Lecture 12

Rate of Convergence
Theorem 5.4

Theorem 5.4

If A has only r distinct eigenvalues, then the CG iteration
will terminate at the solution in at most 7 iterations.




Proof

Assume eigenvalues 4,,4,,...,4

. take r distinct values:
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Theorem 5.5

If A has eigenvalues 4, <4,<...<1, we have
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Example
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For small value of
CG will converge in onlyj
m+1 steps.

Example

log(lle-x*11)

o= o S
uniformly distributed
cigenvalues

7
iteration

The matrix has five large eigenvalues with all smaller eigenvalues

clustered around .95 and 1.05
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] log(llz-x*13)

iteration |

N=14, has four clusters of eigenvalues: single eigenvalues at
140, 120, a cluster of 10 eigenvalues very close to 10 with the
remaining eigenvalues clustered between .95 and 1.05.

Convergence using Condition

number
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Convergence Rate of Steepest
Descent: Quadratic Function
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As the condition number increases the contours of the quadratic
become more elongated, the zigzags of line search becomes more
pronounced.

Preconditioning

« If the matrix 4 dose not have favorable
eigenvalues, we can transform the problem
such that eigenvalue distribution improves.




Preconditioning
Original problem:

1
¢(x)=ExTAx—bTx or Ax=b

Transformation:

Transformed problem:
$) = 1 (CR AC D) -1 (€
B(%) = %fcr (CTACHZ—(C b)Y % (CTACHX=(C"h)

Quadratic Function Linear system

Select C such that:

condition number of -7 4! is much smaller than the original
Matrix 4.
The eigenvalues of (-7 4! are clustered

One possible preconditioner is

clac!'=0'ar"=0"'LL'L" =1




Algorithm 5.3 (Preconditioned
CQ)

. .\ T )
Given x,, preconditioner M = C" C; Given X0

A —
set 1y  Ax, b, set 1y «— Axy—b, p, <1,k <0

solve My, =r,, for y;
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Non-linear CG

* Two changes in linear GC

— Perform line search for step length

— Replace residual 7 by gradient of function
* Two algorithms:

— FR

— PR
» The difference is only in 8




Algorithm 5.4 (FR-CQG)

Given x,;

evaluate f, = f(x,), Vi, =Vf(x,)
set p, < —Vf,, k<0

While Vf, #0

compute «;; Qp <=

Given x,;
set 1y «— Axy—b, p, < —1, k<0
While r, #0
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Choice of step length

FR
P < _vf}cH + Pra P

The search direction p, may fail to be a descent direction, unless
Step length satisfies certain conditions.

Py =—Vfi + [Rpk—l
kaTpk = _kaTka + ﬂ[RVJ(kTpk—l
Vi o ==V P +BEVE pey

If vf7p. =0, thenv// p, <0 , therefore p, is a descent direction.

If v//p..=#0 ,then the second term may dominate, and vf/p, >0




Choice of step length

To solve this problem, we will require step length satisfies followin;
Strong Wolf’s conditions:

f +ap) < f(x)+caVf p,, ¢ €(0,))
1
|V (x,+ap) p < |V (x)pe ], 0<¢ <c, <5
We will show in Lemma 5.6 that the Wolf’s conditions guarantee:

kaTpk <0

Polak-Ribiere

They are the same if the f'is quadratic
o VIV =V y . /s quadrat
el < function, and line search is exact, since

T
VI Vi gradients (residuals) are mutually orthogonal
T Th .
- kaHkaH by Theorem 5.3
k+1 T RH .
ka ka For general non-linear functions,

numerical experience indicates PR-CG
tends to be more robust and efficient.

For PR-CG strong wolf conditions do
not guarantee that p, is always a descent
direction.




Other Choices

Bl = max(,B,iR1 ,0) This can satisfy descent property

kaL (kaﬂ — ka)
(Vfea =V by
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