Lecture-4

Line Search Methods: Search
Directions, and step lengths

Line Search Methods

$$
\begin{gathered}
x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k} \\
p_{k} \leftarrow-B_{k}^{-1} \nabla f_{k}
\end{gathered}
$$

Steepest descent B_{k} is and identity matrix
Newton B_{k} is a Hessian matrix
Quasi-Newton B_{k} is approximation to the Hessian matrix

Inverse Hessian

Instead of inverting approximation of Hessian, we can directly compute the approximation of inverse of Hessian:

$$
\begin{aligned}
& H_{k+1}=\left(I-\rho_{k} s_{k} y_{k}^{T}\right) H_{k}\left(I-\rho_{k} s_{k} y_{k}^{T}\right)+\rho_{k} s_{k} s_{k}^{T}, \\
& \rho_{k}=\frac{1}{y_{k}^{T} s_{k}} \quad s_{k}=x_{k+1}-x_{k}, \quad H_{k}= \\
& y_{\mathrm{k}}=\nabla f_{k+1}-\nabla f_{k}
\end{aligned}
$$

$$
p_{k}=-H_{k} \nabla f_{k}
$$

Quasi Newton

Conjugate Gradient

$$
p_{k}=-\nabla f\left(x_{k}\right)+\beta_{k} p_{k-1}
$$

β_{k} is scalar such that p_{k-1} and p_{k} are conjugate

Two vectors are conjugate with respect to a matrix G if

$$
p_{k}^{T} G p_{k-1}=0
$$

Non-interfering directions, with the special property that minimization along one direction is not spoiled by subsequent minimization along another.

Step Length

(Exact Search) The global minimizer of the univariate function:

$$
\phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right) \quad \alpha>0
$$

Too many evaluations of a function, and its gradient
(In-exact search): adequate reduction in f at minimal cost.
Two step method:
Bracketing (find the interval containing desirable step lengths) bisection (compute step length within this interval)

Step Length

Ideal step length is the global minimizer
Step length should achieve sufficient decrease
And it should not be too small
©-nvis. 1 ver zinasim methoos

Simple Condition

Simple condition: reduction in f

$$
f\left(x_{k}+O p_{k}\right)<f\left(x_{k}\right)
$$

This is not appropriate.

$$
\left\{\frac{5}{k}\right\}, k=1,2,3, \ldots
$$

We don not have sufficient reduction

Sufficient condition

$$
\begin{aligned}
& f\left(x_{k}+\boldsymbol{\alpha} p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \boldsymbol{\alpha} \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1) \quad c_{1}=10^{-4} \\
& f\left(x_{k}+\boldsymbol{\alpha} p_{k}\right)-f\left(x_{k}\right) \leq c_{1} \boldsymbol{\alpha} \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1)
\end{aligned}
$$

The reduction should be proportional to both the step length, and directional derivative.

$$
\begin{aligned}
& f\left(x_{k}+\boldsymbol{\alpha} p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \boldsymbol{\alpha} \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1) \\
& f\left(x_{k}+\boldsymbol{O} p_{k}\right) \leq l(\boldsymbol{\alpha})
\end{aligned}
$$

Sufficient condition

$f\left(x_{k}+\alpha p_{k}\right) \leq l(\boldsymbol{\alpha})$

Problem:
The sufficient decrease condition is satisfied for all small values of step length

Ngave 3.3 Sufficient decrase condrion.

Curvature condition

$$
\begin{array}{r}
\nabla f\left(x_{k}+\mathrm{\alpha} p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T}\left(x_{k}\right) p_{k}, \quad c_{2} \in\left(c_{1}, 1\right) \\
c_{2}=.9 \text { for Newton and Quasi- Newton } \\
c_{2}=.1 \text { for conjugate gradient }
\end{array}
$$

The slope of $\phi\left(\alpha_{k}\right)$ is greater than c_{2} times the gradient $\phi^{\prime}(0)$.

Curvature condition

Figure 3.4 The curvenare condition.
If the slope is strongly negative, that means we can reduce f further along the chosen direction
If the slope is positive, it indicates we can not decrease f further in this direction.

Wolfe conditions

$$
\begin{array}{lll}
f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} p_{k}, & c_{1} \in(0,1) & \begin{array}{l}
\text { Sufficient } \\
\text { decrease }
\end{array} \\
\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f_{k}^{T}\left(x_{k}\right) p_{k}, \quad c_{2} \in\left(c_{1}, 1\right) & \text { Curvature }
\end{array}
$$

Strong Wolfe conditions

$$
\begin{gathered}
f\left(x_{k}+\boldsymbol{\alpha} p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \boldsymbol{\alpha} \nabla f_{k}^{T} p_{k}, \quad c_{1} \in(0,1) \\
\left|\nabla f \geq\left(x_{k}+\boldsymbol{\alpha} p_{k}\right)^{T} p_{k}\right| \leq c_{2}\left|\nabla f_{k}^{T}\left(x_{k}\right) p_{k}\right|
\end{gathered}
$$

This forces step length to lie in at least in a broad neighborhood of a local minimizer or a stationary point of ϕ.
$\phi^{\prime}(\alpha)$ should not be too positive, exclude points which are Further away from the stationary points of ϕ

Goldstein conditions

$$
f\left(x_{k}\right)+(1-\mathrm{c}) \alpha_{\mathrm{k}} \nabla f_{k}^{T} p_{k} \leq f\left(x_{k}+\boldsymbol{\alpha} p_{k}\right) \leq f\left(x_{k}\right)+c \boldsymbol{\alpha}_{k} \nabla f_{k}^{T} p_{k}
$$

To control step length from the below

Figure 16 The Goldsein cenaltions.

Quadratic Functions

$$
\begin{aligned}
& f(x)=\frac{1}{2} x^{T} Q x-b^{T} x \quad Q \text { is symmetric, Hessian of } f \\
& \nabla f(x)=Q x-b
\end{aligned}
$$

if x^{*} is a unique solution of $Q x=b$, then it is a stationary point of f

$$
f\left(x^{*}+\alpha p\right)=f\left(x^{*}\right)+\frac{1}{2} \alpha^{2} p^{T} Q p
$$

Let u_{i} and λ_{i} be eigenvector and eigenvalue of Q then

$$
Q u_{j}=\lambda_{j} u_{j}
$$

Quadratic Functions

$$
f\left(x^{*}+\alpha p\right)=f\left(x^{*}\right)+\frac{1}{2} \alpha^{2} p^{T} Q p
$$

Let p is equal to u_{i}

$$
\begin{aligned}
& f\left(x^{*}+\alpha u_{j}\right)=f\left(x^{*}\right)+\frac{1}{2} \alpha^{2} u_{j}^{T} Q u_{j} \quad Q u_{j}=\lambda_{j} u_{j} \\
& f\left(x^{*}+\alpha u_{j}\right)=f\left(x^{*}\right)+\frac{1}{2} \alpha^{2} u_{j}^{T} \lambda_{j} u_{j} \\
& f\left(x^{*}+\alpha u_{j}\right)=f\left(x^{*}\right)+\frac{1}{2} \alpha^{2} \lambda_{j} \quad Q \text { is orthonormal }
\end{aligned}
$$

Quadratic Functions

- The change in f when moving away from x^{*} along the direction u_{j} depends on the sign of λ_{j}
- If λ_{j} is positive f will strictly increase as $|\alpha|$ increases
- If λ_{j} is negative, f is decreasing as $|\boldsymbol{\alpha}|$ increases.
- If λ_{j} is zero, the value of f remains constant when moving along any direction parallel to u_{j}
$-f$ reduces to a linear function along any such direction, since quadratic term vanishes.

$$
f\left(x^{*}+\alpha u_{j}\right)=f\left(x^{*}\right)+\frac{1}{2} \alpha^{2} \lambda_{j}
$$

Quadratic Functions

- When all eigenvalues of Q are positive, x^{*} is the unique global minimum.
- The contours of f are ellipsoid whose principal axes are in the directions of the eigevectors of Q, with lengths proportional to squareroot of corresponding eigenvalues.
- If Q is positive semi-definite, a stationary point (if it exists) is a week local minimum.
- If Q is indefinite and non-singular, x^{*} is a saddle point, f is unbounded.

$$
f\left(x^{*}+\alpha u_{j}\right)=f\left(x^{*}\right)+\frac{1}{2} \alpha^{2} \lambda_{j}
$$

Iso Contours (Contour Map)

$$
f\left(x_{1}, x_{2}\right)=c
$$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=e^{x_{1}}\left(4 x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2}+2 x_{2}+1\right) \\
& c=.2, .4,1,1.7,1.8,2,3,4,5,6,20
\end{aligned}
$$

Quadratic Functions

Two positive eigenvalues

$$
\begin{aligned}
& Q=\left[\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right], \quad \mathrm{b}=\left[\begin{array}{l}
-5.5 \\
-3.5
\end{array}\right] \\
& \text { PD }
\end{aligned}
$$

One positive eigenvalue, one zero eigenvalue
$Q=\left[\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right], \quad \mathrm{b}=\left[\begin{array}{l}-4 \\ -2\end{array}\right]$
Semi PD
One positive eigenvalue, one negative eigenvalue

$$
Q=\left[\begin{array}{cc}
3 & -1 \\
-1 & -8
\end{array}\right], \quad \mathrm{b}=\left[\begin{array}{c}
-.5 \\
8.5
\end{array}\right]
$$

