
1

Lecture-6

Convergence and order of 
convergence

Line Search Methods

kkkk pxx α+←+1

kkk fBp ∇−← −1

Steepest descent         is and identity matrix   
Newton         is a Hessian matrix
Quasi-Newton         is approximation to the Hessian matrix
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Line Search Methods

kkkk pxx α+←+1

ji       0 ≠∀=j
T
i App

Conjugate gradient

Important Questions

• What are the conditions under which, the 
method converges?

• What is the rate of convergence?
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Conditions of convergence

• Steepest Descent: Wolf’s conditions
• Newton and Quasi-Newton: In addition to 

Wolfe’s conditions, PD Hessian, and 
bounded condition number

• Conjugate Gradient: subsequence of 
direction cosines        is bounded away from 
zero.

kθcos

Convergence Rate

• Steepest descent: Linear
• Quasi-Newton: Super-linear
• Newton: Quadratic
• Conjugate Gradient: n steps
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Convergence of Line Search 
Methods

• The steepest descent method is globally 
convergent

• For other algorithms how far pk can deviate 
from the steepest descent  direction and still 
gives rise to globally convergent iteration.

Convergence of Line Search Methods 
(Theorem 3.2)
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The angle between pk and steepest descent direction T
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We will show (Theorem 3.2):
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Convergence of Line Search Methods

k
T

kk
T

kk pfcpff ∇−≥∇−∇ + )1()( 21

2
1

11

||||  )(

||||||||                            

|||| ||)(||)(

kkk
T

kk

kkk

k
T

kkk
T

kk

pLpff

ppL
pffpff

α

α

≤∇−∇

≤
∇−∇≤∇−∇

+

++

kkkk pxx α+=+1

Curvature condition

Iteration scheme

Therefore
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Convergence of Line Search Methods
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Combining (1) and (2)
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Convergence of Line Search Methods
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Sufficient decrease
Therefore

Convergence of Line Search Methods
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Since f is bounded below, we have f0-fk+1 is less than some 
positive constant for all k

Taking the limits:
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Convergence of Line Search Methods
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We can be sure that gradient norms converges to zero, provided that 
the search directions are never too close to orthogonality with the gradient

Therefore, the steepest descent produces a gradient sequence that converges to zero, 
provided that it uses a line search satisfying Wolf’s conditions.

We can not guarantee that the method converges to a minimizer, 
but only that it is attracted by stationary points.

If angle is bounded away 
From 900

Newton-Like 
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Assume Hessian is a PD with a uniformly bounded condition number

Using 
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Show that (Homework)
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Newton-Like
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Using 

Therefore

Therefore:
We have shown that :
Newton and Quasi Newton
are globally convergent
if Hessians have bounded condition 
numbers and are PD, and if the step 
lengths satisfy Wolf’s conditions
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Theorem 3.2

Conjugate Gradient
Only subsequence of the gradient norms converges to zero, 
rather than the whole sequence.
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Sketch of proof by contradiction:
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Implies 
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Therefore it is enough to show that a subsequence       is 
bounded away from zero.
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General Class of Algorithms

• Algorithm
– Every iteration produces a decrease in the 

objective function
– Every m the-th iteration is a steepest descent 

step, with the step length chosen to satisfy the 
Wolf’s conditions.

• Then 
– Since            for steepest descent, then 

following holds
1cos =kθ
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Convergence Rate of Steepest 
Descent: Quadratic Function

2*

2

1

12*
1 |||||||| Qk

n

n
Qk xxxx −








+
−

≤−+ λλ
λλ

As the condition number increases the contours of the quadratic
become more elongated, the zigzags of line search becomes more 
pronounced.

Theorem 3.3
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Theorem 3.4: Steepest Descent
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Hessian of seigenvalue are   0 where 21 nλλλ K≤≤≤

If the condition number is 800, and f(x1)=1 and f(x*)=0, 
After 1000 iterations the value of function will be .08.

Theorem 3.5
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Suppose f is three times continuously differentiable. Consider
iteration                            , where        is a descent direction,     
Satisfies Wolfe’s conditions, with         . If the       converges   
to a point     such that               and             is pd, and if the 
search direction satisfies  
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Then   
(i) if            is admissible for all k>k0
(ii) If           for all k>k0, then {xk} converges to x* superlinearly.
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1=kα
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Theorem 3.6
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Suppose f is three times continuously differentiable. Consider
iteration                        , where        is given by Quasi-Newton 
direction. Assume the sequence       converges   to a     point 
such that                 and             is pd, the     converges 
superlinearly ifif the following condition holds.
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Order Notations
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Sketch of a Proof
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Then:
1. If the starting point x0 is sufficiently close to x* , the sequence 
converges to x*.

2. The rate of convergence is quadratic
3. The sequence of gradient norms     converges quadratically 
to zero.
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Suppose that f is twice differentiable and that Hessian is 
Lipschitze continuous. Consider the iteration                   where   
is given by 

kkk pxx +=+1

Theorem 3.7
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Cycle through n coordinate directions                  using each 
in turn as a search direction.

neee K,, 21

Fix all other variables except one, and minimize the function.

It is an inefficient method, it can iterate infinitely without 
Ever approaching a point, where the gradient vanishes.

The gradient may become more and more perpendicular to search 
Directions, making         approach to zero, but not the gradient.θcos

Coordinate Descent Method


