Lecture-15

Homework, Rate of Convergence of
CG, preconditioning, FR-GC, PR-GC

Homework (Due March 25)

« 5.1
59
* Proof for Theorem 5.5 (see the slides)




Theorem 5.4

If 4 has only r distinct eigenvalues, then the CG iteration
will terminate at the solution in at most  iterations.

Theorem 5.5

If A4 has eigenvalues 4i»---> 4,154, 415+ 4, we have
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Proof

Assume eigenvalues A, ;,,,..., 4, take k distinct values:

n

Ak T4
7, <7y,...,<T, and =T

Define polynomial:
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Example

0ol—

Iogfllx-r‘l!lf]

uniformly distributed
cigenvalues

L | |

4 5 [ 7
iteration

The matrix has five large eigenvalues with all smaller eigenvalues

clustered around .95

and 1.05

log(lLx-x*113)

1 I |

iteration |

N=14, has four clusters of eigenvalues: single eigenvalues at
140, 120, a cluster of 10 eigenvalues very close to 10 with the
remaining eigenvalues clustered between .95 and 1.05.




Convergence using Condition
number
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Convergence Rate of Steepest
Descent: Quadratic Function
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What is desirable?

» Matrix A4 should have either:
— Few distinct eigenvalues

— Few distinct eigenvalues, and few clusters of
eigenvalues

— Smaller condition number

Preconditioning

« If the matrix 4 dose not have favorable
eigenvalues, we can transform the problem
such that eigenvalue distribution of a matrix
in the transformed problem improves.




Preconditioning
Original problem:

1
¢(x)=ExTAx—bTx or Ax=>b

Transformation:

Transformed problem:

H(%) = %(C‘%)TAC‘% —b'C'%

A(F) =%£T(C‘TAC‘1))%—(C‘T17)T)% (CTAC R =(CTh)

Preconditioning
(CTAC™Hx=(CT"b)

Select C such that:
condition number of ¢7"4C™" is much smaller than the original

matrix A.

The eigenvalues of ¢ 74¢™! are clustered

One possible preconditioner is

clac!'=0'ar"=0"'LL'L" =1




Algorithm 5.3 (Preconditioned
CQ)

Given x,, preconditioner M ; Given x,;
set 1, < Ax, —b, set 1, «— Ax,—b, p, < —1,,k <0
solve My, =r,, for y,; While r, #0
Do < Ty, k<0 ”kT”k
While 1, #0 ) M=C'C a, (——kaApk ;
X E_%; X € X TPy
P Ap,

1o, <1 +a,Ap,;
. K+ k P>
Xt € X TP -

Tiw < T T AP B (_%;

My, =1 T Tk

By — %; Prat € “hea + Bralis
Te Vi k<« k+1

Pt < Ve + BraPis end (while)

k<« k+1;

end(while) 53 5.2

Non-linear CG

* Two changes in linear GC
— Perform line search for step length

— Replace residual 7 by the gradient of the
function

* Two algorithms:
— FR (Fletcher-Reves) (1964)
— PR (Polak-Rebiere) (1969)

 The difference is only in g




Algorithm 5.4 (FR-CQG)

Given x,;

evaluate f, = f(x,),Vf, =Vf(x,)

set p, < —Vf,, k<0
While Vf, #0
compute o,
Xpp1 € X TPy

evaluate Vf, ,;

Given x,;

set 1y «— Axy—b, p, < —1, k<0

While r, #0
T
Te Ve .
T b
PeAp;
X € X T D5

a, < —

Ten <t Apys

it Vi L
k+1 s alea .
ViV Pra 5L
k "k
o =V +BEp;
/f/\ 1 (—k-llf'l pra Prat < T+ Brabis
Jowhil ' k<« k+1;
endohile) end(while)
54 5.2
Question

* How do we guarantee that the search
direction is a descent direction for any
arbitrary non-linear function?




Choice of step length
Pin < Vit IiRlpk
The search direction p, may fail to be a descent direction, unless
step length satisfies certain conditions.
P ==V + B iy
kaTpk = _kaTka + ﬂkFRkaTpk—l
Ve o ==V AP +B5VE pey

If vf/p,, =0, then v//p, <0 , therefore p, is a descent direction
(Theorem 5.2 for quadratic functions).

If vf7p. =0 ,then the second term may dominate, and vf/p, >0

Choice of step length

To solve this problem, we will require step length satisfies the
following Strong Wolf’s conditions:

f(x, +apk)Sf(xk)+cl(szkTpk, ¢, €(0,1)
1
|Vf(xk+apk)Tpk I<c, |kaT(xk)pk , 0<¢ <c, <E

We will show in Lemma 5.6 that the Wolf’s conditions guarantee:

karpk <0




Polak-Ribiere

They are the same if the fis quadratic
Vi (Y, —V y
PR VoWV ia =VI,) function, and line search is exact, since

k+1 T
Ve Vi gradients (residuals) are mutually orthogonal
r
FR M by Theorem 5.3
e V1!V, For general non-linear functions,

numerical experience indicates PR-CG
tends to be more robust and efficient.

For PR-CG strong wolf conditions do
not guarantee that p, is always a descent
direction.

Other Choices

B =max(BF.0) This can satisfy descent property

HS <« Vﬁil (Vflm _vfk)

e ; Yet another choice
(Vi =V Py




Quadratic Termination &
Restarts

Non-linear CG methods preserves their connections to linear CG.
Quadratic interpolation along p, guarantees that for a quadratic
function, the step length is exact, that is non-linear CG reduces to
linear GC.

Restart non-linear GC after every n steps:

Pin < _v.fkﬂ + ﬂkFJﬁpk

pk+1 <~ _vf}cﬂ

It is steepest descent. It erases the old memory,which may not be
beneficial.

Quadratic Termination &
Restarts

N-step Quadratic convergence can be proved with restarts

If the function is strongly quadratic in a neighborhood of a solution
Assume the algorithm is converging to solution,

the iterations will enter the quadratic region,

at some point algorithm will be restarted, that point onward the
behavior will be similar to linear GC.

convergence will occur within n steps

Restart is important, because finite termination is subject to p,
equal to the negative gradient.

Even if the function is not strongly quadratic,
it can be approximated by Taylor series, if it is smooth.
Therefore substantial progress can be made toward the solution




Restarts

Practically restarts are not implemented.
Because NGC is used for function, where # is very large
often solution is reached much before n steps.

Restarts based on other strategies

;
VIV | Vf"z’l‘ZV, v=.1
V7l

Two consecutive gradients are far from orthogonal.

Theorem 5.3

B, =max(B".0) Another restarting strategy

Results

Termination conditions:

Or 10, 000 iterations Given x,;
evaluate f, = f(x,),Vf, =Vf(x,)

set py <=V, k<0

While Vf, #0
Alg FR Alg PR Alg PR+ compute «;;
Problem n it/f-g it/f-g it/f-g mod X X, Py
CALCVAR3 200 || 2808/5617 | 2631/5263 | 2631/5263 0 evaluate V...
GENROS 500 " 1068/2151 | 1067/2149 1 !
XPOWSING 1000 || 533/1102 | 212/473 | 97/229 3 s M;
TRIDIAI 1000 || 264/531 | 262/527 | 262527 0 VIV,
MSQRT1 1000 422784 | T3/231 | 113310 ] o VB (Vea =V o,
XPOWELL 1000 || 568/1175 | 212/473 | 97/229 3 Bea < ViV
TRIGON 1000 || 2317467 40/92 40/92 0
Pin € Vit ﬂliRlpk;
k<« k+1;
end (while)

¢ =10" ¢, =.1




Results

Practically PR-GC is preferred over FR-GC.

We can prove (Theorem 5.8) the global
convergence of FR-GC.

But, we can not prove the global convergence of
PR-GC.

Not only that, but theorem by Powel (1984):

— PR-GC can cycle infinitely without approaching a
solution point, even in an ideal line search is used!

Results

» Also by Powell (1976):

— If the algorithm enters a region in which the function is
2-D quadratic, the angle between gradient and the
search direction p, stays constant. Therefore if this
angle is close to 90 degrees, FR method can be slower
than the steepest descent.

— PR behaves differently: if a very small step is
generated, the next search direction tends to be steepest
descent. This feature prevents a sequence of tiny steps.




Proof

Eigenvalues
ﬂ“l""’ﬂ“n—k’ﬂ’n—kﬂ""’ﬂ'n
Select polynomial of degree k such that
O has roots at k£ largest eigenvalues
//in 4 //in—l ERR //in—kﬂ

As well as at mid point 4, and 2, ,
Qk+l A)=1+ /1Pk (A
Maximum value attained by O on the remaining eigenvalues is precisely
ﬂ’n—k _/‘11
A+
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