponding eigen vector

0)( =− xIA λ
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Example
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Eigen Values

Eigen Vectors

Eigen Values
0)det( =− IA λ
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Eigen Vectors
0)( =− xIA λ
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Rotation matrices are Orthogonal 
(orthonormal) Matrices
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Positive-definite

.0
 if definite positive ismatrix n n symetricA 

>

×

AXX T

• All diagonal elements of a positive-definite matrix are 
strictly positive

• Negative definite matrix has all negative  eigenvalues

• If all eigenvalues of a symmetric matrix are non-negative, 
it is said to be Positive semi-definite

• If a matrix has both positive and negative eigenvalues, it is 
said to be indefinite
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Matrix Factorization

ngular upper tria a is  Uand
 ngular,Lower tria a is L ion,decomposit LU ,LUA =

matrixagular upper trin is U
 l,orthonorma is C ion,decompoist QR ,CUA =

Singular Value Decomposition (SVD)

Theorem: Any m by n matrix A, for which 
,can be written as 

21 OOA Σ=
mxn nxn nxnmxn

is diagonal

are orthogonal

Σ
21 ,OO

IOOOO TT == 2211

nm ≥
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Singular Value Decomposition (SVD)

• For some linear systems  Ax=b,       
Gaussian Elimination or LU decomposition 
does not work, because matrix A is 
singular, or very close to singular. SVD will 
not only diagnose for you, but it will solve 
it.

Singular Value Decomposition (SVD)

If A is square, then              are all square.21 ,, OO Σ
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Singular Value Decomposition (SVD)

The condition number of a matrix is the ratio of 
the largest of the        to the smallest of       .  A 
matrix is singular if the condition number is 
infinite, it is ill-conditioned if the condition 
number is too large.

jw jw

Singular Value Decomposition (SVD)

bAx =
• If A is singular, some subspace of “x” maps to    
zero; the dimension of the null space is called 
“nullity”.

• Subspace of “b” which can be reached by “A” is 
called range of “A”, the dimension of range is called 
“rank” of A.
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Range and Null Space

x

Ax=b

b

Range of A

Dimension of 
range is rank of A  

b=0

Null space of A
Dimension of Null space is Nullity 

Singular Value Decomposition (SVD)

• If A is non-singular its rank is “n”.

• If A is singular its rank <n.

• Rank+nullity=n
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Singular Value Decomposition (SVD)

• SVD constructs orthonormal basses of null 
space and range.

• Columns of          with zero           spans   null 
space.

jw2O

• Columns of            with   non-zero        spans 
range.

1O jw

21 OOA Σ=

Solution of Linear System

• How to solve Ax=b, when A is singular?

• If “b” is in the range of “A” then system has
many solutions.

• Replace       by  zero if 0=jw
jw

1

bO
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Solution of Linear System

If b is not in the range of A, above eq still gives
the solution, which is the best possible solution, 

it minimizes: 

|| bAxr −≡

Cholesky Factorization
A positive-definite symmetric matrix A can be written:

TLDLA =

L is unit lower triangular matrix
D is a diagonal matrix with strict 
Positive elements

are general lower triangular 
and general upper triangular matrices

RL ,

RRLLLDLDA TTT === 2
1

2
1
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Spectral Decomposition of A 
Symmetric Matrix
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Condition Number

||||||||)(
number Condition 

1−= AAAk

one.an greater thtly significan is K(A)
 when d,conditione-not well is and one  toclose

 is K(A) if dconidtione- wellisA matrix  The

1-D Functions

Finding the zero of a function
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Bisection Method

•Find a solution to f(x)=0 on the interval [a,b], 
where f(a)<0 and f(b)>0 have opposite signs.

–Compute the mid point,m, of [a,b], if f(m)=0, 
then done

– else if f(m)>0, then b=m, else a=m

nn
abpp

2
|| −
≤−

Bisection Method

f(x)

a b

x1
x2 x
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Newton’s Method
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Secant Method
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If derivative can not be computed 
Use finite difference approximation
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