

Inverse Hessian

Instead of inverting approximation of Hessian, we can directly compute the approximation of inverse of Hessian:

$$H_{k+1} = (I - \boldsymbol{r}_k s_k y_k^T) H_k (I - \boldsymbol{r}_k s_k y_k^T) + \boldsymbol{r}_k s_k s_k^T,$$

$$\boldsymbol{r}_k = \frac{1}{y_k^T s_k} \qquad s_k = x_{k+1} - x_k, \qquad H_k = B_k^{-1}$$

$$\boldsymbol{y}_k = \nabla f_{k+1} - \nabla f_k$$

 $p_k = -H_k \nabla f_k$

Quasi Newton

Step Length

(Exact Search) The global minimizer of the univariate function:

$$\boldsymbol{f}(\boldsymbol{a}) = f(\boldsymbol{x}_k + \boldsymbol{a}\boldsymbol{p}_k) \quad \boldsymbol{a} > 0$$

Too many evaluations of a function, and its gradient

(In-exact search): adequate reduction in *f* at minimal cost. Two step method: Bracketing (find the interval containing desirable step lengths)

bisection (compute step length within this interval)

Quadratic Functions

$$f(x) = \frac{1}{2}x^{T}Qx - b^{T}x \quad Q \text{ is symmetric, Hessian of } f(x) = Qx - b$$

$$\nabla f(x) = Qx - b$$
if x^{*} is a unique solution of $Qx = b$, then it is
a stationary point of f

$$f(x^{*} + \mathbf{a}p) = f(x^{*}) + \frac{1}{2}\mathbf{a}^{2}p^{T}Qp$$
Let u_{i} and I_{i} be eigenvector and eigenvalue of Q then

$$Qu_{j} = \mathbf{I}_{j}u_{j}$$

Quadratic Functions

- The change in f when moving away from x* along the direction u_i depends on the sign of I_i
 - If I_j is positive f will strictly increase as |a| increases
 - If I_j is negative, f is decreasing as |a| increases.
 - If I_j is zero, the value of f remains constant when moving along any direction parallel to u_j
 - -f reduces to a linear function along any such direction, since quadratic term vanishes.

$$f(x^* + \boldsymbol{a}\boldsymbol{u}_j) = f(x^*) + \frac{1}{2}\boldsymbol{a}^2\boldsymbol{I}_j$$

