L ecture-4

Line Search Methods: Search
Directions, and step lengths

Line Search M ethods

X 7 X Ta Py
p,— - Bl; 1ka
Steepest descent B isand identity matrix

Newton B, isaHessian matrix
Quasi-Newton g, isapproximation to the Hessian matrix




Inverse Hessian

Instead of inverting approximation of Hessian, we can
directly compute the approximation of inverse of Hessian:

Heo = (- 1 SYOH( - 1Sy )+r i SS

1
M= Sc = X~ X H, =B'
HeS y, =Nf ., - Nf,
p. =- H,Nf, Quasi Newton
Conjugate Gradient
p. =-Nf (x)+b,p, b,isscalar such that p, ,

and p,are conjugate

Two vectors are conjugate with respect to amatrix G if

kaka-l =0

Non-interfering directions, with the special property that
minimization along one direction is not spoiled by
subsequent minimization along another.




Step Length

(Exact Search) The global minimizer of the univariate function:

f@)=f(x+ap) a>0

Too many evaluations of afunction, and its gradient

(In-exact search): adequate reduction in f at minimal cost.

Two step method:
Bracketing (find the interval containing desirable step lengths)
bisection (compute step length within thisinterval)

Step Length

Ideal step length isthe global minimizer
Step length should achieve sufficient decrease
And it should not be too small
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Simple Condition

Simple condition: reduction in f

F(x +ape) < T(%)

Thisis not appropriate.
150
(—v, kK=123,...
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We don not have sufficient reduction i i
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Sufficient condition

f(x +ap,) £ f(x) "‘ClakaT P, ClT (01 ¢ =10*

f(x +ap)- f(x)EcaNf'p, ¢l (0D

The reduction should be proportiona to both the step length,
and directiona derivative.

f(x +ap,) £ f(x)+caNf p, ¢l (01)
f(x +ap)£l@)
Stline




Sufficient condition

f(x +ap)£l@)
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. The sufficient decrease
Mo e condition is satisfied for

all small values of step length
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Curvature condition

Nf (% +ap,)" p, 2 N (x)p,, ¢l (¢
¢, =.9for Newton and Quasi - Newton

ivati = .1for conjugate gradient
Derivative f ¢a, ) ¢, =.1for conjugate gradien

The dlope of f (a,) isgreater than ¢, timesthe gradient f €0)




Curvature condition
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Figure 3.4 The curvanre condition
If the Slope is strongly negative, that means we can reduce f
further along the chosen direction
If the Slope is positive, it indicates we can not decrease f further
in this direction.

Wolfe conditions

f(x +ap,) £ f(x)+caNf'p, ¢l (01  Sufficient
decrease

Nf (x, +ap,)" p, 2 ¢,Nf (x)p,, c,1 (c,)) Curvature




Strong Wolfe conditions

f(x +ap,) £ f(x)+caNf p,, ¢l (0

INf 3 (x,_+ap,)" p, [Ec, INf, (%) P, |

This forces step length to liein at least in a broad neighborhood of
alocal minimizer or astationary point of f .

f ¢a) should not be too positive, exclude points which are
Further away from the stationary points of f

Goldstein conditions

f(%)+(1-caNf p £ f (% +ap) £ f(x)+caNf p,
To control step length from the below 0<c <%

Sufficient decrease
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Disadvantage:
— /£ |t may exclude minmizers
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Quadratic Functions

f (X) :%XTQX- b'x

Q issymmetric, Hessian of f
Nf (x) =Qx- b

if X" isauniquesolution of Qx =D, thenitis

astationary point of f

f(< +ap) = £(X)+2a°p'Qp
Let u andl, be eigenvector and eigenvalue of Q then

Qu; =1y,

Quadratic Functions

f(x +ap) = f(x*>+§a2pTQp
Let p isequal to

Qu, =1,y
f(x +au,) = f(x)+ a’u Qu

f(x +au,) = f(x*)+%a2ujl u,

f(x +au) = f(x) +%a2| | Q isorthonormal




Quadratic Functions

» Thechangein f when moving away from X aong

the direction u; dependsonthesignof !,

— If1; ispositive f will strictly increase as|a| increases

— If1; isnegative, f is decreasing aslalincreases.

— If 1, iszero, thevaue of f remains constant when
moving along any direction paralléel to u;

— f reducesto alinear function along any such direction,
since quadratic term vanishes.

f(x +au)= f(x*)+%azl |

Quadratic Functions

« When all eigenvalues of Q are positive, X' isthe
unique global minimum.

— The contours of f are ellipsoid whose principal axes are
in the directions of the eigevectors of Q, with lengths
proportional to squareroot of corresponding
eigenvalues.

 If Qispositive semi-definite, a stationary point (if
it exists) is aweek local minimum.

* If Qisindefinite and non-singular, X isasaddle
point, f isunbounded.

f(x +au ) = f(x*)+%azl |




|so Contours (Contour Map)

f(x,x)=c

f (X, %) =€ (4% +2)G +4x,X, + 2%, +1)
c=.2,.4117,182345,6,20

Quadratic Functions

Two positive eigenvalues
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One positive eigenvalue,
one zero eigenvalue
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One positive e|genval ue,

one negative eigenvalue
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