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Lecture-4

Line Search Methods: Search 
Directions, and step lengths

Line Search Methods

kkkk pxx α+←+1

kkk fBp ∇−← −1

Steepest descent         is and identity matrix   
Newton         is a Hessian matrix
Quasi-Newton         is approximation to the Hessian matrix
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Instead of inverting approximation of Hessian, we can 
directly compute the approximation of inverse of Hessian:

Inverse Hessian

Quasi Newton
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Conjugate Gradient
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Two vectors are conjugate with respect to a matrix G if 
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Non-interfering directions, with the special property that 
minimization along one direction is not spoiled by 
subsequent minimization along another. 
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Step Length

0    )()( >+= αααφ kk pxf

(Exact Search) The global minimizer of the univariate function:

Too many evaluations of a function, and its gradient

(In-exact search): adequate reduction in f at minimal cost.
Two step method:

Bracketing (find the interval containing desirable step lengths)
bisection (compute step length within this interval)

Step Length
Ideal step length is the global minimizer
Step length should achieve sufficient decrease
And it should not be too small
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Simple Condition

Simple condition: reduction in f

  ) ()( kkk xfpxf <+α

This is not appropriate.
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We don not have sufficient reduction

Sufficient condition
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The reduction should be proportional to both the step length, 
and directional derivative.

St line
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Sufficient condition

)()( αα lpxf kk ≤+

Problem:
The sufficient decrease 
condition is satisfied for
all small values of step length

Curvature condition
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The slope of         is greater than      times the gradient    .)0(φ′

Derivative       
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Newton-Quasi andNewton for  9.
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Curvature condition

If the slope is strongly negative, that means we can reduce f 
further along the chosen direction
If the slope is positive, it indicates we can not decrease f further 
in this direction.

Wolfe conditions
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Curvature 
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Strong Wolfe conditions
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This forces step length to lie in at least in a broad neighborhood of 
a local minimizer or a stationary point  of      .φ

should not be too positive, exclude points which are 
Further away from the stationary points of φ
)(αφ′

Goldstein conditions
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Sufficient decrease

To control step length from the below

Disadvantage:
It may exclude minmizers 



8

Quadratic Functions
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jjj uQu λ=

Let               be  eigenvector and eigenvalue of Q theniiu λ and  

Q is symmetric, Hessian of f

Quadratic Functions
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Let p is equal to ui
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Q is orthonormal
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Quadratic Functions

• The change in f when moving away from x* along 
the direction  uj depends on the sign of
– If      is positive  f will strictly increase as      increases
– If     is negative, f is  decreasing as  increases.
– If      is zero, the value of f remains constant when 

moving along any direction parallel to uj

– f reduces to a linear function along any such direction, 
since quadratic term vanishes.
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Quadratic Functions
• When all eigenvalues of Q are positive, x* is the 

unique global minimum.
– The contours of f are ellipsoid whose principal axes are 

in the directions of the eigevectors of Q, with lengths 
proportional to squareroot of corresponding 
eigenvalues.

• If Q is positive semi-definite, a stationary point (if 
it exists) is a week local minimum.

• If  Q is indefinite and non-singular, x* is a saddle 
point, f is unbounded.
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Iso Contours (Contour Map)
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Quadratic Functions
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