L ecture-7

Step Length Selection

Homework (Due 2/20/01)
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Show equation 3.44

The last step in the proof of Theorem 3.6. (see
dides)




Sufficient condition

f(x +ap,) £ f(x)+caNf p, ¢l (01)  g=10°

f(xk +apk)' f(xk)£C1akaTpk’ qi (0’1)

The reduction should be proportional to both the step length,
and directiona derivative.

f(x +ap) £ f(x)+caNf p, ¢l (01
f(x +ap)£1@)

St line
Sufficient condition
f(x +tap)£l@)
VWt 7 Problem:
. The sufficient decrease
M e condition is satisfied for

all small values of step length




Curvature condition

Nf (x. +ap,)" p, 2 c,Nf (x)p., c,1 (c.)
¢, =.9for Newton and Quasi - Newton

Derivative ¢, =.1Ifor conjugate gradient

The sope of isgreater than  timesthe gradient

Curvature condition

i J_-lul-F:.-un_-

acoeputle worpishls

Figgare 34 The cuiivanise condilisdn
If the Slope is strongly negative, that means we can reduce f
further along the chosen direction
If the Slope is positive, it indicates we can not decrease f further
in this direction.




Wolfe conditions

f(x +ap )£ f(x)+caNf' p, ¢l (01  Sufficient
decrease

Nf (x, +ap,)" p, 2 ¢,Nf (x)p,, c,1 (c,)) Curvature

Backtracking Line Search

If line search method chooses its step length appropriately,
we can dispense with the second condition

Choosea >0,r ,cl (01);seta - a;
repeatuntil f(x, +ap,) £ f(x,)+caNf, p,

a- ra;
end(repeat) _
] ) a=1,for Newton
Terminate witha, =a and quasi - Newton

This ensures that the step length is short enough to satisfy the
sufficient decrease condition, but not too short.




Searching Step Length Using
Interpolation

f(x +ap )£ f(x)+caNf' p, ¢ 1 (01) sufficient decrease
f (%) £f (0)+caf €0

1. Assume , istheinitial guess. Thenif we have:
f (@) £ (0) +ca f €0)

Then this step length satisfies the condition, we terminate
the search.

2. Otherwise, we know [o,4 ] contains the acceptable step lengths.
We fit quadratic polynomial to three pieces of information:
f,(0) =f(0),f X0) =f €0).f ,(a,) =f (a,)

Searching Step Length Using
Interpolation
and find step length 5, by analytically minimizing this polynomial

If the sufficient decrease condition is satisfied for thisa, then

we terminate the search.

If not we fit cubic polynomial to interpolate four pieces of
information, and analytically minimize this polynomial to find .

f.(0)=f (0).fX0) = €0),f (a,) =f (a,).f.(a) =f @)
3. If not we fit cubic polynomial to interpolate four pieces of a,
information,and analytically minimize this polynomial to find

If necessary we can repeat this process with ¢ (0), f qo)and two
Most recent values of ¢ .




Quadratic Interpolation

f,@) =aa’+ba+c

f,(0) = (0).fX0) =f €0),f ,(a,) =T (&,)

f() 2g‘é(ao) f(O) aofqo)z A+ €0) =0

_ = fa 6
= Gy F(0)- af 1) 5

Cubic Interpolation

f.(@)=aa’+ba’+ca+d
f.(0)=f(0).,fK0) =f €0).f .(a,) =f (a,).f.(a) =f @)
f.(@)=aa’ +ba’ +f ¢0)a +f (0)
1 eaﬂ -a/ud @&)- f(0) - F€0)a, u

33“ AR a) e al & B (a)-(0)- T ¢0)a,l

b++/b? - 3af €0)

0
3a B

¢
a2:_
&




Algorithm 3.2 (Line Search
Algorithm)

St a, - 0,choosea, >0,ada,,, ;
i_| 1
repeat
Evaulae f (&);
it f@)>f(0+cafolf@)>f@.)i>1  1ewarescondtion
a - zom(@,,,a ), and stop;
Evaulate f €&, );
if |f&)|E-cf €0) 2nd Wolfe's condition
st a - a,and stop;
if f¢a)20
sta - 20ma,a ,), ad stop;
choosea .1 (&.a,,)
i- i+l

end (repesat )

Algorithm 3.3 (Zoom)

repeat
Interpolatetofind atrial steplength
a; betweena ,.ay;

Evaulatef (aj);

it f(@,)>f(©+cafE)orlf@)>f(@.)] 12 wolfescondition
a,-a;

ede
Evaulatef &a;);

if |f €a,)|E-cf €0) 2nd Wolfe's condition

seta. - a;,and stop;
if f&a )@,-a,)°*0
seta, - a,
sta, - a;
end (repeat )
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Theorem 3.5 (Any Descent Direction)

Suppose f is three times continuously differentiable. Consider

iteration , Where is a descent direction,
Satisfies Wolfe' s conditions, with .If the  converges
toapoint such that and ispd, and if the

search direction satisfies

NG +RE

U
c e
IimII(Bk NZF )Pl _
®0 P
Then
0] isadmissible for all k>k, and
(i) if for al k>k,, then {x} convergesto X" superlinearly.

Theorem 3.6 (Quasi-Newton)

Suppose f is three times continuously differentiable. Consider

iteration , Where is given by Quasi-Newton
direction. Assume the sequence  converges toa point
such that and ispd, the converges

superlinearly ifif the following condition holds.

. 1B - N2 F (X)) p |l _
li =0
k® 0 I Pl




Order Notations

Given two non-negative infinite sequences
h,=0M,)
if |h [EC|n, |, forC>0,"k

h,=o(n,)

. .. h

if —*=0
|kl®rpnk

Sketch of a Proof

h =0()
~ 4~ ~ if |[hI|EC|n |, forC>0
p- Pe =N’ 7 (N*f p, +Nf,) h, = o(n,)
:Nka-l(Nka - Bk) P, i |L!;D:_k:o
=0O(| (N*f - B)p, ID lim LB RO
ke 0 I ol

=o(ll p D

k®0 Il P |l

Norm of Hessian is bounded.

NG KPR
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Sketch of a Proof

1%+ P - X IFlI%+ P - P +pc- X [EIX +pe - X [+ p - Pyl
=0O(I[% - X [IPyxo(l p I

\ i -
| % + P - X [IE ol % - X [I) " _o(n;)
if Il!C[)TQ E:O
Theorem 3.7
Super-linear

Show thisin Homework

Theorem 3.7 (Newton)

Suppose that f is twice differentiable and that Hessian is
Lipschitze continuous. Consider the iteration where p,
isgiven by

py =- N*f,'Nf,

Then:

1. If the starting point X, is sufficiently closeto X" , the sequence
convergesto X'

2. Therate of convergence is quadratic
3. The sequence of gradient norms converges quadratically
to zero.
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Coordinate Descent M ethod

Cyclethrough n coordinate directions &.&..--& using each
in turn as a search direction.

Fix al other variables except one, and minimize the function.

It isan inefficient method, it can iterate infinitely without
ever approaching a point, where the gradient vanishes.

The gradient may become more and more perpendicular to search
directions, making cosq @pproach to zero, but not the gradient.

Solution of A linear System

» Gaussian Elimination, Backward
Substitution

 Matrix Factorization
* Iterative Techniques
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|terative Methods for Solving
Linear Systems

 For large sparse system Gaussian
Elimination and Backward substitution is
not suitable.

» Approximate solution using iterative
methods
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Jacobi

_é._ (" aj; le(_l) +D,
= =L for i =1,2,...,n
a;
Gauss-Seiddl
- é (aijxlj()_ é. (ain:'(-l)'i'bi
=1 j=irt for i =1,2
a
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SOR (Successive Over
Relaxation)

. i1
k-1, W €
+ _ebi -

a; g

X< = (1- w)x

=

j=i+l

w>1

| n

o 9 k-1
a ;% - a (a;x;)
j: i=i+

[ e anid
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