Lecture 12

Rate of Convergence
Theorem 5.4

Theorem 5.4

If *A* has only *r* distinct eigenvalues, then the CG iteration will terminate at the solution in at most *r* iterations.

Proof

Assume eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ take r distinct values:

$$\tau_1 < \tau_2, \dots, < \tau_r$$

Define polynomial:
$$Q_r(\lambda) = \frac{(-1)^r}{\tau_1 \tau_2 \dots \tau_r} (\lambda - \tau_1) (\lambda - \tau_2) \dots (\lambda - \tau_r)$$

$$Q_r(\lambda_i) = 0$$
 for $i = 1, 2, ..., n$

$$Q_{r}(0) = 1$$

 $Q_r(\lambda) - 1$ Is polynomial of degree r with root at

$$\widetilde{P}_{r-1} = \frac{(Q_r(\lambda) - 1)}{\lambda}$$

Degree r-1

 $\min_{P_k} \max_{1 \le i \le n} \left[1 + \lambda_i P_k(\lambda_i) \right]^2
 (B)$

$$0 \leq_{P_{r-1}}^{\min \max} [1 + \lambda_i P_{r-1}(\lambda_i)]^2 \leq_{1 \leq i \leq n}^{\max} [1 + \lambda_i \widetilde{P}_{r-1}(\lambda_i)]^2 =_{1 \leq i \leq n}^{\max} (Q_r(\lambda_i))^2 = 0$$

$$\min_{P_{r-1}} \max_{1 \le i \le n} [1 + \lambda_i P_{r-1}(\lambda_i)]^2 = 0 \qquad \text{For } k = r-1$$

From (C)

$$\|x_{k+1} - x^*\|_A^2 \le_{P_k}^{\min \max} \left[1 + \lambda_i P_k(\lambda_i)\right]^2 \|x_0 - x^*\|_A^2 = 0$$

$$||x_r - x^*||_A^2 = 0$$

Therefore

$$x_r = x^*$$
 QED

Theorem 5.5

If A has eigenvalues $\lambda_1 \le \lambda_2 \le ... \le \lambda_n$ we have

$$||x_{k+1} - x^*||_A^2 \le \left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2 ||x_0 - x^*||_A^2$$

Eigenvalues

$$\lambda_1, \ldots, \lambda_{n-k}, \lambda_{n-k+1}, \ldots, \lambda_n$$

Eigenvalues

$$\lambda_1, \ldots, \lambda_{n-k}, \lambda_{n-k+1}, \ldots, \lambda_n$$

Select polynomial of degree k such that

Q has roots at k largest eigenvalues

$$\lambda_n, \lambda_{n-1}, \dots, \lambda_{n-k+1}$$

 $\lambda_n, \lambda_{n-1}, \dots, \lambda_{n-k+1}$ As well as at mid point λ_1 and λ_{n-k}

$$Q_{k+1}(\lambda) = 1 + \lambda \overline{P}_k(\lambda)$$

Maximum value attained by Q on the remaining eigenvalues is precisely

$$\left(\frac{\lambda_{n-k}-\lambda_1}{\lambda_{n-k}+\lambda_1}\right)$$

(C)
$$\|x_{k+1} - x^*\|_A^2 \le \min_{1 \le i \le n} \max_{1 \le i \le n} [1 + \lambda_i P_k(\lambda_i)]^2 \|x_0 - x^*\|_A^2$$

$$||x_{k+1} - x^*||_A^2 \le \left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2 ||x_0 - x^*||_A^2$$

Example

$$\|x_{m+1} - x^*\|_A \approx \varepsilon \|x_0 - x^*\|_A$$

$$||x_{k+1} - x^*||_A^2 \le \left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2 ||x_0 - x^*||_A^2$$

For small value of CG will converge in only *m*+1 steps.

Example

The matrix has five large eigenvalues with all smaller eigenvalues clustered around .95 and 1.05

N=14, has four clusters of eigenvalues: single eigenvalues at 140, 120, a cluster of 10 eigenvalues very close to 10 with the remaining eigenvalues clustered between .95 and 1.05.

Convergence using Condition number

$$||x_{k+1} - x^*||_A^2 \le \left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^2 ||x_0 - x^*||_A^2$$

$$\kappa(A) = ||A||_2 ||A^{-1}||_2 = \frac{\lambda_1}{\lambda_n}$$

Convergence Rate of Steepest Descent: Quadratic Function

$$||x_{k+1} - x^*||_Q^2 \le \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 ||x_k - x^*||_Q^2$$
 Theorem 3.3

As the condition number increases the contours of the quadratic become more elongated, the zigzags of line search becomes more pronounced.

Preconditioning

• If the matrix A dose not have favorable eigenvalues, we can transform the problem such that eigenvalue distribution improves.

Preconditioning

Original problem:

$$\phi(x) = \frac{1}{2}x^{T}Ax - b^{T}x$$
 or $Ax = b$

Transformation:

$$\hat{x} = Cx \qquad C^{-1}\hat{x} = x$$

Transformed problem:

$$\phi(x) = \frac{1}{2} (C^{-1}\hat{x})^T A (C^{-1}\hat{x}) - b^T (C^{-1}\hat{x})$$

$$\hat{\phi}(\hat{x}) = \frac{1}{2} \hat{x}^T (C^{-T} A C^{-1}) \hat{x} - (C^{-T} b)^T \hat{x}$$
(C^{-T} A C^{-1}) \hat{x} = (C^{-T} b)

Linear system

Quadratic Function

Linear system

Select *C* such that:

condition number of $C^{-T}AC^{-1}$ is much smaller than the original Matrix A.

The eigenvalues of $C^{-T}AC^{-1}$ are clustered

One possible preconditioner is

$$C^{-T}AC^{-1} = L^{-1}AL^{-T} = L^{-1}LL^{T}L^{-T} = I$$

Algorithm 5.3 (Preconditioned CG)

Given
$$x_0$$
, preconditioner $M = C^T C$; set $r_0 \leftarrow Ax_0 - b$, solve $My_0 = r_0$, for y_0 ; $p_0 \leftarrow -r_0$, $k \leftarrow 0$

While $r_k \neq 0$

$$\alpha_k \leftarrow -\frac{r_k^T y_k}{p_k^T A p_k};$$

$$x_{k+1} \leftarrow x_k + \alpha_k p_k;$$

$$r_{k+1} \leftarrow r_k + \alpha_k A p_k;$$

$$My_{k+1} = r_{k+1}$$

$$\beta_{k+1} \leftarrow \frac{r_k^T y_{k+1} y_{k+1}}{r_k^T y_k};$$

$$p_{k+1} \leftarrow -y_{k+1} + \beta_{k+1} p_k;$$

$$k \leftarrow k + 1;$$
end(while)

Given x_0 ;
$$x_0$$
;
$$x_k \leftarrow Ax_0 - b, p_0 \leftarrow -r_0, k \leftarrow 0$$

$$\alpha_k \leftarrow -\frac{r_k^T r_k}{p_k^T A p_k};$$

$$x_{k+1} \leftarrow x_k + \alpha_k p_k;$$

$$r_{k+1} \leftarrow x_k + \alpha_k p_k;$$

$$r_{k+1} \leftarrow r_k + \alpha_k A p_k;$$

$$\beta_{k+1} \leftarrow \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k};$$

$$k \leftarrow k + 1;$$
end(while)

5.2

Non-linear CG

- Two changes in linear GC
 - Perform line search for step length
 - Replace residual r by gradient of function
- Two algorithms:
 - -FR
 - -PR
- The difference is only in β

Algorithm 5.4 (FR-CG)

Given
$$x_0$$
; $evaluate \ f_0 = f(x_0), \nabla f_0 = \nabla f(x_0)$ $set \ p_0 \leftarrow -\nabla f_0, k \leftarrow 0$ $while \ \nabla f_k \neq 0$ $compute \ \alpha_k$; $x_{k+1} \leftarrow x_k + \alpha_k p_k$; $x_{k+1} \leftarrow x_k + \alpha_k p_k$; $x_{k+1} \leftarrow \nabla f_{k+1}^T \nabla f_{k+1}$; $x_{k+1} \leftarrow \nabla f_{k+1}^T \nabla f_{k+1}$; $x_{k+1} \leftarrow -\nabla f_{k+1} + \beta_{k+1}^{FR} p_k$; $x_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k$; $x_{k+1} \leftarrow r_{k+1} + \beta_{k+1} p_k$; x_{k

5.4

Choice of step length

$$p_{k+1} \leftarrow -\nabla f_{k+1} + \beta_{k+1}^{FR} p_k$$

The search direction p_k may fail to be a descent direction, unless Step length satisfies certain conditions.

$$\begin{aligned} p_k &= -\nabla f_k + \beta_k^{FR} p_{k-1} \\ \nabla f_k^T p_k &= -\nabla f_k^T \nabla f_k + \beta_k^{FR} \nabla f_k^T p_{k-1} \\ \nabla f_k^T p_k &= -\|\nabla f_k\|^2 + \beta_k^{FR} \nabla f_k^T p_{k-1} \end{aligned}$$

If $\nabla f_k^T p_{k-1} = 0$, then $\nabla f_k^T p_k < 0$, therefore p_k is a descent direction.

If $\nabla f_k^T p_{k-1} \neq 0$, then the second term may dominate, and $\nabla f_k^T p_k > 0$

Choice of step length

To solve this problem, we will require step length satisfies following Strong Wolf's conditions:

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k, \quad c_1 \in (0,1)$$
$$|\nabla f(x_k + \alpha p_k)^T p_k| \le c_2 |\nabla f_k^T (x_k) p_k|, \quad 0 < c_1 < c_2 < \frac{1}{2}$$

We will show in Lemma 5.6 that the Wolf's conditions guarantee:

$$\nabla f_k^T p_k < 0$$

Polak-Ribiere

$$\beta_{k+1}^{PR} \leftarrow \frac{\nabla f_{k+1}^{T} (\nabla f_{k+1} - \nabla f_{k})}{\nabla f_{k}^{T} \nabla f_{k}}$$
$$\beta_{k+1}^{FR} \leftarrow \frac{\nabla f_{k+1}^{T} \nabla f_{k+1}}{\nabla f_{k}^{T} \nabla f_{k}}$$

They are the same if the f is quadratic function, and line search is exact, since gradients (residuals) are mutually orthogonal by Theorem 5.3

For general non-linear functions, numerical experience indicates PR-CG tends to be more robust and efficient.

For PR-CG strong wolf conditions do not guarantee that p_k is always a descent direction.

Other Choices

$$\beta_{k+1}^+ = \max(\beta_{k+1}^{PR}, 0)$$
 This can satisfy descent property

$$\beta_{k+1}^{HS} \leftarrow \frac{\nabla f_{k+1}^T (\nabla f_{k+1} - \nabla f_k)}{(\nabla f_{k+1} - \nabla f_k)^T p_k}$$