L ecture-6

Convergence and order of
convergence

Line Search M ethods
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Steepest descent is and identity matrix

Newton isaHessian matrix
Quasi-Newton IS approximation to the Hessian matrix




Line Search M ethods
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Conjugate gradient

| mportant Questions

» What are the conditions under which, the
method converges?

» What isthe rate of convergence?




Conditions of convergence

o Steepest Descent: Wolf’ s conditions

* Newton and Quasi-Newton: In addition to
Wolfe' s conditions, PD Hessian, and
bounded condition number

» Conjugate Gradient: subsequence of
direction cosinescos;, isbounded away from
ZEro.

Convergence Rate

Steepest descent: Linear
Quasi-Newton: Super-linear
Newton: Quadratic
Conjugate Gradient: n steps




Convergence of Line Search
Methods

» The steepest descent method is globally
convergent

* For other algorithms how far p, can deviate

from the steepest descent direction and still
givesriseto globally convergent iteration.

Convergence of Line Search Methods
(Theorem 3.2)

The angle between p, and steepest descent direction - Rt
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We will show (Theorem 3.2):
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Convergence of Line Search Methods

_ Iteration scheme
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Convergence of Line Search Methods
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Convergence of Line Search Methods
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Convergence of Line Search Methods
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Since f is bounded below, we have fy-f,,, isless than some
positive constant for all k

Taking the limits:
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Convergence of Line Search Methods
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We can be sure that gradient norms converges to zero, provided that
the search directions are never too close to orthogonality with the gradient

Therefore, the steepest descent produces a gradient sequence that converges to zero,
provided that it uses aline search satisfying Wolf’ s conditions

We can not guarantee that the method converges to a minimizer,
but only that it is attracted by stationary points.

Newton-Like
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Assume Hessian is a PD with a uniformly bounded condition number
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Show that (Homework)
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Newton-Like
cosq, 3 ﬁ
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cos’q, ||Nf, [|°® 0

Therefore
2~ 3
cos qk 0 Therefore:
| | m I Nf ||2: 0 We have shown that :
k® ¥ “ Newton and Quasi Newton

are globally convergent

if Hessians have bounded condition
numbers and are PD, and if the step
lengths satisfy Wolf’s conditions

Conjugate Gradient

Only subsequence of the gradient norms converges to zero,
rather than the whole sequence.
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Sketch of proof by contradiction:
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Thereforeit is enough to show that a subsequence {cosq } is
bounded away from zero.




General Class of Algorithms

 Algorithm

— Every iteration produces adecrease in the
objective function

— Every mtheth iteration is a stegpest descent
step, with the step length chosen to satisfy the
Wolf’s conditions.

 Then

— Sincecosg =1 for steepest descent, then
following holds
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Convergence Rate of Steepest
Descent: Quadratic Function
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As the condition number increases the contours of the quadratic
become more elongated, the zigzags of line search becomes more
pronounced.




Theorem 3.4. Steepest Descent
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a
whereO£l, £1,£...|  areeigenvauesof Hessian

If the condition number is 800, and f(x,)=1 and f(X')=0,
After 1000 iterations the value of function will be .08.

Theorem 3.5

Suppose f is three times continuously differentiable. Consider
iteration , Where is adescent direction,
Satisfies Wolfe' s conditions, with .Ifthe  converges
toapoint such that and ispd, and if the
search direction satisfies
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Then
@ if isadmissible for all k>k,

(i) If for al k>k,, then {x} convergesto X" superlinearly,
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Theorem 3.6

Suppose f is three times continuously differentiable. Consider

iteration , Where is given by Quasi-Newton
direction. Assumethe sequence  converges toa point
such that and ispd, the converges

superlinearly ifif the following condition holds.
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Order Notations

Given two non-negative infinite sequences
h =0{,)
if |h [EC|n_ | forC>0,"k

h, =o(n,)

. .. N

if kK =
|kl®r¥r]nk

11



Sketch of a Proof
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Theorem 3.7

Suppose that f is twice differentiable and that Hessian is
Lipschitze continuous. Consider the iteration where
isgiven by

py =- N*f,'Nf,

Then:

1. If the starting point X, is sufficiently closeto X" , the sequence
convergesto X'

2. Therate of convergence is quadratic
3. The sequence of gradient norms converges quadratically
to zero.




Coordinate Descent M ethod

Cyclethrough n coordinate directions &.&..--& using each
in turn as a search direction.

Fix al other variables except one, and minimize the function.

It isan inefficient method, it can iterate infinitely without
Ever approaching a point, where the gradient vanishes.

The gradient may become more and more perpendicular to search
Directions, making cogy approach to zero, but not the gradient.
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