Lecture-7

Step Length Selection

Homework (Due 2/20/01)

- 3.1
- 3.2
- 3.5
- 3.6
- 3.7
- 3.9
- 3.10
- Show equation 3.44
- The last step in the proof of Theorem 3.6. (see slides)

Sufficient condition

$$f(x_k + \mathbf{a}p_k) \le f(x_k) + c_1 \mathbf{a} \nabla f_k^T p_k, \quad c_1 \in (0,1)$$
 $c_1 = 10^{-4}$

$$f(x_k + ap_k) - f(x_k) \le c_1 a \nabla f_k^T p_k, \quad c_1 \in (0,1)$$

The reduction should be proportional to both the step length, and directional derivative.

$$f(x_k + \mathbf{a}p_k) \le f(x_k) + c_1 \mathbf{a} \nabla f_k^T p_k, \quad c_1 \in (0,1)$$
$$f(x_k + \mathbf{a}p_k) \le l(\mathbf{a})$$

St line

Sufficient condition

$$f(x_k + \mathbf{a}p_k) \le l(\mathbf{a})$$

Problem:
The sufficient decrease
condition is satisfied for
all small values of step length

Curvature condition

$$\nabla f(x_k + \mathbf{a}p_k)^T p_k \ge c_2 \nabla f_k^T(x_k) p_k, \quad c_2 \in (c_1, 1)$$

$$c_2 = .9 \text{ for Newton and Quasi- Newton}$$

$$c_2 = .1 \text{ for conjugate gradient}$$

The slope of is greater than times the gradient

Curvature condition

If the slope is strongly negative, that means we can reduce f further along the chosen direction

If the slope is positive, it indicates we can not decrease f further in this direction.

Wolfe conditions

$$\begin{split} f(x_k + \mathbf{a} p_k) & \leq f(x_k) + c_1 \mathbf{a} \nabla f_k^T p_k, & c_1 \in (0,1) & \text{Sufficient decrease} \\ \nabla f(x_k + \mathbf{a} p_k)^T p_k & \geq c_2 \nabla f_k^T (x_k) p_k, & c_2 \in (c_1,1) & \text{Curvature} \end{split}$$

Backtracking Line Search

If line search method chooses its step length appropriately, we can dispense with the second condition

```
Choose \overline{\boldsymbol{a}} > 0, \boldsymbol{r}, c \in (0,1); set \boldsymbol{a} \leftarrow \overline{\boldsymbol{a}};  repeat \text{ until } f(x_k + \boldsymbol{a}p_k) \leq f(x_k) + c\boldsymbol{a}\nabla f_k^T p_k   \boldsymbol{a} \leftarrow \boldsymbol{r}\boldsymbol{a};   end(repeat)   \overline{\boldsymbol{a}} = 1, \text{ for Newton}  and quasi - Newton and quasi - Newton
```

This ensures that the step length is short enough to satisfy the sufficient decrease condition, but not too short.

Searching Step Length Using Interpolation

$$f(x_k + \mathbf{a} p_k) \le f(x_k) + c_1 \mathbf{a} \nabla f_k^T p_k, \quad c_1 \in (0,1)$$
 Sufficient decrease $\mathbf{f}(x_k) \le \mathbf{f}(0) + c_1 \mathbf{a}_k \mathbf{f}(0)$

1. Assume a_0 is the initial guess. Then if we have:

$$\mathbf{f}(\mathbf{a}_0) \leq \mathbf{f}(0) + c_1 \mathbf{a}_0 \mathbf{f}(0)$$

Then this step length satisfies the condition, we terminate the search.

2. Otherwise, we know $[0,a_0]$ contains the acceptable step lengths.

We fit quadratic polynomial to three pieces of information:

$$\mathbf{f}_{q}(0) = \mathbf{f}(0), \mathbf{f}_{q}(0) = \mathbf{f}(0), \mathbf{f}_{q}(\mathbf{a}_{0}) = \mathbf{f}(\mathbf{a}_{0})$$

Searching Step Length Using Interpolation

and find step length a_i by analytically minimizing this polynomial

If the sufficient decrease condition is satisfied for this a_1 then we terminate the search.

If not we fit cubic polynomial to interpolate four pieces of information, and analytically minimize this polynomial to find .

$$f(0) = f(0), f(0) = f(0), f(a_0) = f(a_0), f(a_0) = f(a_0)$$

3. If not we fit cubic polynomial to interpolate four pieces of a_2 information, and analytically minimize this polynomial to find

If necessary we can repeat this process with f(0), f'(0) and two Most recent values of f.

Quadratic Interpolation

$$\mathbf{f}_{q}(\mathbf{a}) = a\mathbf{a}^{2} + b\mathbf{a} + c$$

$$\mathbf{f}_{q}(0) = \mathbf{f}(0), \mathbf{f}_{q}(0) = \mathbf{f}'(0), \mathbf{f}_{q}(\mathbf{a}_{0}) = \mathbf{f}(\mathbf{a}_{0})$$

$$\mathbf{f}_{q}(\mathbf{a}) = \left(\frac{\mathbf{f}(\mathbf{a}_{0}) - \mathbf{f}(0) - \mathbf{a}_{0}\mathbf{f}'(0)}{\mathbf{a}_{0}^{2}}\right)\mathbf{a}^{2} + \mathbf{f}'(0)\mathbf{a} + \mathbf{f}(0)$$

$$\frac{d}{d\mathbf{a}}\mathbf{f}_{q}(\mathbf{a}) = 2\left(\frac{\mathbf{f}(\mathbf{a}_{0}) - \mathbf{f}(0) - \mathbf{a}_{0}\mathbf{f}'(0)}{\mathbf{a}_{0}^{2}}\right)\mathbf{a} + \mathbf{f}'(0)) = 0$$

$$\mathbf{a} = -\left(\frac{\mathbf{f}'(0)\mathbf{a}_{0}^{2}}{2(\mathbf{f}(\mathbf{a}_{0}) - \mathbf{f}(0) - \mathbf{a}_{0}\mathbf{f}'(0))}\right)$$

Cubic Interpolation

$$\mathbf{f}_{c}(\mathbf{a}) = a\,\mathbf{a}^{3} + b\,\mathbf{a}^{2} + c\,\mathbf{a} + d$$

$$\mathbf{f}_{c}(0) = \mathbf{f}(0), \mathbf{f}_{c}(0) = \mathbf{f}(0), \mathbf{f}_{c}(\mathbf{a}_{b}) = \mathbf{f}(\mathbf{a}_{b}), \mathbf{f}_{c}(\mathbf{a}_{b}) = \mathbf{f}(\mathbf{a}_{b})$$

$$f(a) = a a^3 + b a^2 + f(0)a + f(0)$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = \frac{1}{\mathbf{a}_0^2 \mathbf{a}_1^2 (\mathbf{a}_1 - \mathbf{a}_0)} \begin{bmatrix} \mathbf{a}_0^2 & -\mathbf{a}_1^2 \\ -\mathbf{a}_0^3 & \mathbf{a}_1^3 \end{bmatrix} \begin{bmatrix} \mathbf{f}(\mathbf{a}_1) - \mathbf{f}(0) - \mathbf{f}'(0) \mathbf{a}_1 \\ \mathbf{f}(\mathbf{a}_0) - \mathbf{f}(0) - \mathbf{f}'(0) \mathbf{a}_0 \end{bmatrix}$$

$$\mathbf{a}_2 = -\left(\frac{-b + \sqrt{b^2 - 3a\mathbf{f}(0)}}{3a}\right)$$

Algorithm 3.2 (Line Search Algorithm)

```
Set \mathbf{a}_0 \leftarrow 0, choose \mathbf{a}_1 > 0, and \mathbf{a}_{max};
i \leftarrow 1
repeat
          Evaulate f(a_i);
                f(a_i) > f(0) + c_i a_i f(0) \text{ or } [f(a_i) > f(a_{i-1}), i > 1]
                                                                                                                     1st Wolfe's condition
                         \mathbf{a}_* \leftarrow zoom(\mathbf{a}_{-1}, \mathbf{a}), and stop;
          Evaulate \mathbf{f}(\mathbf{a});
                                                                                                                    2<sup>nd</sup> Wolfe's condition
          if |\mathbf{f}(\mathbf{a}_i)| \leq -c_2 \mathbf{f}(0)
                      set \mathbf{a} \leftarrow \mathbf{a}, and stop;
            if \mathbf{f}(\mathbf{a}) \ge 0
                      set \mathbf{a} \leftarrow zoom(\mathbf{a}, \mathbf{a}_{-1}), and stop;
           choose \boldsymbol{a}_{l+1} \in (\boldsymbol{a}_{l}, \boldsymbol{a}_{max})
           i \leftarrow i + 1;
end (repeat)
```

Algorithm 3.3 (Zoom)

```
Interpolate to find a trial step length \mathbf{a}_{j} between \mathbf{a}_{lo}, \mathbf{a}_{hi};

Evaulate \mathbf{f}(\mathbf{a}_{j});

if \mathbf{f}(\mathbf{a}_{j}) > \mathbf{f}(0) + c_{1}\mathbf{a}_{j}\mathbf{f}'(0) or \left[\mathbf{f}(\mathbf{a}_{j}) > \mathbf{f}(\mathbf{a}_{lo})\right] 1st Wolfe's condition \mathbf{a}_{hi} \leftarrow \mathbf{a}_{j};

esle

Evaulate \mathbf{f}'(\mathbf{a}_{j});

if |\mathbf{f}'(\mathbf{a}_{i})| \le -c_{2}\mathbf{f}'(0) 2nd Wolfe's condition set \mathbf{a}_{*} \leftarrow \mathbf{a}_{j}, and stop;

if \mathbf{f}'(\mathbf{a}_{j})(\mathbf{a}_{hi} - \mathbf{a}_{lo}) \ge 0

set \mathbf{a}_{hi} \leftarrow \mathbf{a}_{lo}

set \mathbf{a}_{lo} \leftarrow \mathbf{a}_{j}
end (repeat)
```


Theorem 3.5 (Any Descent Direction)

Suppose f is three times continuously differentiable. Consider iteration , where is a descent direction, Satisfies Wolfe's conditions, with . If the converges to a point such that and is pd, and if the search direction satisfies

$$\lim_{k \to 0} \frac{\|\nabla f_k + \nabla^2 f_k p_k\|}{\|p_k\|} = 0$$

$$\lim_{k \to 0} \frac{\| (B_k - \nabla^2 f(x^*)) p_k \|}{\| p_k \|} = 0$$

Then

- (i) is admissible for all $k > k_0$ and
- (ii) if for all $k > k_0$, then $\{x_k\}$ converges to x^* superlinearly.

Theorem 3.6 (Quasi-Newton)

Suppose *f* is three times continuously differentiable. Consider iteration , where is given by Quasi-Newton direction. Assume the sequence converges to a point such that and is pd, the converges superlinearly if if the following condition holds.

$$\lim_{k \to 0} \frac{\| (B_k - \nabla^2 f(x^*)) p_k \|}{\| p_k \|} = 0$$

Order Notations

Given two non-negative infinite sequences

$$\mathbf{h}_{k} = O(\mathbf{n}_{k})$$

if $|\mathbf{h}_{k}| \le C |\mathbf{n}_{k}|$, for $C > 0, \forall k$

$$h_{k} = o(n_{k})$$

$$if \lim_{k \to \infty} \frac{h_{k}}{n_{k}} = 0$$

Sketch of a Proof

$$p_{k} - p_{k}^{N} = \nabla^{2} f_{k}^{-1} (\nabla^{2} f_{k} p_{k} + \nabla f_{k})$$

$$= \nabla^{2} f_{k}^{-1} (\nabla^{2} f_{k} - B_{k}) p_{k}$$

$$= O(\| (\nabla^{2} f_{k} - B_{k}) p_{k} \|)$$

$$= o(\| p_{k} \|)$$

$$\lim_{k \to \infty} \frac{\frac{\mathbf{h}_{k}}{\mathbf{n}_{k}} = 0}{\| p_{k} \|} = 0$$

$$\lim_{k \to \infty} \frac{\| (B_{k} - \nabla^{2} f(x^{*})) p_{k} \|}{\| p_{k} \|} = 0$$

$$\lim_{k \to \infty} \frac{\| (\nabla f_{k} + \nabla^{2} f_{k} p_{k} \|)}{\| p_{k} \|} = 0$$

Norm of Hessian is bounded.

Sketch of a Proof

$$||x_{k} + p_{k} - x^{*}|| = ||x_{k} + p_{k}^{N} - p_{k}^{N} + p_{k} - x^{*}|| \le ||x_{k} + p_{k}^{N} - x^{*}|| + ||p_{k} - p_{k}^{N}||$$

$$= O(||x_{k} - x^{*}||^{2}) + o(||p_{k}||)$$

$$||x_{k} + p_{k} - x^{*}|| \le o(||x_{k} - x^{*}||)$$

$$||f| \lim_{k \to \infty} \frac{\mathbf{h}_{k}}{\mathbf{n}_{k}} = 0$$
Theorem 3.7

Super-linear

Show this in Homework

Theorem 3.7 (Newton)

Suppose that f is twice differentiable and that Hessian is Lipschitze continuous. Consider the iteration where p_k is given by

$$p_k^N = -\nabla^2 f_k^{-1} \nabla f_k$$

Then:

- 1. If the starting point x_0 is sufficiently close to x^* , the sequence converges to x^* .
- 2. The rate of convergence is quadratic
- 3. The sequence of gradient norms converges quadratically to zero.

Coordinate Descent Method

Cycle through *n* coordinate directions $e_1, e_2, \dots e_n$ using each in turn as a search direction.

Fix all other variables except one, and minimize the function.

It is an inefficient method, it can iterate infinitely without ever approaching a point, where the gradient vanishes.

The gradient may become more and more perpendicular to search directions, making $\cos q$ approach to zero, but not the gradient.

Solution of A linear System

- Gaussian Elimination, Backward Substitution
- Matrix Factorization
- Iterative Techniques

```
Gaussian Elimination with Backward Substitution
6.1
               To solve the n \times n linear system
                                          E_2:\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=a_{2n+3}
                                         E_\sigma:\ \alpha_{sc}x_1+\alpha_{s2}x_2+\cdots+\alpha_{sc}x_n=\alpha_{s(s+1)}
              OUTPUT : solution a_1,a_2,\dots,a_n or message that the linear system has
               Step I . For i=1,\dots,n-1 do Steps 2-4, . (Elimination process.)
                    Step 2. Let p be the smallest integer with s \approx p \approx n and a_{ps} \neq 0. If no integer p can be found that O(TP/T) ("or unique solution exists"); STOP.
                    Step 3 If p \neq i then perform (E_p) \leftrightarrow (E_i).
                     Step 4 For j=i+1,\ldots,n do Steps 5 and 6.
                          Step 5 Set m_{\phi} = a_{\phi}/a_{V}
                           Step 6 Perform (E_1 - m_A E_1) \rightarrow (E_1):
               Step 7 If a_m = 0 then OUTPUT ('no unique solution exists'):
               Step 8 Set s_n = a_{n,n+1}/a_{nn} (Stort backward substitution.)
              Mep 9 For i = n - 1, ..., 1 set s_i = \left[a_{i+1} - \sum_{j=1}^{n} a_{j}s_{j}\right] / a_{ij}.
              Step 10 OUTPUT (x_1, \dots, x_n): (Procedure completed successfully.) STOR
```

Iterative Methods for Solving Linear Systems

- For large sparse system Gaussian Elimination and Backward substitution is not suitable.
- Approximate solution using iterative methods

Jacobi

$$x_i^k = \frac{\sum_{j=1, j \neq i}^n (-a_{ij} x_j^{k-1}) + b_i}{a_{ii}} \quad \text{for } i = 1, 2, \dots, n$$

Gauss-Seidel

$$x_i^k = \frac{-\sum_{j=1}^{i-1} (a_{ij} x_j^k) - \sum_{j=i+1}^{n} (a_{ij} x_j^{k-1}) + b_i}{a_{ii}} \quad \text{for } i = 1, 2, \dots, n$$

SOR (Successive Over Relaxation)

$$x_{i}^{k} = (1 - \mathbf{w}) x_{i}^{k-1} + \frac{\mathbf{w}}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{k} - \sum_{j=i+1}^{n} (a_{ij} x_{j}^{k-1}) \right]$$

w > 1